首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been known that halophilic bacteria often show natural resistance to antibiotics, dyes, and toxic metal ions, but the mechanism and regulation of this resistance have remained unexplained. We have addressed this question by identifying the gene responsible for multidrug resistance. A spontaneous ofloxacin-resistant mutant derived from the moderately halophilic bacterium Chromohalobacter sp. strain 160 showed a two- to fourfold increased resistance to structurally diverse compounds, such as tetracycline, cefsulodin, chloramphenicol, and ethidium bromide (EtBr), and tolerance to organic solvents, e.g., hexane and heptane. The mutant produced an elevated level of the 58-kDa outer membrane protein. This mutant (160R) accumulated about one-third the level of EtBr that the parent cells did. An uncoupler, carbonyl cyanide m-chlorophenylhydrazone, caused a severalfold increase in the intracellular accumulation of EtBr, with the wild-type and mutant cells accumulating nearly equal amounts. The hrdC gene encoding the 58-kDa outer membrane protein has been cloned. Disruption of this gene rendered the cells hypersusceptible to antibiotics and EtBr and led to a high level of accumulation of intracellular EtBr. The primary structure of HrdC has a weak similarity to that of Escherichia coli TolC. Interestingly, both drug resistance and the expression of HrdC were markedly increased in the presence of a high salt concentration in the growth medium, but this was not observed in hrdC-disrupted cells. These results indicate that HrdC is the outer membrane component of the putative efflux pump assembly and that it plays a major role in the observed induction of drug resistance by salt in this bacterium.  相似文献   

2.
The widespread use of antibiotics created selective pressure for the emergence of strains that would persist despite antibiotic toxicity. The bacterial resistance mechanisms are several, with efflux pumps being one of the main ones. These pumps are membrane proteins with the function of removing antibiotics from the cell cytoplasm. Due to this importance, the aim of this work was to evaluate the inhibitory effect of tannic acid against efflux pumps expressed by the Staphylococcus aureus RN4220 and IS-58 strains. The efflux pump inhibition was assayed using a sub-inhibitory concentration of efflux pump standard inhibitors and tannic acid (MIC/8), observing their capacity to decrease the MIC of Ethidium bromide (EtBr) and antibiotics due the possible inhibitory effect of these substances. The MICs of EtBr and antibiotics were significantly different in the presence of tannic acid, indicating the inhibitory effect of this product against efflux pumps of both strains. These results indicate the possible usage of tannic acid as an inhibitor and an adjuvant in the antibiotic therapy against multidrug resistant bacteria (MDR).  相似文献   

3.
Leptospira spp. are spirochete bacteria comprising both pathogenic and free-living species. The saprophyte L. biflexa is a model bacterium for studying leptospiral biology due to relative ease of culturing and genetic manipulation. In this study, we constructed a library of 4,996 random transposon mutants in L. biflexa. We screened the library for increased susceptibility to the DNA intercalating agent, ethidium bromide (EtBr), in order to identify genetic determinants that reduce L. biflexa susceptibility to antimicrobial agents. By phenotypic screening, using subinhibitory EtBr concentrations, we identified 29 genes that, when disrupted via transposon insertion, led to increased sensitivity of the bacteria to EtBr. At the functional level, these genes could be categorized by function as follows: regulation and signaling (n = 11), transport (n = 6), membrane structure (n = 5), stress response (n = 2), DNA damage repair (n = 1), and other processes (n = 3), while 1 gene had no predicted function. Genes involved in transport (including efflux pumps) and regulation (two-component systems, anti-sigma factor antagonists, etc.) were overrepresented, demonstrating that these genes are major contributors to EtBr tolerance. This finding suggests that transport genes which would prevent EtBr to enter the cell cytoplasm are critical for EtBr resistance. We identified genes required for the growth of L. biflexa in the presence of sublethal EtBr concentration and characterized their potential as antibiotic resistance determinants. This study will help to delineate mechanisms of adaptation to toxic compounds, as well as potential mechanisms of antibiotic resistance development in pathogenic L. interrogans.  相似文献   

4.
Vibrio parahaemolyticus is a halophilic Gram-negative bacterium that causes human gastroenteritis. When the viable but nonculturable (VBNC) state of this bacterium was induced by incubation at 4°C in Morita minimal salt solution containing 0.5% NaCl, the rod-shaped cells became coccoid, and various aberrantly shaped intermediates were formed in the initial stage. This study examined the factors that influence the formation of these aberrantly shaped cells. The proportion of aberrantly shaped cells was not affected in a medium containing d-cycloserine (50 μg/ml) but was lower in a medium containing cephalosporin C (10 μg/ml) than in the control medium without antibiotics. The proportion of aberrantly shaped cells was higher in a culture medium that contained 0.5% NaCl than in culture media containing 1.0 or 1.5% NaCl. The expression of 15 of 17 selected genes associated with cell wall synthesis was enhanced, and the expression of VP2468 (dacB), which encodes d-alanyl-d-alanine carboxypeptidase, was enhanced the most. The proportion of aberrantly shaped cells was significantly lower in the dacB mutant strain than in the parent strain, but the proportion was restored in the presence of the complementary dacB gene. This study suggests that disturbance of the dynamics of cell wall synthesis by enhanced expression of the VP2468 gene is associated with the formation of aberrantly shaped cells in the initial stage of induction of VBNC V. parahaemolyticus cells under specific conditions.  相似文献   

5.
Pseudomonas aeruginosa is an important human pathogen which causes a variety of infections. P. aeruginosa infections are often difficult to treat due to the pathogen’s resistance to many antibiotics. Previously, it has been reported that a transposon insertion mutant in gene PA2800 of P. aeruginosa PAO1 was more sensitive to tetracycline and ciprofloxacin. Further characterization of this gene, a vacJ homolog, in this study indicated that this gene plays an important role in both antibiotic susceptibility and virulence in P. aeruginosa. The role of PA2800 in antibiotic susceptibility probably signifies its involvement in maintaining outer membrane stability, similar to the role of vacJ in E. coli and Shigella flexneri. However, in contrast to vacJ in other bacteria, PA2800 also affects antibiotic susceptibility by affecting the expression of oprH in P. aeruginosa. As shown by in vivo studies using a Drosophila melanogaster infection model, significantly increased virulence was observed in the PA2800 mutant when compared to the wild type, and such a difference is likely a result of disrupted outer membrane stability and altered expression of znuA in the mutant. The role of PA2800 or vacJ in antibiotic susceptibility and pathogenicity seems to be unique in P. aeruginosa in which it affects both outer membrane stability as well as gene expression.  相似文献   

6.
Novosphingobium pentaromativorans US6-1 is a Gram-negative halophilic marine bacterium able to utilize several polycyclic aromatic hydrocarbons such as phenanthrene, pyrene, and benzo[a]pyrene. In this study, using transmission electron microscopy, we confirmed that N. pentaromativorans US6-1 produces outer membrane vesicles (OMVs). N. pentaromativorans OMVs (hereafter OMVNovo) are spherical in shape, and the average diameter of OMVNovo is 25–70 nm. Proteomic analysis revealed that outer membrane proteins and periplasmic proteins of N. pentaromativorans are the major protein components of OMVNovo. Comparative proteomic analysis with the membrane-associated protein fraction and correlation analysis demonstrated that the outer membrane proteins of OMVNovo originated from the membrane- associated protein fraction. To the best of our knowledge, this study is the first to characterize OMV purified from halophilic marine bacteria.  相似文献   

7.
Aquaglyceroporins (GlpFs) that transport glycerol along with water and other uncharged solutes are involved in osmoregulation in myriad species. Fungal species form a large group of eukaryotic organisms, and their GlpFs may be diverse, exhibiting various activities. However, few filamentous fungal GlpFs have been biologically investigated. Here, a glpF gene from the halophilic fungus Aspergillus glaucus (AgglpF) was verified to be a channel of water or glycerol in Xenopus laevis oocytes and was further functionally analyzed in three heterologous systems. In Saccharomyces cerevisiae, cells overexpressing AgglpF possessed significant tolerance of drought, salt, and certain metal ions. AgglpF was then characterized in the filamentous fungus of Neurospora crassa. Based on the N. crassa aquaporin gene (NcAQP) disruption mutant (the Δaqp mutant), a series of complementary strains carrying NcAQP and AgglpF and three asparagine-proline-alanine-gene (NPA)-deleted AgglpF fragments were created. As revealed by salt resistance analysis, the AgglpF complementary strain possessed the highest salt resistance among the tested strains. In addition, the intracellular glycerol content in the AgglpF complementary strain was markedly higher than that in the other strains. The AgGlpF-green fluorescent protein (GFP) fusion protein was subcellularly localized in the plasma membrane of onion epidermal cells, suggesting that AgglpF functions in plants. Indeed, when AgglpF was expressed in Arabidopsis thaliana, transgenic lines survived under conditions of high osmotic stress and under conditions of drought stress in particular. Overall, our results revealed that AgGlpF as a water/glycerol transporter is required for survival of both fungi and plants under conditions of high osmotic stress and may have value in applications in genetic engineering for generating high salt and drought resistance.  相似文献   

8.
The beta-barrel assembly machinery (BAM) is an indispensable complex for protein transportation located at the outer membrane of bacteria. BAM is composed of five subunits (BamA-E) in the model bacterium Escherichia coli. DR_0379 is a BamA homolog in Deinococcus radiodurans, but the other subunits have not been detected in this species. In the present study, deletion of bamA resulted in decreased growth rate and altered morphology of D. radiodurans. ΔbamA cells underwent abnormal cell division, leading to aggregated bacteria of diverse size and shape, and the cell envelope was detached from the cell surface, resulting in reduced resistance to high ionic strength. Oxidative stress resistance was significantly enhanced in the mutant, which may be attributed to increased manganese ion concentration and Mn/Fe ratio. Numerous proteins were released into the medium from ΔbamA cells, including surface layer (S-layer) proteins and various transporters located in the periplasm and outer membrane. These results indicate that BamA affects the synthesis and assembly of the outer membrane and S-layer, and thereby influences material transport and cell division. The findings highlight the special functions of BamA in D. radiodurans, and promote our understanding of the multi-layer structure of the D. radiodurans cell envelope.  相似文献   

9.
We found that the previously reported SS-B drug-supersusceptible mutant of Salmonella typhimurium (S. Sukupolvi, M. Vaara, I. M. Helander, P. Viljanen, and P. H. Mäkelä, J. Bacteriol. 159:704–712, 1984) had a mutation in the acrAB operon. Comparison of this mutant with its parent strain and with an AcrAB-overproducing strain showed that the activity of the AcrAB efflux pump often produced significant resistance to β-lactam antibiotics in the complete absence of β-lactamase. The effect of AcrAB activity on resistance was more pronounced with agents containing more lipophilic side chains, suggesting that such compounds were better substrates for this pump. This correlation is consistent with the hypothesis that only those molecules that become at least partially partitioned into the lipid bilayer of the cytoplasmic membrane are captured by the AcrAB pump. According to this mechanism, the pump successfully excretes even those β-lactams that fail to traverse the cytoplasmic membrane, because these compounds are likely to become partitioned into the outer leaflet of the bilayer. Even the compounds with lipophilic side chains were shown to penetrate across the outer membrane relatively rapidly, if the pump was inactivated genetically or physiologically. The exclusion of such compounds, exemplified by nafcillin, from cells of the wild-type S. typhimurium was previously interpreted as the result of poor diffusion across the outer membrane (H. Nikaido, Biochim. Biophys. Acta 433:118–132, 1976), but it is now recognized as the consequence of efficient pumping out of entering antibiotics by the active efflux process.  相似文献   

10.
The bacterium Sinorhizobium meliloti is able to use heme as a nutritional iron source. Here, we show that the iron-regulated shmR gene encodes an outer membrane protein required for growth on heme. Furthermore, an shmR mutant is resistant to the toxic heme analog gallium protoporphyrin. Thus, the receptor protein of the heme transport system has been identified in S. meliloti.  相似文献   

11.
Staphylococcus aureus is the leading cause of bacteraemia and the dwindling supply of effective antibacterials has exacerbated the problem of managing infections caused by this bacterium. Isoliquiritigenin (ISL) is a plant flavonoid that displays therapeutic potential against S. aureus. The present study identified a novel mannich base derivatives of ISL, IMRG4, active against Vancomycin intermediate S. aureus (VISA). IMRG4 damages the bacterial membranes causing membrane depolarization and permeabilization, as determined by loss of salt tolerance, flow cytometric analysis, propidium idodie and fluorescent microscopy. It reduces the intracellular invasion of HEK-293 cells by S. aureus and decreases the staphylococcal load in different organs of infected mice models. In addition to anti-staphylococcal activity, IMRG4 inhibits the multidrug efflux pump, NorA, which was determined by molecular docking and EtBr efflux assays. In combination, IMRG4 significantly reduces the MIC of norfloxacin for clinical strains of S. aureus including VISA. Development of resistance against IMRG4 alone and in combination with norfloxacin was low and IMRG4 prolongs the post-antibiotic effect of norfloxacin. These virtues combined with the low toxicity of IMRG4, assessed by MTT assay and haemolysis, makes it an ideal candidate to enter drug development pipeline against S. aureus.  相似文献   

12.
We investigated the applicability of the green fluorescent protein (GFP) of Aequorea victoria as a reporter for gene expression in an extremely halophilic organism: Halobacterium salinarum. Two recombinant GFPs were fused with bacteriorhodopsin, a typical membrane protein of H. salinarum. These fusion proteins preserved the intrinsic functions of each component, bacteriorhodopsin and GFP, were expressed in H. salinarum under conditions with an extremely high salt concentration, and were proved to be properly localized in its plasma membrane. These results suggest that GFP could be used as a versatile reporter of gene expression in H. salinarum for investigations of various halophilic membrane proteins, such as sensory rhodopsin or phoborhodopsin.  相似文献   

13.
Omp21, a minor outer membrane protein of the soil bacterium Comamonas acidovorans, was purified from a spontaneous mutant lacking a surface layer and long-chain lipopolysaccharide. Omp21 synthesis is enhanced by oxygen depletion, and the protein has a variable electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis due to its heat-modifiable behavior. The structural gene omp21 encodes a precursor of 204 amino acids with a putative signal peptide of 21 amino acids. Mature Omp21 is a typical outer membrane protein with a high content of β structure as determined by infrared spectroscopy. Sequence comparisons show that it belongs to a new outer membrane protein family, characterized by eight amphipathic β strands, which includes virulence proteins, such as the neisserial opacity proteins, Salmonella typhimurium Rck, and Yersinia enterocolitica Ail, as well as the major outer membrane proteins OmpA from Escherichia coli and OprF from Pseudomonas aeruginosa.  相似文献   

14.
We examined the mechanism of attachment of the marine bacterium Vibrio harveyi to chitin. Wheat germ agglutinin and chitinase bind to chitin and competitively inhibited the attachment of V. harveyi to chitin, but not to cellulose. Bovine serum albumin and cellulase do not bind to chitin and had no effect on bacterial attachment to chitin. These data suggest that this bacterium recognizes specific attachment sites on the chitin particle. The level of attachment of a chitinase-overproducing mutant of V. harveyi to chitin was about twice as much as that of the uninduced wild type. Detergent-extracted cell membranes inhibited attachment and contained a 53-kDa peptide that was overproduced by the chitinase-overproducing mutant. Three peptides (40, 53, and 150 kDa) were recovered from chitin which had been exposed to membrane extracts. Polyclonal antibodies raised against extracellular chitinase cross-reacted with the 53- and 150-kDa chitin-binding peptides and inhibited attachment, probably by sterically hindering interactions between the chitin-binding peptides and chitin. The 53- and 150-kDa chitin-binding peptides did not have chitinase activity. These results suggest that chitin-binding peptides, especially the 53-kDa chitin-binding peptide and chitinase and perhaps the 150-kDa peptide, mediate the specific attachment of V. harveyi to chitin.  相似文献   

15.
In order to understand the role of the mar locus in Salmonella with regard to multiple antibiotic resistance, cyclohexane resistance, and outer membrane protein F (OmpF) regulation, a marA::gfp reporter mutant was constructed in an antibiotic-sensitive Salmonella enterica serovar Typhimurium DT104 background. Salicylate induced marA, whereas a number of antibiotics, disinfectants, and various growth conditions did not. Increased antibiotic resistance was observed upon salicylate induction, although this was shown to be by both mar-dependent and mar-independent pathways. Cyclohexane resistance, however, was induced by salicylate by a mar-dependent pathway. Complementation studies with a plasmid that constitutively expressed marA confirmed the involvement of mar in Salmonella with low-level antibiotic resistance and cyclohexane resistance, although the involvement of mar in down regulation of OmpF was unclear. However, marA overexpression did increase the expression of a ca. 50-kDa protein, but its identity remains to be elucidated. Passage of the marA::gfp reporter mutant with increasing levels of tetracycline, a method reported to select for mar mutants in Escherichia coli, led to both multiple-antibiotic and cyclohexane resistance. Collectively, these data indicate that low-level antibiotic resistance, cyclohexane resistance, and modulation of OMPs in Salmonella, as in E. coli, can occur in both a mar-dependent and mar-independent manner.  相似文献   

16.
Transposon mutant strain 3G6 of Pseudomonas fluorescens ATCC 17400 which was deficient in pyoverdine production, was found to produce another iron-chelating molecule; this molecule was identified as 8-hydroxy-4-methoxy-quinaldic acid (designated quinolobactin). The pyoverdine-deficient mutant produced a supplementary 75-kDa iron-repressed outer membrane protein (IROMP) in addition to the 85-kDa IROMP present in the wild type. The mutant was also characterized by substantially increased uptake of 59Fe-quinolobactin. The 75-kDa IROMP was produced by the wild type after induction by quinolobactin-containing culture supernatants obtained from the pyoverdine-negative mutant or by purified quinolobactin. Conversely, adding purified wild-type pyoverdine to the growth medium resulted in suppression of the 75-kDa IROMP in the pyoverdine-deficient mutant; however, suppression was not observed when Pseudomonas aeruginosa PAO1 pyoverdine, a siderophore utilized by strain 3G6, was added to the culture. Therefore, we assume that the quinolobactin receptor is the 75-kDa IROMP and that the quinolobactin-mediated iron uptake system is repressed by the cognate pyoverdine.  相似文献   

17.
Vibrio vulnificus, a Gram-negative halophilic bacterium, is an opportunistic human pathogen that is responsible for the majority of seafood-associated deaths worldwide. Lipoproteins are important components of the bacterial cell envelope and have been shown to be involved in a wide variety of cellular processes. Little is known about the localisation or transport mechanism of lipoproteins in V. vulnificus. To assess the localisation of lipoproteins in V. vulnificus, we tested two established techniques for the rapid separation of membrane-associated proteins: detergent extraction with Sarkosyl and outer membrane vesicles (OMVs) preparation. The results showed that Sarkosyl extraction was not useful for the separation of lipoproteins from the different membranes of V. vulnificus. On the other hand, we confirmed that OMVs produced by V. vulnificus contained lipoproteins from the outer but not the inner membrane. Analysis of the OMVs components confirmed the localisation of several well-known lipoproteins to membranes that were different from expected, based on their predicted functions. Using this technique, we found that Asp at position +2 of mature lipoproteins can function as an inner membrane retention signal in V. vulnificus. Interestingly, the Escherichia coli “+2 rule” does not apply to the V. vulnificus lipoprotein IlpA (G2D) mutant, as a Ser to Asp mutation at position +2 of IlpA did not affect its outer membrane localisation. Furthermore, an IlpA tether-mRFP chimeric lipoprotein and its G2D mutant also behaved like IlpA. Together, these results suggest that the sorting rule of lipoproteins in V. vulnificus might be different from that in E. coli.  相似文献   

18.
AIMS: To study the effects of adaptation and stress on the resistance to benzalkonium chloride (BC) and cross-resistance to antibiotics in Escherichia coli. METHODS AND RESULTS: Precultivation of E. coli ATCC 11775 and E. coli DSM 682 in the presence of subinhibitory concentrations of BC or stress inducers (salicylate, chenodeoxycholate and methyl viologen) resulted in higher minimum inhibitory concentration (MIC) of BC and chloramphenicol (CHL). Adaptation to growth in sixfold of the initial MIC of BC resulted in stable BC resistance and enhanced tolerance to several antibiotics and ethidium bromide (EtBr). The MIC of CHL increased more than 10-fold for both strains. Enhanced efflux of EtBr in adapted E. coli ATCC 11775 indicated that the observed resistance was due to efflux. Changes in outer membrane protein profiles were detected in the BC-adapted cells. There were no indications of lower membrane permeability to BC. CONCLUSIONS: Induction of stress response or gradual adaptation to BC or CHL results in acquired cross-tolerance between BC and antibiotics in E. coli. Enhanced efflux was one of the observed differences in adapted cells. SIGNIFICANCE AND IMPACT OF THE STUDY: Provided not taking due precautions, extensive use of disinfectants could lead to emergence of antibiotic-resistant isolates.  相似文献   

19.
BackgroundTherapeutic options against Multi Drug Resistant (MDR) pathogens are limited and the overall strategy would be the development of adjuvants able to enhance the activity of therapeutically available antibiotics. Non-specific outer membrane permeabilizer, like metal-oxide nanoparticles, can be used to increase the activity of antibiotics in drug-resistant pathogens. The study aims to investigate the effect of cerium oxide nanoparticles (CeO2 NPs) on bacterial outer membrane permeability and their application in increasing the antibacterial activity of antibiotics against MDR pathogens.MethodsThe ability of CeO2 NPs to permeabilize Gram-negative bacterial outer membrane was investigated by calcein-loaded liposomes. The extent of the damage was evaluated using lipid vesicles loaded with FITC-dextran probes. The effect on bacterial outer membrane was evaluated by measuring the coefficient of permeability at increasing concentrations of CeO2 NPs. The interaction between CeO2 NPs and beta-lactams was evaluated by chequerboard assay against a Klebsiella pneumoniae clinical isolate expressing high levels of resistance against those antibiotics.ResultsCalcein leakage increases as NPs concentrations increase while no leakage was observed in FITC-dextran loaded liposomes. In Escherichia coli the outer membrane permeability coefficient increases in presence of CeO2 NPs. The antibacterial activity of beta-lactam antibiotics against K. pneumoniae was enhanced when combined with NPs.ConclusionsCeO2 NPs increases the effectiveness of antimicrobials which activity is compromised by drug resistance mechanisms. The synergistic effect is the result of the interaction of NPs with the bacterial outer membrane. The low toxicity of CeO2 NPs makes them attractive as antibiotic adjuvants against MDR pathogens.  相似文献   

20.
Capreomycin (CMN) belongs to the tuberactinomycin family of nonribosomal peptide antibiotics that are essential components of the drug arsenal for the treatment of multidrug-resistant tuberculosis. Members of this antibiotic family target the ribosomes of sensitive bacteria and disrupt the function of both subunits of the ribosome. Resistance to these antibiotics in Mycobacterium species arises due to mutations in the genes coding for the 16S or 23S rRNA but can also arise due to mutations in a gene coding for an rRNA-modifying enzyme, TlyA. While Mycobacterium species develop resistance due to alterations in the drug target, it has been proposed that the CMN-producing bacterium, Saccharothrix mutabilis subsp. capreolus, uses CMN modification as a mechanism for resistance rather than ribosome modification. To better understand CMN biosynthesis and resistance in S. mutabilis subsp. capreolus, we focused on the identification of the CMN biosynthetic gene cluster in this bacterium. Here, we describe the cloning and sequence analysis of the CMN biosynthetic gene cluster from S. mutabilis subsp. capreolus ATCC 23892. We provide evidence for the heterologous production of CMN in the genetically tractable bacterium Streptomyces lividans 1326. Finally, we present data supporting the existence of an additional CMN resistance gene. Initial work suggests that this resistance gene codes for an rRNA-modifying enzyme that results in the formation of CMN-resistant ribosomes that are also resistant to the aminoglycoside antibiotic kanamycin. Thus, S. mutabilis subsp. capreolus may also use ribosome modification as a mechanism for CMN resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号