首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物多倍体基因组的形成与进化   总被引:43,自引:2,他引:41  
杨继 《植物分类学报》2001,39(4):357-371
多倍化是植物进化变异的自然现象,也是促进植物发生进化改变的重要力量。在被子植物中,约 70%的种类在进化史中曾发生过一次或多次多倍化的过程。目前的研究结果表明,自然界绝大多数多倍体是通过未减数配子的融合而形成的,并且很多多倍体种是通过多次独立的多倍化过程而重复发生的。由多倍化所导致的重复基因在多倍体基因组中可能有三种不同的命运,即:保持原有的功能、基因沉默或分化并执行新的功能。多倍化以后,重复基因组的进化动态则主要表现在染色体重排和“染色体二倍化”、不同基因组之间的相互渗透、以及核-质之间的相互作用等方面。  相似文献   

2.
Polyploidy in differentiation and evolution   总被引:5,自引:0,他引:5  
Somatic and generative (germ-line) polyploidy are more widely spread phenomena among living organisms than generally thought. The occurrence of polyploidization and related events in normal and pathological differentiation, their recognized main functions, as well as the structural specificities of polyploid nuclei are reviewed, and the relationship between ontogenetic and phylogenetic events is discussed. The mechanisms leading to the polyploid state, as well as other processes resulting in a genomic condition different from the diploid one (such as DNA under-replication, gene amplification, and chromatin elimination), are briefly sketched. The various changes in chromosomal DNA described are, in conclusion, seen as evidence supporting the paradigm of a "fluid" or dynamic organization of the eukaryotic genome, as being part of a cybernetic feedback regulation system of gene expression. A model is proposed that unifies the aspects of DNA variation, chromatin structure, and diversification in ontogenesis and phylogenesis.  相似文献   

3.
Wang X  Shi X  Hao B  Ge S  Luo J 《The New phytologist》2005,165(3):937-946
* Large-scale duplication events have been recently uncovered in the rice genome, but different interpretations were proposed regarding the extent of the duplications. * Through analysing the 370 Mb genome sequences assembled into 12 chromosomes of Oryza sativa subspecies indica, we detected 10 duplicated blocks on all 12 chromosomes that contained 47% of the total predicted genes. Based on the phylogenetic analysis, we inferred that this was a result of a genome duplication that occurred c. 70 million years ago, supporting the polyploidy origin of the rice genome. In addition, a segmental duplication was also identified involving chromosomes 11 and 12, which occurred c. 5 million years ago. * Following the duplications, there have been large-scale chromosomal rearrangements and deletions. About 30-65% of duplicated genes were lost shortly after the duplications, leading to a rapid diploidization. * Together with other lines of evidence, we propose that polyploidization is still an ongoing process in grasses of polyploidy origins.  相似文献   

4.
The large-scale replacement of gymnosperms by angiosperms in many ecological niches over time and the huge disparity in species numbers have led scientists to explore factors (e.g. polyploidy, developmental systems, floral evolution) that may have contributed to the astonishing rise of angiosperm diversity. Here, we explore genomic and ecological factors influencing seed plant genomes. This is timely given the recent surge in genomic data. We compare and contrast the genomic structure and evolution of angiosperms and gymnosperms and find that angiosperm genomes are more dynamic and diverse, particularly amongst the herbaceous species. Gymnosperms typically have reduced frequencies of a number of processes (e.g. polyploidy) that have shaped the genomes of other vascular plants and have alternative mechanisms to suppress genome dynamism (e.g. epigenetics and activity of transposable elements). Furthermore, the presence of several characters in angiosperms (e.g. herbaceous habit, short minimum generation time) has enabled them to exploit new niches and to be viable with small population sizes, where the power of genetic drift can outweigh that of selection. Together these processes have led to increased rates of genetic divergence and faster fixation times of variation in many angiosperms compared with gymnosperms.  相似文献   

5.
I V Uryvaeva 《Tsitologiia》1979,21(12):1427-1437
The ontogenetic polyploidization of hepatocytes is regarded, within which normal mitoses are changed to polyploidizing mitoses, and diploid hepatocytes transform into polyploid mono- and binuclear cells. A new hypothesis is put forward of the biological significance of the liver cell polyploidy. The hypothesis takes into account a high level of spontaneous chromosomal aberrations in mitotic hepatocytes. The chromosome structural changes interfere with mitosis resulting in the chromosomal imbalance. Polyploidy bestows for hepatocytes a tolerance towards a chromosomal imbalance. Some implications of the hypothesis are discussed: unbalanced genome of hepatocytes after the treatment with mutagens and mitotic stimulators; the reasons of liver cell polyploidy differences in mammalian species; mechanisms of radioresistance of hepatocytes. Chromosomal imbalance of polyploid hepatocytes is assumed to be the basis for wome chronic liver diseases in man.  相似文献   

6.
Polyploidization, which is expected to trigger major genomic reorganizations, occurs much less commonly in animals than in plants, possibly because of constraints imposed by sex-determination systems. We investigated the origins and consequences of allopolyploidization in Palearctic green toads (Bufo viridis subgroup) from Central Asia, with three ploidy levels and different modes of genome transmission (sexual versus clonal), to (i) establish a topology for the reticulate phylogeny in a species-rich radiation involving several closely related lineages and (ii) explore processes of genomic reorganization that may follow polyploidization. Sibship analyses based on 30 cross-amplifying microsatellite markers substantiated the maternal origins and revealed the paternal origins and relationships of subgenomes in allopolyploids. Analyses of the synteny of linkage groups identified three markers affected by translocation events, which occurred only within the paternally inherited subgenomes of allopolyploid toads and exclusively affected the linkage group that determines sex in several diploid species of the green toad radiation. Recombination rates did not differ between diploid and polyploid toad species, and were overall much reduced in males, independent of linkage group and ploidy levels. Clonally transmitted subgenomes in allotriploid toads provided support for strong genetic drift, presumably resulting from recombination arrest. The Palearctic green toad radiation seems to offer unique opportunities to investigate the consequences of polyploidization and clonal transmission on the dynamics of genomes in vertebrates.  相似文献   

7.
多倍体植物中基因表达模式的变化   总被引:2,自引:0,他引:2  
植物杂交和多倍化能导致基因组结构发生变化,并显著影响了基因表达,因此认为杂交和多倍化是促进植物进化的一个重要力量。近些年大量的研究表明植物多倍化后基因表达模式发生了复杂的改变,包括基因沉默、基因表达的基因组偏向性及组织特异性、基因激活等现象,本文对这些现象及其特点和机制进行了综述。  相似文献   

8.
Polyploidy is important in the evolutionary history of plants, and it has played a crucial role in shaping the genome structures of all eukaryotes. New and rapidly improving techniques in genomics, cytogenetics and molecular ecology have resulted in a dramatic increase in publications about duplicate genes, genome rearrangements and detection of ancient duplication events. Similarly, research associated with the origins of polyploidy, its persistence in natural populations and the resulting ecological consequences is receiving more attention. Although polyploidy research has been conducted using both animal and plant systems, inferences based on cross-disciplinary comparisons have been rare. Here, I review recent developments in the field in both plants and animals, emphasizing the benefits of communication between the two groups.  相似文献   

9.
Polyploidy and genome evolution in plants   总被引:2,自引:0,他引:2  
Genome doubling (polyploidy) has been and continues to be a pervasive force in plant evolution. Modern plant genomes harbor evidence of multiple rounds of past polyploidization events, often followed by massive silencing and elimination of duplicated genes. Recent studies have refined our inferences of the number and timing of polyploidy events and the impact of these events on genome structure. Many polyploids experience extensive and rapid genomic alterations, some arising with the onset of polyploidy. Survivorship of duplicated genes are differential across gene classes, with some duplicate genes more prone to retention than others. Recent theory is now supported by evidence showing that genes that are retained in duplicate typically diversify in function or undergo subfunctionalization. Polyploidy has extensive effects on gene expression, with gene silencing accompanying polyploid formation and continuing over evolutionary time.  相似文献   

10.
Littorina saxatilis is becoming a model system for understanding the genomic basis of ecological speciation. The parallel formation of crab‐adapted ecotypes that exhibit partial reproductive isolation from wave‐adapted ecotypes has enabled genomic investigation of conspicuous shell traits. Recent genomic studies suggest that chromosomal rearrangements may enable ecotype divergence by reducing gene flow. However, the genomic architecture of traits that are divergent between ecotypes remains poorly understood. Here, we use 11,504 single nucleotide polymorphism (SNP) markers called using the recently released L. saxatilis genome to genotype 462 crab ecotype, wave ecotype and phenotypically intermediate Spanish L. saxatilis individuals with scored phenotypes. We used redundancy analysis to study the genetic architecture of loci associated with shell shape, shape corrected for size, shell size and shell ornamentation, and to compare levels of co‐association among different traits. We discovered 341 SNPs associated with shell traits. Loci associated with trait divergence between ecotypes were often located inside putative chromosomal rearrangements recently characterized in Swedish L. saxatilis. In contrast, we found that shell shape corrected for size varied primarily by geographic site rather than by ecotype and showed little association with these putative rearrangements. We conclude that genomic regions of elevated divergence inside putative rearrangements were associated with divergence of L. saxatilis ecotypes along steep environmental axes—consistent with models of adaptation with gene flow—but were not associated with divergence among the three geographical sites. Our findings support predictions from models indicating the importance of genomic regions of reduced recombination allowing co‐association of loci during ecological speciation with ongoing gene flow.  相似文献   

11.
Homosporous ferns have extremely high chromosome numbers relative to flowering plants, but the species with the lowest chromosome numbers show gene expression patterns typical of diploid organisms, suggesting that they may be diploidized ancient polyploids. To investigate the role of polyploidy in fern genome evolution, and to provide permanent genetic resources for this neglected group, we constructed a high-resolution genetic linkage map of the homosporous fern model species, Ceratopteris richardii (n = 39). Linkage map construction employed 488 doubled haploid lines (DHLs) that were genotyped for 368 RFLP, 358 AFLP, and 3 isozyme markers. Forty-one linkage groups were recovered, with average spacing between markers of 3.18 cM. Most loci (approximately 76%) are duplicated and most duplicates occur on different linkage groups, indicating that as in other eukaryotic genomes, gene duplication plays a prominent role in shaping the architecture of fern genomes. Although past polyploidization is a potential mechanism for the observed abundance of gene duplicates, a wide range in the number of gene duplicates as well as the absence of large syntenic regions consisting of duplicated gene copies implies that small-scale duplications may be the primary mode of gene duplication in C. richardii. Alternatively, evidence of past polyploidization(s) may be masked by extensive chromosomal rearrangements as well as smaller-scale duplications and deletions following polyploidization(s).  相似文献   

12.
The evolutionary consequences of polyploidy   总被引:5,自引:0,他引:5  
Otto SP 《Cell》2007,131(3):452-462
Polyploidization, the addition of a complete set of chromosomes to the genome, represents one of the most dramatic mutations known to occur. Nevertheless, polyploidy is well tolerated in many groups of eukaryotes. Indeed, the majority of flowering plants and vertebrates have descended from polyploid ancestors. This Review examines the short-term effects of polyploidization on cell size, body size, genomic stability, and gene expression and the long-term effects on rates of evolution.  相似文献   

13.
14.
Advances in recent years have revolutionized our understanding of both the context and occurrence of polyploidy in plants. Molecular phylogenetics has vastly improved our understanding of plant relationships, enabling us to better understand trait and character evolution, including chromosome number changes. This, in turn, has allowed us to appreciate better the frequent occurrence and extent of polyploidy throughout the history of angiosperms, despite the occurrence of low chromosome numbers in some groups, such as in Arabidopsis (A. thaliana was the first plant genome to be sequenced and assembled). In tandem with an enhanced appreciation of phylogenetic relationships, the accumulation of genomic data has led to the conclusion that all angiosperms are palaeopolyploids, together with better estimates of the frequency and type of polyploidy in different angiosperm lineages. The focus therefore becomes when a lineage last underwent polyploidization, rather than simply whether a plant is ‘diploid’ or ‘polyploid’. This legacy of past polyploidization in plants is masked by large‐scale genome reorganization involving repetitive DNA loss, chromosome rearrangements (including fusions and fissions) and complex patterns of gene loss, a set of processes that are collectively termed ‘diploidization’. We argue here that it is the diploidization process that is responsible for the ‘lag phase’ between polyploidization events and lineage diversification. If so, diploidization is important in determining chromosome structure and gene content, and has therefore made a significant contribution to the evolutionary success of flowering plants. © 2015 The Authors. Botanical Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of Linnean Society of London, 2016, 180 , 1–5.  相似文献   

15.
?Premise of the study: Hybridization and polyploidization (allopolyploidy) are ubiquitous in the evolution of plants, but tracing the origins and subsequent evolution of the constituent genomes of allopolyploids has been challenging. Genome doubling greatly complicates genetic analyses, and this has long hindered investigation in that most allopolyploid species are "nonmodel" organisms. However, recent advances in sequencing and genomics technologies now provide unprecedented opportunities to analyze numerous genetic markers in multiple individuals in any organism. ?Methods: Here we review the application of next-generation sequencing technologies to the study of three aspects of allopolyploid genome evolution: duplicated gene loss and expression in two recently formed Tragopogon allopolyploids, intergenomic interactions and chromosomal evolution in Tragopogon miscellus, and repetitive DNA evolution in Nicotiana allopolyploids. ?Key results: For the first time, we can explore on a genomic scale the evolutionary processes that are ongoing in natural allopolyploids and not be restricted to well-studied crops and genetic models. ?Conclusions: These approaches can be easily and inexpensively applied to many other plant species-making any evolutionarily provocative system a new "model" system.  相似文献   

16.
17.
BACKGROUND: Phylogenetic and phylogeographic investigations have been previously performed to study the evolution of the olive tree complex (Olea europaea). A particularly high genomic diversity has been found in north-west Africa. However, to date no exhaustive study has been addressed to infer putative polyploidization events and their evolutionary significance in the diversification of the olive tree and its relatives. METHODS: Representatives of the six olive subspecies were investigated using (a) flow cytometry to estimate genome content, and (b) six highly variable nuclear microsatellites to assess the presence of multiple alleles at co-dominant loci. In addition, nine individuals from a controlled cross between two individuals of O. europaea subsp. maroccana were characterized with microsatellites to check for chromosome inheritance. KEY RESULTS: Based on flow cytometry and genetic analyses, strong evidence for polyploidy was obtained in subspp. cerasiformis (tetraploid) and maroccana (hexaploid), whereas the other subspecies appeared to be diploids. Agreement between flow cytometry and genetic analyses gives an alternative approach to chromosome counting to determine ploidy level of trees. Lastly, abnormalities in chromosomes inheritance leading to aneuploid formation were revealed using microsatellite analyses in the offspring from the controlled cross in subsp. maroccana. CONCLUSIONS: This study constitutes the first report for multiple polyploidy in olive tree relatives. Formation of tetraploids and hexaploids may have played a major role in the diversification of the olive complex in north-west Africa. The fact that polyploidy is found in narrow endemic subspecies from Madeira (subsp. cerasiformis) and the Agadir Mountains (subsp. maroccana) suggests that polyploidization has been favoured to overcome inbreeding depression. Lastly, based on previous phylogenetic analyses, we hypothesize that subsp. cerasiformis resulted from hybridization between ancestors of subspp. guanchica and europaea.  相似文献   

18.
Peanut (Arachis) is a key oil and protein crop worldwide with large genome. The genomes of diploid and tetraploid peanuts have been sequenced, which were compared to decipher their genome structures, evolutionary, and life secrets. Genome sequencing efforts showed that different cultivars, although Bt homeologs being more privileged in gene retention and gene expression. This subgenome bias, extended to sequence variation and point mutation, might be related to the long terminal repeat (LTR) explosions after tetraploidization, especially in At subgenomes. Except that, whole-genome sequences revealed many important genes, for example, fatty acids and triacylglycerols pathway, NBS-LRR (nucleotide-binding site-leucine-rich repeats), and seed size decision genes, were enriched after recursive polyploidization. Each ancestral polyploidy, with old ones having occurred hundreds of thousand years ago, has thousands of duplicated genes in extant genomes, contributing to genetic novelty. Notably, although full genome sequences are available, the actual At subgenome ancestor has still been elusive, highlighted with new debate about peanut origin. Although being an orphan crop lagging behind other crops in genomic resources, the genome sequencing achievement has laid a solid foundation for advancing crop enhancement and system biology research of peanut.  相似文献   

19.
Cotton is a model system for studying polyploidization, genomic organization, and genome-size variation because the allotetraploid was formed 1-2 million years ago, which is old enough for sequence divergence but relatively recent to maintain genome stability. In spite of characterizing random genomic sequences in many polyploidy plants, the cytogenetic and sequence data that decipher homoeologous chromosomes are very limited in allopolyploid species. Here, we reported comprehensive analyses of integrated cytogenetic and linkage maps of homoeologous chromosomes 12A and 12D in allotetraploid cotton using fluorescence in situ hybridization and a large number of bacterial artificial chromosomes that were anchored by simple sequence repeat markers in the corresponding linkage maps. Integration of genetic loci into physical localizations showed considerable variation of genome organization, structure, and size between 12A and 12D homoeologous chromosomes. The distal regions of the chromosomes displayed relatively lower levels of structural and size variation than other regions of the chromosomes. The highest level of variation was found in the pericentric regions in the long arms of the two homoeologous chromosomes. The genome-size difference between A and D sub-genomes in allotetraploid cotton was mainly associated with uneven expansion or contraction between different regions of homoeologous chromosomes. As an attempt for studying on the polyploidy homoeologous chromosomes, these results are of general interest to the understanding and future sequencing of complex genomes in plant species.  相似文献   

20.
Mating systems directly control the transmission of genes across generations, and understanding the diversity and distribution of mating systems is central to understanding the evolution of any group of organisms. This basic idea has been the motivation for many studies that have explored the relationships between plant mating systems and other biological and/or ecological phenomena, including a variety of floral and environmental characteristics, conspecific and pollinator densities, growth form, parity, and genetic architecture. In addition to these examples, a potentially important but poorly understood association is the relationship between plant mating systems and genome duplication, i.e., polyploidy. It is widely held that polyploid plants self-fertilize more than their diploid relatives, yet a formal analysis of this pattern does not exist. Data from 235 species of flowering plants were used to analyze the association between self-fertilization and ploidy. Phylogenetically independent contrasts and cross-species analyses both lend support to the hypothesis that polyploids self-fertilize more than diploids. Because polyploidy and self-fertilization are so common among angiosperms, these results contribute not only to our understanding of the relationship between mating systems and polyploidy in particular, but more generally, to our understanding of the evolution of flowering plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号