首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cross-reactivity of the monoclonal anti-human placental DNA methyltransferase antibody M2B10 with DNA methyltransferases isolated from other species was investigated. This antibody immunoprecipitates DNA methyltransferases from mammalian cells, i.e., human placenta, mouse P815 cells, and rat liver cells. No cross-reactivity is observed with DNA methyltransferases from wheat germ and with bacterial DNA methyltransferases HpaII and EcoRI. The mammalian enzymes are characterized by polypeptides of molecular mass 150-190 kDa. Polypeptides smaller than 190 kDa are presumably generated by proteolysis of the native 190-kDa DNA methyltransferase. Trypsin digestion of the 190-kDa polypeptide isolated from mouse cells results in progressive appearance of DNA methyltransferase polypeptides of 150-190, 110, 100, and 52-60 kDa.  相似文献   

2.
Monoclonal antibodies prepared against DNA methyltransferase from human placenta undergo immune complex formation also with DNA methyltransferase from P815 mouse mastocytoma cells. One of these monoclonal antibodies, M2B10, was used for the immunoaffinity purification of this enzyme. Complexes of the immunoaffinity-purified mouse DNA methyltransferase with DNA were visualized by electron microscopy. DNA methyltransferase was found to be distributed along linearized plasmid DNA with a higher incidence of enzyme molecules at the terminal segments. This binding to strand ends was significantly increased after dG- or dGdC-tailing of the DNA, which is compatible with a preferred binding of the enzyme to single-stranded DNA. Sequence specificity analysis using methyl-sensitive restriction enzymes showed that the mouse DNA methyltransferase transferred methyl groups to the internal cytosines in 5'CCGG and 5'GCGC sequences, however, the external cytosine in 5'CCGG sequences was also methylated.  相似文献   

3.
Previously, the purification of DNA methyltransferase from murine P815 mastocytoma cells by immunoaffinity chromatography was described (Pfeifer, G.P., Grünwald, S., Palitti, F., Kaul, S., Boehm, T.L.J., Hirth, H.P. and Drahovsky, D. (1985) J. Biol. Chem. 260, 13787-13793). Proteins that stimulate the enzymatic activity of DNA methyltransferase have been purified from the same cells. These proteins, which partially coelute with DNA methyltransferase from DEAE-cellulose and heparin-agarose, are separated from the enzyme during the immunoaffinity purification step. A further purification of the stimulating proteins was achieved by butanol extraction, DEAE-cellulose chromatography and gel filtration on Superose 12. Two DNA methyltransferase-stimulating protein fractions were obtained. SDS-polyacrylamide gel electrophoresis of one fraction showed a single polypeptide with a molecular mass of 29 kDa. The second fraction consisted of 5 or 6 polypeptides with molecular masses 78-82 and 51-54 kDa. The proteins stimulate both de novo and maintenance activity of DNA methyltransferase about 3-fold. They enhance the methylation of any natural DNA and of poly[(dI-dC).(dI-dC)] but inhibit the methylation of poly[(dG-dC).(dG-dC)]. The purified proteins do not form a tight complex with DNA methyltransferase; however, they bind both to double-stranded and single-stranded DNA. The sequence specificity of DNA methyltransferase is obviously altered in presence of these proteins.  相似文献   

4.
DNA methyltransferase polypeptides in mouse and human cells   总被引:4,自引:0,他引:4  
DNA methyltransferase was isolated as a single polypeptide of 190 kDa from mouse P815 mastocytoma cells by immunoaffinity chromatography. This polypeptide seems to be highly susceptible to proteolytic degradation resulting in additional polypeptides in the size range of 150 to 190 kDa. A polypeptide of 190 kDa was immunoprecipitated by monoclonal anti-DNA methyltransferase antibodies from extracts of two different human cell lines, Raji and K562. The 190 kDa polypeptide was synthesized in rapidly proliferating cells and, albeit at a much lower rate, also in cells grown to saturating density. DNA methyltransferase polypeptides smaller than 190 kDa were synthesized neither in log phase nor in stationary phase cells.  相似文献   

5.
The mouse (cytosine-5) DNA methyltransferase (Dnmt1) consists of a regulatory N-terminal and a catalytic C-terminal domain, which are fused by a stretch of Gly-Lys dipeptide repeats. The C-terminal region contains all of the conserved motifs found in other cytosine-5 DNA methyltransferases including the relative position of the catalytic Pro-Cys dipeptide. In prokaryotes, the methyltransferases are simpler and lack the regulatory N-terminal domain. We constructed three hybrid methyltransferases, containing the intact N-terminus of the murine Dnmt1 and most of the coding sequences from M.HhaI (GCGC), M.HpaII (CCGG) or M.SssI (CG). These hybrids are biologically active when expressed in a baculovirus system and show the specificity of the parental C-terminal domain. Expression of these recombinant constructs leads to de novo methylation of both host and viral genomes in a sequence-specific manner. Steady-state kinetic analyses were performed on the murine Dnmt1-HhaI hybrid using poly(dG-dC).poly (dG-dC), unmethylated and hemimethylated oligonucleotides as substrates. The enzyme has a slow catalytic turnover number of 4.38 h(-1) for poly(dG-dC). poly(dG-dC), and exhibits 3-fold higher catalytic efficiency for hemimethylated substrates.  相似文献   

6.
An immunoaffinity chromatographic procedure was developed to purify DNA polymerase-DNA primase complex from crude soluble extracts of yeast cells. The immunoabsorbent column is made of mouse monoclonal antibody to yeast DNA polymerase I covalently linked to Protein A-Sepharose. Purification of the complex involves binding of the complex to the immunoabsorbent column and elution with concentrated MgCl2 solutions. After rebinding to the monoclonal antibody column free primase activity is selectively eluted with a lower concentration of MgCl2. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed the presence of five major peptides, p180, p140, p74, p58, and p48 in the immunoaffinity-purified DNA polymerase-DNA primase complex. Free primase and free polymerase fractions obtained by fractionation on the immunoabsorbent column were analyzed on activity gels and immunoblots. These analyses showed that p180 and p140 are DNA polymerase peptides. Two polypeptides of 58 and 48 kDa co-fractionated with the free yeast DNA primase. From sucrose gradient analysis we estimate a molecular weight of 110 kDa for the native DNA primase.  相似文献   

7.
T H Bestor 《The EMBO journal》1992,11(7):2611-2617
Mammalian DNA (cytosine-5) methyltransferase contains a C-terminal domain that is closely related to bacterial cytosine-5 restriction methyltransferase. This methyltransferase domain is linked to a large N-terminal domain. It is shown here that the N-terminal domain contains a Zn binding site and that the N- and C-terminal domains can be separated by cleavage with trypsin or Staphylococcus aureus protease V8; the protease V8 cleavage site was determined by Edman degradation to lie 10 residues C-terminal of the run of alternating lysyl and glycyl residues which joins the two domains and six residues N-terminal of the first sequence motif conserved between the mammalian and bacterial cytosine methyltransferases. While the intact enzyme had little activity on unmethylated DNA substrates, cleavage between the domains caused a large stimulation of the initial velocity of methylation of unmethylated DNA without substantial change in the rate of methylation of hemimethylated DNA. These findings indicate that the N-terminal domain of DNA methyltransferase ensures the clonal propagation of methylation patterns through inhibition of the de novo activity of the C-terminal domain. Mammalian DNA methyltransferase is likely to have arisen via fusion of a prokaryotic-like restriction methyltransferase and an unrelated DNA binding protein. Stimulation of the de novo activity of DNA methyltransferase by proteolytic cleavage in vivo may contribute to the process of ectopic methylation observed in the DNA of aging animals, tumors and in lines of cultured cells.  相似文献   

8.
The activity of eukaryotic DNA methyltransferase diminishes with time when the enzyme is incubated with high concentrations (200-300 micrograms/ml) of unmethylated double-stranded Micrococcus luteus DNA. Under similar conditions, single-stranded DNA induces only a limited decrease of enzyme activity. The inactivation process is apparently due to a slowly progressive interaction of the enzyme with double-stranded DNA that is independent of the presence of S-adenosyl-L-methionine. The inhibited enzyme cannot be reactivated either by high salt dissociation of the DNA-enzyme complex or by extensive digestion of the DNA. Among synthetic polydeoxyribonucleotides both poly(dG-dC).poly(dG-dC) and poly(dA-dT).poly(dA-dT), but not poly(dI-dC).poly(dI-dC), cause inactivation of DNA methyltransferase. This inactivation process may be of interest in regulating the 'de novo' activity of the enzyme.  相似文献   

9.
Two hybrid cell lines (DM88-5E12 and DM88-4C9) secreting monoclonal antibodies against DNA polymerase alpha-primase complex from Drosophila melanogaster Kc cells were established by immunizing mice with the complex partially purified by a conventional method. The IgG subclasses of both antibodies were IgG1. Both antibodies immunoprecipitated the DNA polymerase alpha-primase complex from D. melanogaster Kc cells. The DNA-polymerizing activity was neutralized by 4C9 antibody, but not by 5E12 antibody. The DNA priming activity was not neutralized by either antibody. These antibodies did not cross-react to HeLa DNA polymerase alpha-primase complex. A rapid, two-step purification of DNA polymerase alpha-primase complex from D. melanogaster Kc cell was carried out by 5E12 antibody column chromatography followed by single-stranded DNA cellulose column chromatography. The immunoaffinity-purified enzyme had both DNA-polymerizing and DNA-priming activities with the specific activities of 50,000 and 2,000 units/mg, respectively. The effects of aphidicolin, NEM, ddTTP, BuPdGTP, and DMSO on the enzyme activity showed that the purified enzyme was DNA polymerase alpha, but not DNA polymerase beta, gamma, or delta. The purified enzyme consisted of polypeptides with apparent molecular weights of 180 (and 145, 140, 130 kDa), 72, 63, 51, and 49 kDa. The 5E12 antibody was shown to bind to all the high-molecular-weight polypeptides, 180, 145, 140, and 130 kDa, by immuno-Western blotting analysis.  相似文献   

10.
Five major polypeptides are found in immunoaffinity-purified calf thymus DNA polymerase-DNA primase complex: 185, 160, 68, 55, and 48 kDa. Individual polypeptides purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were used to produce antibodies in rabbits to aid in identifying the relationships between these polypeptides by immunoblotting and enzyme neutralization procedures. Immunoblot analyses showed that the 160-kDa peptide is derived from the 185-kDa peptide and the 48-kDa peptide is derived from the 68-kDa peptide while antibodies to the 55-kDa peptide do not cross-react with other peptides found in the complex. Direct enzyme neutralization studies demonstrated that antibodies to 185- and 160-kDa peptides inhibit DNA polymerase activity in the complex, confirming earlier suggestions that these peptides are the catalytic peptides for DNA polymerase. DNA primase activity in the complex is inhibited by antibodies to 68-, 55-, and 48-kDa peptides and to a lesser extent by antibodies to the 160-kDa peptide. Free DNA primase isolated from the complex was estimated to have a native molecular weight of about 110,000. The 55- and 48-kDa peptides are found to be associated with the free primase activity. Rabbit antibodies to both 55- and 48-kDa peptides are inhibitory to this primase activity. From these results we suggest that the native calf thymus DNA polymerase-DNA primase complex contains only three unique peptides with the 185-kDa peptide as the catalytic peptide of DNA polymerase and the 55- and 68-kDa peptides constituting the primase peptides. A model illustrating the roles of these peptides in initiation and replication of DNA is presented.  相似文献   

11.
Human DNA helicase II (HDH II) is a novel ATP-dependent DNA unwinding enzyme, purified to apparent homogeneity from HeLa cells, which (i) unwinds exclusively DNA duplexes, (ii) prefers partially unwound substrates and (iii) proceeds in the 3' to 5' direction on the bound strand. HDH II is a heterodimer of 72 and 87 kDa polypeptides. It shows single-stranded DNA-dependent ATPase activity, as well as double-stranded DNA binding capacity. All these activities comigrate in gel filtration and glycerol gradients, giving a sedimentation coefficient of 7.4S and a Stokes radius of approximately 46 A, corresponding to a native molecular weight of 158 kDa. The antibodies raised in rabbit against either polypeptide can remove from the solution all the activities of HDH II. Photoaffinity labelling with [alpha-32P]ATP labelled both polypeptides. Microsequencing of the separate polypeptides of HDH II and cross-reaction with specific antibodies showed that this enzyme is identical to Ku, an autoantigen recognized by the sera of scleroderma and lupus erythematosus patients, which binds specifically to duplex DNA ends and is regulator of a DNA-dependent protein kinase. Recombinant HDH II/Ku protein expressed in and purified from Escherichia coli cells showed DNA binding and helicase activities indistinguishable from those of the isolated protein. The exclusively nuclear location of HDH II/Ku antigen, its highly specific affinity for double-stranded DNA, its abundance and its newly demonstrated ability to unwind exclusively DNA duplexes, point to an additional, if still unclear, role for this molecule in DNA metabolism.  相似文献   

12.
The enzyme S-adenosylmethionine-DNA (cytosine-5)-methyltransferase has been identified, first time for invertebrates, in embryos of the marine polychaete annelid worm Chaetopterus variopedatus. The molecule has been isolated from embryos at 15 h of development. It is a single peptide of about 200 kDa molecular weight, cross-reacting with antibodies against sea urchin DNA methyltransferase. The enzymatic properties of the molecule are similar to those of Dnmt1 methyltransferases isolated from other organisms, but with the peculiarity to be unable to make 'de novo' methylation on double stranded DNA.  相似文献   

13.
Pre-steady state partitioning analysis of the HhaI DNA methyltransferase directly demonstrates the catalytic competence of the enzyme.DNA complex and the lack of catalytic competence of the enzyme.S-adenosyl-L-methionine (AdoMet) complex. The enzyme.AdoMet complex does form, albeit with a 50-fold decrease in affinity compared with the ternary enzyme.AdoMet.DNA complex. These findings reconcile the distinct binding orientations previously observed within the binary enzyme.AdoMet and ternary enzyme. S-adenosyl-L-homocysteine.DNA crystal structures. The affinity of the enzyme for DNA is increased 900-fold in the presence of its cofactor, and the preference for hemimethylated DNA is increased to 12-fold over unmethylated DNA. We suggest that this preference is partially due to the energetic cost of retaining a cavity in place of the 5-methyl moiety in the ternary complex with the unmethylated DNA, as revealed by the corresponding crystal structures. The hemi- and unmethylated substrates alter the fates and lifetimes of discrete enzyme.substrate intermediates during the catalytic cycle. Hemimethylated substrates partition toward product formation versus dissociation significantly more than unmethylated substrates. The mammalian DNA cytosine-C-5 methyltransferase Dnmt1 shows an even more pronounced partitioning toward product formation.  相似文献   

14.
EcoP15I DNA methyltransferase catalyzes the transfer of the methyl group of S-adenosyl-l-methionine to the N6 position of the second adenine within the double-stranded DNA sequence 5'-CAGCAG-3'. To achieve catalysis, the enzyme requires a magnesium ion. Binding of magnesium to the enzyme induces significant conformational changes as monitored by circular dichroism spectroscopy. EcoP15I DNA methyltransferase was rapidly inactivated by micromolar concentrations of ferrous sulfate in the presence of ascorbate at pH 8.0. The inactivated enzyme was cleaved into two fragments with molecular masses of 36 and 35 kDa. Using this affinity cleavage assay, we have located the magnesium binding-like motif to amino acids 355-377 of EcoP15I DNA methyltransferase. Sequence homology comparisons between EcoP15I DNA methyltransferase and other restriction endonucleases allowed us to identify a PD(X)n(D/E)XK-like sequence as the putative magnesium ion binding site. Point mutations generated in this region were analyzed for their role in methyltransferase activity, metal coordination, and substrate binding. Although the mutant methyltransferases bind DNA and S-adenosyl-l-methionine as well as the wild-type enzyme does, they are inactive primarily because of their inability to flip the target base. Collectively, these data are consistent with the fact that acidic amino acid residues of the region 355-377 in EcoP15I DNA methyltransferase are important for the critical positioning of magnesium ions for catalysis. This is the first example of metal-dependent function of a DNA methyltransferase. These findings provide impetus for exploring the role(s) of metal ions in the structure and function of DNA methyltransferases.  相似文献   

15.
A DNA methyltransferase of Mr = 140,000 that is active on both unmethylated and hemimethylated DNA substrates has been purified from the murine plasma-cytoma cell line MPC 11. The maximal rate of methylation was obtained with maintenance methylation of hemimethylated Micrococcus luteus or M13 DNAs. At low enzyme concentrations, the highest rate of de novo methylation occurred with single-stranded DNA or relatively short duplex DNA containing single-stranded regions. Strong substrate inhibition was observed with hemimethylated but not unmethylated DNA substrates. Fully methylated single-stranded M13 phage DNA inhibited neither the de novo nor the maintenance reactions, but unmethylated single-stranded M13 DNA strongly inhibited the maintenance reaction. The kinetics observed with hemimethylated and single-stranded substrates could be explained if the enzyme were to bind irreversibly to a DNA molecule and to aggregate if present in molar excess. Such aggregates would be required for activity upon hemimethylated but not single-stranded DNA. For de novo methylation of duplex DNA, single-stranded regions or large amounts of methyltransferase appear to be required. The relative substrate preference for the enzyme is hemimethylated DNA greater than fully or partially single-stranded DNA greater than fully duplex DNA.  相似文献   

16.
R B Inman  J F Jackson 《Gene》1989,84(2):221-226
Using alternating poly(dG-dC).poly(dG-dC) and electron microscopy (EM), a method has been developed for detecting regions of Z conformation in DNA preparations. The procedure was developed with poly(dG-dC).poly(dG-dC) which had been converted to the Z conformation with MnCl2 and mild heat treatment. Conditions were found for reaction of this DNA with polyclonal anti-Z antibodies from rabbit, and further reaction of this mixture with gold-labelled anti-rabbit antibodies from mouse. Spreading of these samples onto air-water interfaces and examination by EM revealed gold particles aligned along strands of poly(dG-dC).poly(dG-dC). The method was refined and simplified using monoclonal antibodies and tested with the 2.2-kb plasmid, pDHg16, carrying a single tract of alternating d(G-C)23. Treatment with MnCl2 and mild heat was not necessary, as the superhelicity of this molecule ensured that the d(G-C) tract was in the Z conformation. Conditions were found for successful conjugation of mouse monoclonal anti-Z antibodies with colloidal gold (G10), 10.7-nm average diameter. The conjugate was then reacted with superhelical pDHg16, stabilized in polyethylene glycol and cross-linked with glutaraldehyde. Examination by EM showed gold particles at one site on the negatively superhelical circular DNA molecule. When these molecules were linearized with PstI, gold particles were found to occur at an average position 35% +/- 3% from one end. This location agrees well with the known position of the center of the alternating d(G-C) tract with respect to the PstI restriction site (36.8%).  相似文献   

17.
A plant cytosine methyltransferase cDNA was isolated using degenerate oligonucleotides, based on homology between prokaryote and mouse methyltransferases, and PCR to amplify a short fragment of a methyltransferase gene. A fragment of the predicted size was amplified from genomic DNA from Arabidopsis thaliana. Overlapping cDNA clones, some with homology to the PCR amplified fragment, were identified and sequenced. The assembled nucleic acid sequence is 4720 bp and encodes a protein of 1534 amino acids which has significant homology to prokaryote and mammalian cytosine methyltransferases. Like mammalian methylases, this enzyme has a C terminal methyltransferase domain linked to a second larger domain. The Arabidopsis methylase has eight of the ten conserved sequence motifs found in prokaryote cytosine-5 methyltransferases and shows 50% homology to the murine enzyme in the methyltransferase domain. The amino terminal domain is only 24% homologous to the murine enzyme and lacks the zinc binding region that has been found in methyltransferases from both mouse and man. In contrast to mouse where a single methyltransferase gene has been identified, a small multigene family with homology to the region amplified in PCR has been identified in Arabidopsis thaliana.  相似文献   

18.
Antibodies reactive with left-handed Z-DNA arise spontaneously in the sera of patients with SLE and rheumatoid arthritis and in autoimmune MRL mice. However, the precise specificity of these autoantibodies has not been established. In this report, we have characterized four monoclonal anti-Z-DNA antibodies from unimmunized MRL/Mp-lpr/lpr mice that do not cross-react with B-DNA and can discriminate between different types of left-handed helices. Two of the monoclonal antibodies (Za and Zi) behaved similarly in that they bound to two forms of Z-DNA (Br-poly(dG-dC).poly(dG-dC) and AAF-poly(dG-dC).poly(dG-dC) but not to two other Z-form DNA (poly(dG-5BrdC).poly(dG-5BrdC) or poly(dG-5MedC).poly(dG-5MedC)). Neither antibody (Za or Zi) bound significantly to B-DNA or to denatured DNA. A third antibody (Ze) exhibited similar binding characteristics for the Z-DNA preparations, but also recognized denatured DNA. In contrast, a fourth antibody (3-7.3) bound preferentially to poly(dG-5BrC).poly(dG-5BrdC) in Z conformation. These results provide the first evidence for anti-Z-DNA autoantibodies in autoimmune mice that do not cross-react with native or denatured DNA and indicate that these antibodies exhibit considerable heterogeneity in their fine binding specificity.  相似文献   

19.
DNA cytosine methylation is one of the major epigenetic gene silencing marks in the human genome facilitated by DNA methyltransferases. DNA cytosine-5 methyltransferase 1 (DNMT1) performs maintenance methylation in somatic cells. In cancer cells, DNMT1 is responsible for the aberrant hypermethylation of CpG islands and the silencing of tumor suppressor genes. Here we show that the catalytically active recombinant DNMT1, lacking 580 amino acids from the amino terminus, binds to unmethylated DNA with higher affinity than hemimethylated or methylated DNA. To further understand the binding domain of enzyme, we have used gel shift assay. We have demonstrated that the CXXC region (C is cysteine; X is any amino acid) of DNMT1 bound specifically to unmethylated CpG dinucleotides. Furthermore, mutation of the conserved cysteines abolished CXXC mediated DNA binding. In transfected COS-7 cells, CXXC deleted DNMT1 (DNMT1 (DeltaCXXC)) localized on replication foci. Both point mutant and DNMT1 (DeltaCXXC) enzyme displayed significant reduction in catalytic activity, confirming that this domain is crucial for enzymatic activity. A permanent cell line with DNMT1 (DeltaCXXC) displayed partial loss of genomic methylation on rDNA loci, despite the presence of endogenous wild-type enzyme. Thus, the CXXC domain encompassing the amino terminus region of DNMT1 cooperates with the catalytic domain for DNA methyltransferase activity.  相似文献   

20.
Mammalian DNA-cytosine 5-methyltransferases methylate cytosines in deoxyinosine containing DNA polymers more rapidly than in other synthetic or naturally occurring DNAs. The initial methylation rate of poly(dI-dC) X poly(dI-dC) is about 10-times higher than that of poly-(dG-dC) X poly(dG-dC) or of the native Micrococcus luteus DNA. In competitive binding experiments, DNA methyltransferase has about 10-fold higher affinity for the dI-containing alternating DNA polymer than for poly(dG-dC) X poly(dG-dC). The observed high methyl accepting capacity of poly(dI-dC) X poly(dI-dC) may be a useful methodological advance to determine de novo DNA methyltransferase activity in extracts of mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号