首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence on the differentiation of stage 24 chick limb mesenchymal cells of hyaluronic acid (HA) covalently bonded onto plastic substrates has been examined. Under control conditions, stage 24 cells express phenotypes related to the initial plating density: When plated at high density (5 X 10(6) cells/35-mm culture dish), these cells express a chondrogenic phenotype collectively visualized as a mound or nodule of cartilage. Cartilage nodules are not found in cultures plated at intermediate or low densities, 2 X 10(6) and 1 X 10(6) cells/35-mm dish, respectively. However, when cells are plated onto HA surfaces, expression of the cartilage phenotype occurs at all three plating densities in roughly comparable frequencies. This increase in cartilage nodule formation does not appear to be due to an increased plating efficiency or increased replication rate. The observed effect is dependent on HA concentration; with an increase in bound HA, an increase in the number of cartilage nodules is observed. Digestion of HA substrates with hyaluronidase abolishes the stimulation in chondrogenesis, while no effect is observed if the HA substrates are treated with either trypsin or alkaline borohydride. No other glycosaminoglycan, except for the HA analog, unsulfated chondroitin, exhibits this unique stimulation of chondrogenic expression. While the rate of radiolabeled sulfate incorporation is dramatically increased with cells plated onto HA substrates, the protein biosynthetic rate, as evidenced by radiolabeled proline incorporation, remains unaffected. This dramatic increase in chondrogenic expression is considered in contrast to the previously reported inhibitory effect of HA substrates on myogenesis. These observations suggest that HA may have a regulatory role in the chondrogenic differentiation of chick limb mesenchymal cells.  相似文献   

2.
Osteogenesis in cultures of limb mesenchymal cells   总被引:9,自引:0,他引:9  
The results of previous reports demonstrated that osteoblasts develop in cultures derived from phenotypically unexpressive stage 24 chick limb mesenchymal cells. The observations reported here suggest that initial cell plating densities may provide environmental conditions deterministic to a particular limb phenotype. Quantitative microscopic studies, histochemical localization of calcium phosphate, and electron microscopy indicate that osteoblasts develop in cultures derived from stage 24 limb mesenchymal cells. Additionally, 1–3% of the cells from stage 24 limbs are associated with mineral deposits when plated at initial high densities (5 × 106 cells per 35-mm culture dish), while more than 50% of the cells are associated with cartilage by Day 9. Cultures plated at intermediate seeding densities (between 2.0 and 2.5 × 106 cells per 35-mm culture dish) have minimal cartilage development, and approximately 20% of the cells are associated with mineral by Day 9. Furthermore, cultures prepared from stage 31 limb mesenchymal cells form well-developed bone nodules with both osteoblasts and osteocytes present, but no cartilage. It is clear from these observations and from a consideration of the initiation of osteogenesisin vivo that the initiation of bone development in the limb is not associated with cartilage development. Based on these studies and observations on the effect of nutrient factors on phenotypic expression in culture, an hypothesis is presented relating differential vascularization and nutrient flow to the determination of limb phenotypesin vivo.  相似文献   

3.
The nicotinamide adenine dinucleotide (NAD) content of mesenchymal cells from the embryonic chick limb has been hypothesized to control the differentiation of these cells by modulation of ADP-ribosylations. To test this hypothesis, [35S]sulfate incorporation into proteoglycans was monitored as an estimate of the chondrogenic expression of cultured limb mesenchymal cells treated with nicotinamide and nicotinic acid to elevate cellular NAD levels or with nicotinamide and benzamide compounds to inhibit ADP-ribosylations. The results of this study indicated that serum component(s) modulate the interactions between these chemical agents and limb mesenchymal cells and, thus, complicate the interpretations of experiments performed in the presence of serum. With a chemically defined medium that promotes limb mesenchymal cell proliferation and differentiation in vitro, it was demonstrated that: (1) no clear correlation exists between cellular NAD content and the chondrogenic expression of cultured limb mesenchymal cells, (2) nicotinamide and benzamide compounds reduce cell proliferation and, at the higher doses tested, considerably reduce chondrogenesis in limb mesenchymal cell cultures, and (3) limb mesenchymal cells exhibit an enhanced susceptibility to benzamide compounds at a time very early in the culture period which temporally coincides with a transient increase in cellular ADP-ribosylation activity and initial chondrogenic differentiation. These results suggest that NAD does not control the differentiation of limb mesenchymal cells and that ADP-ribosylations are an integral, though not controlling, component of limb mesenchyme cytodifferentiation. A model is presented which proposes a role for ADP-ribosylations during the differentiation of limb mesenchymal cells.  相似文献   

4.
Cells obtained from stage 24 chick limb buds were cultured and assayed for their ability to respond to exogenously supplied parathyroid hormone (PTH) as monitored by analysis of cellular cyclic AMP (cAMP). After 3–4 days in culture, these cells developed a striking responsiveness to the hormone; 20 -to 50-fold elevations in cAMP were routinely observed upon exposure to 10?8, M hormone for 2 min. This response was greatest in cells initially plated at low densities (1 × 106 cells/35-mm dish) and was inversely correlated to the amount of cartilage which developed in such cultures. Cells obtained from limbs of stages 23–26 embryos developed a similar responsiveness to PTH after 3–4 days in culture, but cells obtained from limbs of stage 22 embryos showed no such responsiveness even after 6 days in culture. A response to calcitonin also was noted in cultures of stage 24 limb mesenchymal cells after 4–5 days in culture, but this was of much smaller magnitude than the PTH response. Of 12 other hormones tested, only β agonists elicited any cAMP response in the cultered stage 24 limb mesenchymal cells. Although cells initially plated at a high density and grown for 8 days in culture show no response to PTH, the presence of PTH-responsive cells in such cultures could be demonstrated by sequential digestion with collagenase and replating the extracellular matrix-free cells released by this treatment. Such replated cells then exhibited a responsiveness to PTH. Thus, the responsiveness of cultured limb mesenchymal cells depends on the developmental stage of the starting limb mesenchyme, the phenotypes which develop, and physical factors such as accessibility to exogenously supplied hormone.  相似文献   

5.
Incubation of cow oviducts flushed with 0.1 mg collagenase/ml, for 90 min helped to dislodge large numbers of ciliated and secretory cells. About 90-95% of the isolated epithelial cells were viable. The epithelial cells suspended in DMEM:F-12 + 10% serum attached to the plastic culture dish in 18-20 h after seeding. The ciliated cells which attached to the plastic dish lost their cilia after 4-5 days in culture. The attached cells, which proliferated to form a confluent monolayer 8-10 days after seeding in a 35-mm dish, could be subcultured at least 3 successive times. Some cell aggregates which did not attach to the culture dish proliferated into floating balls of cells. The ciliated cells in the unattached floating colonies maintained the ciliary movement for 9-10 days in the same culture medium. The primary cultures of the ciliated and the secretory cells maintained most of the histoarchitecture observed in intact epithelium. The secretory cells maintained their secretory activity of specific proteins in culture as indicated by immunocytology. The cultured cells contained keratin, a specific cytoskeletal component of epithelial cells.  相似文献   

6.
Demineralized bone matrix contains factors which stimulate chondrogenesis and osteogenesis in vivo. A water-soluble extract of bone has been shown to stimulate chondrogenesis in vitro in embryonic limb mesenchymal cells (Syftestad, Lucas & Caplan, 1985). The aim of this study was to analyse the cellular mechanism of the bone-derived chondrogenesis-stimulating activity, with particular attention on how normal requirements for chondrogenesis may be altered. The effects of bovine bone extract (BBE) on chondrogenesis in vitro were studied using micromass cultures of chick limb bud mesenchyme isolated from embryos at Hamburger-Hamilton (HH) stage 23/24, an experimental system which is capable of undergoing chondrogenic differentiation. Bovine diaphyseal long bones were demineralized and extracted with guanidine-HCl to prepare BBE (Syftestad & Caplan, 1984). High-density mesenchyme cultures (30 x 10(6) cells/ml) were exposed to different doses of BBE (0.01-1.0 mg ml-1) and chondrogenesis was quantified based on cartilage nodule number and [35S]sulphate incorporation. BBE was tested on micromass cultures of varying plating densities (2-30 x 10(6) cells/ml), on cultures of 'young' limb bud cells (HH stage 17/18), and on cultures enriched with chondroprogenitor cells obtained from subridge mesoderm. Since poly-L-lysine (PL) has recently been shown (San Antonio & Tuan, 1986) to promote chondrogensis, PL and BBE were introduced together in different doses, in the culture medium, to determine if their actions were synergistic. Our results show that BBE stimulates chondrogenesis in a dose-dependent manner and by a specific, direct action on the chondroprogenitor cells but not in normally non-chondrogenic, low density or 'young' limb bud cell cultures. The effects of PL and BBE are additive and these agents appear to act by separate mechanisms to stimulate chondrogenesis; PL primarily enhances nodule formation, and BBE appears to promote nodule growth.  相似文献   

7.
Demineralized adult bone matrix initiates de novo ectopic endochondral ossification 2-3 weeks following its intramuscular implantation into adult animals. This phenomenon appears to be similar, in some ways, to inductive cell-matrix interactions which regulate cartilage and bone formation during development. In the present study, we used embryonic chick limb-bud mesenchymal-cell cultures to bioassay extracts of demineralized bone matrix for chondrogenic activity. Guanidinium-chloride (4 M) extracts of demineralized bovine bone were dialyzed against buffers of decreasing ionic strength and then cold water. The cold-water-soluble fraction was found to stimulate chondrogenesis in intermediate-density limb-bud cell cultures (2.2 X 10(6) cells per 35-mm dish), as revealed by visual inspection with phase optics, toluidine-blue staining of fixed plates, and [35S] sulfate incorporation in the cell layer. Further fractionation of this material by anion-exchange, carbohydrate-affinity, and molecular-sieve chromotography produced a semipurified preparation possessing chondrogenic-stimulating activity at doses ranging from 3 to 10 micrograms/ml. The in vitro chondrogenic response of limb-bud mesenchymal cells was dose-dependent, required a minimal initial plating density of 2.08 X 10(5) cells/mm2 of culture dish, and developed gradually over 8-10 days. At an optimal dose of extract, a continuous exposure period of at least 2-3 days was necessary to produce detectable chondrogenic stimulation. In addition, the amount of cartilage formed following an 8-day exposure was markedly influenced by the culture 'age' of the mesenchymal cells (i.e., the time between plating and the start of treatment).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Summary In an effort to establish a more chemically defined culture system to study the regulation of chondrogenic differentiation in vitro, two commercially available serum replacements, NuSerum and NuSerum IV, were tested on embryonic limb mesenchyme. Limb bud (LB) mesenchymal cells were isolated from Hamilton-Hamburger stage 23–24 chick embryos and plated at various densities (1, 5, 10, or 20 × 106 cells/ml) in micromass culture for 4 days in media supplemented with 10% fetal bovine serum (FBS), NuSerum or NuSerum IV. Cell growth was assessed by the incorporation of [3H]leucine and [3H]thymidine. Chondrogenesis was determined by the incorporation of [35S]sulfate and by the number of Alcian blue-staining cartilage nodules. In high density (20 × 106 cells/ml) cultures, which favored chondrogenic differentiation, both serum replacements supported protein synthesis and chondrogenesis equally well as FBS. In cultures plated at 5 × 106 cells/ml, a cell density in which was chondrogenesis-limiting, both NuSerum and NuSerum IV significantly enhanced incorporation of [35S]sulfate (2.6-fold), [3H]leucine (1.4-fold), and [3H]thymidine (1.9-fold), compared to FBS. Enhancement of chondrogenesis was also apparent by the increases in the number of Alcian blue-staining cartilage nodules and the ratio of sulfate: leucine incorporation in cultures plated at 5 × 106 cells/ml. Interestingly, the localization of cartilage nodules was extended out to the periphery of micromass cultures fed with NuSerum or NuSerum IV. The observed effects of NuSerum and NuSerum IV may be attributed to a combination of factors, including lower concentrations of serum and its associated proteins, as well as supplemented growth factors and hormones known to promote cell proliferation and differentiation. Therefore, NuSerum and NuSerum IV are excellent, low-cost replacements for FBS in maintaining cellular growth and promoting chondrogenesis in LB mesenchymal cell cultures in vitro.  相似文献   

9.
To begin defining the factors regulating neurotransmitter receptor expression, we examined beta-adrenergic receptors in rat liver in vivo and in primary liver cultures under defined hormonal conditions. beta-receptors described a remarkable developmental profile in vivo, increasing fivefold between embryonic days 16 and 20, and decreasing tenfold by early adulthood. The developmental decrease reflected reduced receptor number without a change in receptor properties. The ontogenetic decrease appeared to be specific for beta-receptors; alpha-receptors developed in a hyperbolic fashion, reaching high plateau values by the third postnatal week. Adult rat liver cells plated into culture re-expressed high beta-receptor levels, exhibiting a 4-8-fold increase. A similar pattern of expression of the beta-receptors, having similar pharmacological properties, was observed in primary liver cultures maintained in serum-free medium, in a serum-supplemented medium or in several variations of a serum-free, hormonally defined medium designed for primary liver cultures. Thus, the degree of expression of the beta-receptors was not found affected by various hormones, by serum, or by any medium condition. By contrast, the degree of expression of the beta-receptors was markedly sensitive to cell density. High expression of the beta-receptors was observed at low cell densities (1-3 x 10(6) cells/150 mm dish), and low expression or no expression was observed in confluent cultures (10-20 x 10(6) cells/150 mm dish). Our experiments suggest that beta-receptor expression does not follow an immutable program, but may be regulated by density-dependent cell-cell interactions.  相似文献   

10.
Multiple rounds of cell division were induced in primary cultured rat hepatocytes in serum-free, modified L-15 medium supplemented with 20 mM NaHCO3 and 10 ng/ml EGF in a 5% CO2/95% air incubator. A 150% increase in cell number and DNA content was observed between day 1 and day 5. The time course of DNA synthesis of hepatocytes cultured in L-15 medium differed from that in DMEM/F12 medium in that there were four peaks of 3H-thymidine incorporation in the L-15 medium, at 60 h, 82 h, 96 h, and 120 h, but only one peak at 48 h in modified DMEM/F12 medium. Labeling studies of the hepatocytes indicated that more than 60% of the cells were stained with antibromodeoxyuridine (BrdU) antibody in the periods of 48-72 h and 72-96 h after plating at densities between 1.5 x 10(5) and 6.0 x 10(5) cells per 35-mm dish. Even at a density of 9.0 x 10(5) cells/dish, about 40% of the cell nuclei were stained with BrdU in the periods of 48-72 h and 72-96 h. In addition, about 20% of the hepatocytes in culture initiated a second round of the cell cycle between 48 and 96 h in culture. Proliferating cells, which were mononucleate with a little cytoplasm, appeared in small clusters or colonies in the culture from day 4. These proliferating cells produced albumin. The addition of essential amino acids to the DMEM/F12 medium enhanced the DNA synthesis of hepatocytes, thus indicating that the higher level of amino acids in L-15 medium may be an important factor in its enhanced ability to support the proliferation of primary cultured rat hepatocytes.  相似文献   

11.
Chondrogenic differentiation of mesenchymal cells is generally thought to be initiated by the inductive action of specific growth factors and depends on intimate cell-cell interactions. In this study, we have used multipotential murine C3H10T1/2 cells to analyze the effect and mechanism of action of bone morphogenetic protein 2 (BMP-2) on chondrogenesis. C3H10T1/2 cells have been previously shown to undergo multiple differentiation pathways. While chondrogenesis, osteogenesis, myogenesis and adipogenesis have been observed, chondrocytes appear significantly less frequently than the other cell types, and the appearance of chondrocytes exclusive of the other cell types has not been observed. We report here that the appearance of chondrocytes in C3H10T1/2 cells is markedly enhanced as a result of culture under conditions favorable for chondrogenesis, i.e. plating as high-density micromass and treatment with BMP-2. Such cultures contain chondrocyte-like cells, elaborate an Alcian blue stained cartilage-like matrix, express link protein and type II collagen, both cartilage matrix markers, and show increased [35S]sulfate incorporation. The appearance of Alcian blue positive material and increased sulfate incorporation are dependent on the dose of BMP-2, culture time, and cell plating density of the micromass cultures. Differentiation of cells within the micromass was specific to the chondrogenic lineage, as alkaline phosphatase staining revealed only faint staining in the micromass at the highest BMP-2 concentration. The importance of enhanced cell-cell interaction in the chondroinductive effects of BMP-2 on high-density C3H10T1/2 cultures was further implicated by the additional promotion of chondrogenesis in the presence of the polycationic compound, poly-L-lysine, which has been previously reported to enhance cellular interactions and chondrogenesis in embryonic limb mesenchymal cells. Taken together, these findings suggest that chondrogenesis in C3H10T1/2 cells is inducible by BMP-2 and requires cell-cell interaction.  相似文献   

12.
Chondrogenic differentiation in mouse limb bud mesenchymal cells cultured at high density was suppressed by supplementation of the medium with retinoic acid (1 microgram/ml or 3.3 X 10(-6) M). Since in control medium overt chondrogenesis begins on day 3, retinoic acid was introduced on day 2 so that the relationship between initial biosynthetic changes and inhibition of chondrogenesis could be studied. During the first 24 h of exposure the treated cells remained viable but suffered 10% inhibition in growth and synthesized [3H]glucosamine-labeled glycosaminoglycan at a level 24% below untreated cells. The amount of labeled hyaluronic acid released into the culture medium by the treated cells was, however, 2-fold greater, on a per cell basis, than that in the untreated cultures. It is suggested that the displacement of hyaluronate may play a role in the disruption of mesenchymal cell differentiation and of limb morphogenesis as observed in other systems.  相似文献   

13.
Abstract. Demineralized bone matrix contains factors which stimulate chondrogenesis and osteogenesis in vivo. A water-soluble extract of bone has been shown to stimulate chondrogenesis in vitro in embryonic limb mesenchymal cells (Syftestad, Lucas & Caplan, 1985). The aim of this study was to analyse the cellular mechanism of the bone-derived chondrogenesis-stimulating activity, with particular attention on how normal requirements for chondrogenesis may be altered. The effects of bovine bone extract (BBE) on chondrogenesis in vitro were studied using micromass cultures of chick limb bud mesenchyme isolated from embryos at Hamburger-Hamilton (HH) stage 23/24, an experimental system which is capable of undergoing chondrogenic differentiation. Bovine diaphyseal long bones were demineralized and extracted with guanidine-HCl to prepare BBE (Syftestad & Caplan, 1984). High-density mesenchyme cultures (30 times 106 cells/ml) were exposed to different doses of BBE (0–01-1-0 mg ml-1) and chondrogenesis was quantified based on cartilage nodule number and [35S]sulphate incorporation. BBE was tested on micromass cultures of varying plating densities (2–30 times 106 cells/ml), on cultures of ‘young’ limb bud cells (HH stage 17/18), and on cultures enriched with chondroprogenitor cells obtained from subridge mesoderm. Since poly-L-lysine (PL) has recently been shown (San Antonio & Tuan, 1986) to promote chondrogensis, PL and BBE were introduced together in different doses, in the culture medium, to determine if their actions were synergistic. Our results show that BBE stimulates chondrogenesis in a dose-dependent manner and by a specific, direct action on the chondroprogenitor cells but not in normally non-chondrogenic, low density or ‘young’ limb bud cell cultures. The effects of PL and BBE are additive and these agents appear to act by separate mechanisms to stimulate chondrogenesis; PL primarily enhances nodule formation, and BBE appears to promote nodule growth.  相似文献   

14.
Demineralized adult bone contains factors which stimulate nonskeletal mesenchymal cells to undergo a developmental progression resulting in de novo endochondral ossification. In this study, isolated embryonic stage 24 chick limb bud mesenchymal cells maintained in culture were utilized as an in vitro assay system for detection of specific bioactive components solubilized from adult chicken bone matrix. Guanidinium chloride extracts (4 M) of demineralized-defatted bone were fractionated and tested in limb mesenchymal cell cultures for possible effects upon growth and chondrogenesis. Two low-molecular-weight fractions were found to be active in these cultures. A cold water-insoluble, but warm Trisbuffered saline-soluble fraction provoked a dose-dependent increase in the amount of cartilage formed after 7 days of continuous exposure as evidenced by an increased number of chondrocytes observed in living cultures, elevated cell-layer-associated 35S incorporation per microgram DNA, and greater numbers of toluidine blue-staining foci (i.e., cartilage nodules). Growth inhibitory substances were detected in a low-molecular-weight, water-soluble fraction; 7 days of continuous exposure to this material resulted in less cartilage formation and reduced cell numbers (accumulated DNA) on each plate. These observations demonstrate the usefulness of stage 24 chick limb bud cell cultures for identifying bioactive factors extracted from adult bone matrix. In addition, the action of these factors on mesenchymal cells may now be studied in a cell culture system.  相似文献   

15.
The effect of avian retroviruses on limb bud chondrogenesis in vitro   总被引:3,自引:0,他引:3  
J L Gross  D B Rifkin 《Cell》1979,18(3):707-718
Mesenchymal cells isolated from stage 24 embryonic chicken limb buds were infected with the temperature-sensitive transformation mutants of Rous sarcoma virus tsNY68, tsNY10 and tsLA25 at the nonpermissive temperature for transformation (41 degrees C). Virus infection greatly inhibited subsequent limb bud chondrogenesis under nontransforming conditions, as indicated by a reduction in the rate of 35SO4 incorporation into cell-associated proteoglycans. The inhibition of chondrogenesis was directly related to the percentage of cells infected with tsNY68 at 41 degrees C. The observed inhibition of chondrogenesis was independent of src gene expression since this effect was also caused by many viruses which lack the src gene, including the leukosis viruses RAV-1, RAV-2 and MAV-2(0); the src deletion mutant RSVtd107; and the reticuloendotheliosis viruses REV-T and SNV. Infection of mesenchymal cells with tsNY68 under nontransforming conditions did not cause changes in parameters such as the rate of thymidine incorporation, total cell DNA and total cell protein. Infection with tsNY68 at 41 degrees C resulted in altered kinetics of 35SO4 incorporation into cell-associated proteoglycans and a corresponding reduction in 35SO4-labeled proteoglycans extracted from the cell layer. There were no apparent quantitative effects on the rate of accumulation of proteoglycans in the culture medium. The proteoglycans extracted from the cells and the collected medium of tsNY68-infected cultures were smaller than those of uninfected cultures, as shown by agarose gel chromatography.  相似文献   

16.
Summary An improved Ham’s F12 nutrient medium supplemented with epidermal growth factor (EGF), insulin (INS), and transferrin (TF) was developed for continuous proliferation and clonal growth of primary rabbit tracheal epithelial (TE) cells in culture. The addition of small quantities of fetal bovine serum (FBS) (0.01 to 0.1%) to cultures had little measurable stimulation on TE cell growth and plating efficiency. However, serum levels higher than 0.1% inhibited cell growth and also masked the growth stimulating activities of EGF and INS despite an increase in cell attachment. Under this defined, hormone-supplemented medium, and in the presence of a trace amount of serum (0.01%), 10 to 20% of the protease-dissociated TE cells attached to the culture dish followed by at least four population doublings during 7 to 10 d of culture. Clonal growth occurred at a seeding density of 17 cells/cm2 with a plating efficiency of 6 to 8%. Confluent primary cultures could be passaged two to four times by treatment with a 0.1% trypsin-1 mM EDTA solution and a total of 10 to 30 population doublings of in vitro life span were obtained. The epithelial nature of cultured cells was confirmed by indirect immunofluorescent staining with antikeratin antibody as well as by transmission electron microscopy. This study shows that using this improved hormone-supplemented medium, rabbit TE cells can be maintained in culture for extended periods of time without the aid of a fibroblast feeder layer or explant tissue. This system could be useful for the study of cell differentiation of tracheal epithelium.  相似文献   

17.
Here, we introduce a new serum-free defined medium (SPM) that supports the cultivation of human pluripotent stem cells (hPSCs) on recombinant human vitronectin-N (rhVNT-N)-coated dishes after seeding with either cell clumps or single cells. With this system, there was no need for an intervening sequential adaptation process after moving hPSCs from feeder layer-dependent conditions. We also introduce a micropatterned dish that was coated with extracellular matrix by photolithographic technology. This procedure allowed the cultivation of hPSCs on 199 individual rhVNT-N-coated small round spots (1 mm in diameter) on each 35-mm polystyrene dish (termed “patterned culture”), permitting the simultaneous formation of 199 uniform high-density small-sized colonies. This culture system supported controlled cell growth and maintenance of undifferentiated hPSCs better than dishes in which the entire surface was coated with rhVNT-N (termed “non-patterned cultures”). Non-patterned cultures produced variable, unrestricted cell proliferation with non-uniform cell growth and uneven densities in which we observed downregulated expression of some self-renewal-related markers. Comparative flow cytometric studies of the expression of pluripotency-related molecules SSEA-3 and TRA-1-60 in hPSCs from non-patterned cultures and patterned cultures supported this concept. Patterned cultures of hPSCs allowed sequential visual inspection of every hPSC colony, giving an address and number in patterned culture dishes. Several spots could be sampled for quality control tests of production batches, thereby permitting the monitoring of hPSCs in a single culture dish. Our new patterned culture system utilizing photolithography provides a robust, reproducible and controllable cell culture system and demonstrates technological advantages for the mass production of hPSCs with process quality control.  相似文献   

18.
19.
Under standard culture conditions, epithelial cells grow with their basal surface attached to the culture dish and their apical surface facing the medium. Morphological and functional markers are located in the appropriate plasma membrane, and transepithelial transport occurs in a variety of cultured epithelia. As a result of the polarity of the cells and the presence of tight junctions between cells, on standard tissue culture dishes there is restricted access of growth medium to the basolateral surface of the epithelium, which is the surface at which nutrient exchange normally occurs. Greater differentiation of epithelial cultures can be achieved by growing primary cultures or continuous cell lines on permeable surfaces such as porous bottom cultures dishes in which the porous bottom is formed by a filter or membrane of collagen, or on floating collagen gels. In many cultures, differentiation varies with the time after the culture was seeded. Certain chemicals that accelerate differentiation in nonepithelial cells also accelerate the differentiation of epithelial cultures. Ultimately, defined media and specific substrates for cell attachment should lead to further differentiation of epithelia in culture.  相似文献   

20.
This study represents a first step in investigating the possible involvement of transforming growth factor-beta (TGF-beta) in the regulation of embryonic chick limb cartilage differentiation. TGF-beta 1 and 2 (1-10 ng/ml) elicit a striking increase in the accumulation of Alcian blue, pH 1-positive cartilage matrix, and a corresponding twofold to threefold increase in the accumulation of 35S-sulfate- or 3H-glucosamine-labeled sulfated glycosaminoglycans (GAG) by high density micromass cultures prepared from the cells of whole stage 23/24 limb buds or the homogeneous population of chondrogenic precursor cells comprising the distal subridge mesenchyme of stage 25 wing buds. Moreover, TGF-beta causes a striking (threefold to sixfold) increase in the steady-state cytoplasmic levels of mRNAs for cartilage-characteristic type II collagen and the core protein of cartilage-specific proteoglycan. Only a brief (2 hr) exposure to TGF-beta at the initiation of culture is sufficient to stimulate chondrogenesis, indicating that the growth factor is acting at an early step in the process. Furthermore, TGF-beta promotes the formation of cartilage matrix and cartilage-specific gene expression in low density subconfluent spot cultures of limb mesenchymal cells, which are situations in which little, or no chondrogenic differentiation normally occurs. These results provide strong incentive for considering and further investigating the role of TGF-beta in the control of limb cartilage differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号