首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genus Lavandula L. consists of 39 species distributed from the North Atlantic Islands, across the Mediterranean Basin to India. We analysed 36 taxa of the genus Lavandula representing two of the three subgenera and six of the eight sections according to the most recent classification (Upson & Andrews 2004). We achieved a phylogenetic reconstruction from partial sequences from plastid trnK and matK genes; the genome size was estimated by flow cytometer measurements. The primary aim was to track phylogenetic patterns through the maternal inherited marker at the sectional level and identify possible genome duplications. The cpDNA tree shows the phylogenetic relationships between subgenus, sections and also elucidates for the first time the relationships between the endemic species of Macaronesia, Morocco and Arabia. The ancestral split between the two subgenera could be explained by dispersal followed by an early vicariance event. The C-value shows genome up-sizing within several phylogenetic clades and geographical areas. An ancestral genome-up sizing is characterized at the node of section Dentatae and Lavandula. The cpDNA tree suggests that the taxa L. angustifolia subsp. pyrenaica (DC.) Guinea and L. stoechas subsp. luiseiri are best treated as a distinct species.  相似文献   

2.
Biolistic co-transformation of the nuclear and plastid genomes   总被引:1,自引:0,他引:1  
Particle gun-mediated (so-called 'biolistic') transformation represents a universal genetic transformation technology that is widely applied in nearly all groups of organisms. The mechanism of how accelerated DNA-coated particles, after their entry into the cell, deliver the foreign DNA to the target compartment is not known. Here we have studied this process in plants by performing co-transformation experiments with vectors targeted to two different cellular compartments, the nucleus and the plastids (chloroplasts). We find that coating of particles with both plastid and nuclear transformation vectors can result in co-transformation of chloroplasts and the nucleus. In contrast, mixing of particles coated individually with the vectors does not produce co-transformed plants. Our data suggest that a single DNA-coated particle can transform more than one compartment of the plant cell, opening up the possibility to generate doubly transgenic plants in one step. Importantly, co-transformation can also be obtained in the absence of selection, thus providing a method to produce marker-free transgenic genomes. In addition, our findings raise the possibility of occasional inadvertent co-transformation of two genomes and, therefore, have important implications for the molecular characterization and regulation of transgenic plants.  相似文献   

3.
A phylogeny based on the analysis of six DNA sequence markers (ITS, ndhA intron, rpl32-trnL, rps3, rps16 intron, and rps16-trnK) is used to infer ancestral areas and divergence times, and reconstruct the biogeographical history and evolution of 150 of the 183 (82%) species of Muhlenbergia. Our results suggest that the genus originated 9.3 mya in the Sierra Madre (Occidental and Oriental) in Mexico, splitting into six lineages: M. ramulosa diverging 8.2 mya, M. subg. Muhlenbergia at 5.9 mya, M. subg. Pseudosporobolus at 5.9 mya, M. subg. Clomena at 5.4 mya, M. subg. Bealia at 4.3 mya, and M. subg. Trichochloa at 1 mya, each of these with a high probability of Sierra Madrean origin. Our results further suggest that founder-event speciation from Sierra Madre to South America occurred independently multiple times in all five subgenera during the Pleistocene and late Pliocene. One long-distance dispersal event most likely originating from Central or Eastern North America to East and Central Asia occurred 1.6–1 mya in M. subg. Muhlenbergia. In our cladogram, members of M. subg. Trichochloa show little genetic resolution, suggesting very low levels of divergence among the species, and this may be a consequence of rapid radiation.  相似文献   

4.
Asexual reproduction is believed to be detrimental, mainly because of the accumulation of deleterious mutations over time, a hypothesis known as Muller's ratchet. In seed plants, most asexually reproducing genetic systems are polyploid, with apomictic species (plants forming seeds without fertilization) as well as plastids and mitochondria providing prominent examples. Whether or not polyploidy helps asexual genetic systems to escape Muller's ratchet is unknown. Gene conversion, particularly when slightly biased, represents a potential mechanism that could allow asexual genetic systems to reduce their mutation load in a genome copy number-dependent manner. However, direct experimental evidence for the operation of gene conversion between genome molecules to correct mutations is largely lacking. Here we describe an experimental system based on transgenic tobacco chloroplasts that allows us to analyze gene conversion events in higher plant plastid genomes. We provide evidence for gene conversion acting as a highly efficient mechanism by which the polyploid plastid genetic system can correct deleterious mutations and make one good genome out of two bad ones. Our finding that gene conversion can be biased may provide a molecular link between asexual reproduction, high genome copy numbers and low mutation rates.  相似文献   

5.
The phylogenetics and biogeography of Pancratium (Amaryllidaceae) were investigated, with a focus on the Mediterranean and adjacent areas, with the aim of contributing new information towards a better understanding of the evolutionary history of the genus and the taxonomic placement of P. linosae and P. hirtum. To address these questions, we sequenced four plastid DNA markers: the ndhF and rbcL genes, the trnL(UAA)trnF(GAA) intergenic spacer and the trnL(UAA) intron, analysing them using parsimony, likelihood and Bayesian approaches. The results show that the relationships among the majority of the species are resolved; however, the relationships of one of the major clades of the genus are unresolved compared with the others. The phylogenetic and the dispersal–vicariance analyses show that Pancratium appears as a well‐structured group with interesting patterns of speciation. Notably, P. arabicum and P. linosae fall within the P. maritimum complex. In addition, P. hirtum is identical, in terms of plastid DNA sequences, to the P. trianthum accessions. The results provide new insights and help to formulate new working hypotheses for evolutionary biology of the genus. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 12–28.  相似文献   

6.
Summary Potato plastid DNA clones, representing onefourth of the potato plastome complexity and containing sequences of the 16SrRNA, rps16, atpA, atpE, psaA, psaB, trnK, trnV, and trnG genes, were used as hybridization probes on nuclear- and mitochondrial-enriched DNAs. Each probe hybridized to multiple nuclear restriction fragments distinct from the plastid cleavage products generated by the same endonucleases. The nuclear hybridizable fragments are highly methylated at their Hpall target sequences (C/CGG). In some instances, the transfer seemed to involve plastid regions of several kilobase pairs, as reflected by the co-integration in the nucleus of restriction sites that are distant in the plastome. Three clones hybridized additionally to distinct mitochondrial fragments. These results indicate that extensive DNA transfers did occur between plastids and other organelles in potato.  相似文献   

7.
Gymnocarpos has only about ten species distributed in the arid regions of Asia and Africa, but it exhibits a geographical disjunction between eastern Central Asia and western North Africa and Minor Asia. We sampled eight species of the genus and sequenced two chloroplast regions (rps16 and psbB–psbH), and the nuclear rDNA (ITS) to study the phylogeny and biogeography. The results of the phylogenetic analyses corroborated that Gymnocarpos is monophyletic, in the phylogenetic tree two well supported clades are recognized: clade 1 includes Gymnocarpos sclerocephalus and G. decandrus, mainly the North African group, whereas clade 2 comprises the remaining species, mainly in the Southern Arabian Peninsula. Molecular dating analysis revealed that the divergence age of Gymnocarpos was c. 31.33 Mya near the Eocene and Oligocene transition boundary, the initial diversification within Gymnocarpos dated to c. 6.69 Mya in the late Miocene, and the intraspecific diversification mostly occurred during the Quaternary climate oscillations. Ancestral area reconstruction suggested that the Southern Arabian Peninsula was the ancestral area for Gymnocarpos. Our conclusions revealed that the aridification since mid‐late Miocene significantly affected the diversification of the genus in these areas.  相似文献   

8.
Veneridae is one of the most diverse families of bivalve molluscs. However, their phylogenetic relationships among subfamilies have been debated for years. To explore phylogenetic relationships of Veneridae, we sequenced 13 complete mitochondrial genome sequences from eight subfamilies and compared with available complete mitochondrial genome of other Veneridae taxa (18 previously reported sequences). Phylogenetic analyses using probabilistic methods recovered two highly supported clades. In addition, the protein‐coding gene order revealed a highly conserved pattern among the same subclade lineages. According to our molecular analyses, Tapetinae should be recognized as a valid subfamily, but the genera formed para‐polyphyletic clades. Chioninae was recovered not monophyletic that differs from a previously molecular phylogeny. Furthermore, the reconstructed chronogram calibrated with fossils recovered the Veneridae have originated during the early Permian (about 290 million years ago). Noticeably, programmed frameshift was found in the nad4 gene of Leukoma jedoensis, Anomalodiscus squamosus and Antigona lamellaris and cob gene of L. jedoensis. This is the first time that the presence of the programmed frameshift has been found in the protein‐coding genes of Heterodonta species. Our results improved the phylogenetic resolution within Veneridae, and a more taxonomic sampling analysis of the subfamily Chioninae is supposed to construct.  相似文献   

9.
10.
Prangos fedtschenkoi (Regel & Schmalh.) Korovin and P. lipskyi Korovin (Apiaceae) are rare plant species endemic to mountainous regions of Middle Asia. Both are edificators of biotic communities and valuable resource plants. The results of recent phylogenetic analyses place them in Prangos subgen. Koelzella (M. Hiroe) Lyskov & Pimenov and suggest they may possibly represent sister species. To aid in development of molecular markers useful for intraspecific phylogeographic and population‐level genetic studies of these ecologically and economically important plants, we determined their complete plastid genome sequences and compared the results obtained to several previously published plastomes of Apiaceae. The plastomes of P. fedtschenkoi and P. lipskyi are typical of Apiaceae and most other higher plant plastid DNAs in their sizes (153,626 and 154,143 bp, respectively), structural organization, gene arrangement, and gene content (with 113 unique genes). A total of 49 and 48 short sequence repeat (SSR) loci of 10 bp or longer were detected in P. fedtschenkoi and P. lipskyi plastomes, respectively, representing 42–43 mononucleotides and 6 AT dinucleotides. Seven tandem repeats of 30 bp or longer with a sequence identity ≥90% were identified in each plastome. Further comparisons revealed 319 polymorphic sites between the plastomes (IR, 21; LSC, 234; SSC, 64), representing 43.8% transitions (Ts), 56.1% transversions (Tv), and a Ts/Tv ratio of 0.78. Within genic regions, two indel events were observed in rpoA (6 and 51 bp) and ycf1 (3 and 12 bp), and one in ndhF (6 bp). The most variable intergenic spacer region was that of accD/psaI, with 21.1% nucleotide divergence. Each Prangos species possessed one of two separate inversions (either 5 bp in ndhB intron or 9 bp in petB intron), and these were predicted to form hairpin structures with flanking repeat sequences of 18 and 19 bp, respectively. Both species have also incorporated novel DNA in the LSC region adjacent to the LSC/IRa junction, and BLAST searches revealed it had a 100 bp match (86% sequence identity) to noncoding mitochondrial DNA. Prangos‐specific primers were developed for the variable accD/psaI intergenic spacer and preliminary PCR‐surveys suggest that this region will be useful for future phylogeographic and population‐level studies.  相似文献   

11.
Sequence variation among 22 isolates representing a global distribution of the prymnesiophyte genus Phaeocystis has been compared using nuclear-encoded 18S rRNA genes and two non-coding regions: the ribosomal DNA internal transcribed spacer 1 (ITS1) separating the 18S rRNA and 5.8S rRNA genes and the plastid ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) spacer flanked by short stretches of the adjacent large and small subunits (rbcL and rbcS). 18S rRNA can only resolve major species complexes. The analysis suggests that an undescribed unicellular Phaeocystis sp. (isolate PLY 559) is a sister taxon to the Mediterranean unicellular Phaeocystis jahnii; this clade branched prior to the divergence of all other Phaeocystis species, including the colonial ones. Little divergence was seen among the multiple isolates sequenced from each colonial species complex. RUBISCO spacer regions are even more highly conserved among closely related colonial Phaeocystis species and are identical in Phaeocystis antarctica, Phaeocystis pouchetii and two warm-temperate strains of Phaeocystis globosa, with a single base substitution in two cold-temperate strains of P. globosa. The RUBISCO spacer sequences from two predominantly unicellular Phaeocystis isolates from the Mediterranean Sea and PLY 559 were clearly different from other Phaeocystis strains. In contrast, ITS1 exhibited substantial inter- and intraspecific sequence divergence and showed more resolution among the taxa. Distinctly different copies of the ITS1 region were found in P. globosa, even among cloned DNA from a single strain, suggesting that it is a species complex and making this region unsuitable for phylogenetic analysis in this species. However, among nine P. antarctica strains, four ITS1 haplotypes could be separated. Using the branching order in the ITS1 tree we have attempted to trace the biogeographic history of the dispersal of strains in Antarctic coastal waters.  相似文献   

12.
13.
Takishita K  Koike K  Maruyama T  Ogata T 《Protist》2002,153(3):293-302
The dinoflagellate genus Dinophysis contains species known to cause diarrhetic shellfish poisoning. Although most photosynthetic dinoflagellates have plastids with peridinin, photosynthetic Dinophysis species have cryptophyte-like plastids containing phycobilin rather than peridinin. We sequenced nuclear- and plastid-encoded SSU rDNA from three photosynthetic species of Dinophysis for phylogenetic analyses. In the tree of nuclear SSU rDNA, Dinophysis was a monophyletic group nested with peridinin-containing dinoflagellates. However, in the tree of plastid SSU rDNA, the Dinophysis plastid lineage was within the radiation of cryptophytes and was closely related to Geminigera cryophila. These analyses indicate that an ancestor of Dinophysis, which may have originally possessed peridinin-type plastid and lost it subsequently, adopted a new plastid from a cryptophyte. Unlike dinoflagellates with fully integrated plastids, the Dinophysis plastid SSU rDNA sequences were identical among the three species examined, while there were species-specific base substitutions in their nuclear SSU rDNA sequences. Queries of the DNA database showed that the plastid SSU rDNA sequence of Dinophysis is almost identical to that of an environmental DNA clone of a <10 pm sized plankter, possibly a cryptophyte and a likely source of the Dinophysis plastid. The present findings suggest that these Dinophysis species engulfed and temporarily retained plastids from a cryptophyte.  相似文献   

14.
Pairwise comparison of whole plastid and draft nuclear genomic sequences of Arabidopsis thaliana and Oryza sativa L. ssp. indica shows that rice nuclear genomic sequences contain homologs of plastid DNA covering about 94 kb (83%) of plastid genome and including one or more full-length intact (without mutations resulting in premature stop codons) homologues of 26 known protein-coding (KPC) plastid genes. By contrast, only about 20 kb (16%) of chloroplast DNA, including a single intact plastid-derived KPC gene, is presented in the nucleus of A. thaliana. Sixteen rice plastid genes have at least one nuclear copy without any mutation or with only synonymous substitutions. Nuclear copies for other ten plastid genes contain both synonymous and non-synonymous substitutions. Multiple ESTs for 25 out of 26 KPC genes were also found, as well as putative promoters for some of them. The study of substitutions pattern shows that some of nuclear homologues of plastid genes may be functional and/or are under the pressure of the positive natural selection. The similar comparative analysis performed on rice chromosome 1 revealed 27 contigs containing plastid-derived sequences, totalling about 84 kb and covering two thirds of chloroplast DNA, with the intact nuclear copies of 26 different KPC genes. One of these contigs, AP003280, includes almost 57 kb (45%) of chloroplast genome with the intact copies of 22 KPC genes. At the same time, we observed that relative locations of homologues in plastid DNA and the nuclear genome are significantly different.  相似文献   

15.
16.
Stromules are stroma-filled tubules that extend from the surface of plastids and allow the transfer of proteins as large as 550 kDa between interconnected plastids. The aim of the present study was to determine if plastid DNA or plastid ribosomes are able to enter stromules, potentially permitting the transfer of genetic information between plastids. Plastid DNA and ribosomes were marked with green fluorescent protein (GFP) fusions to LacI, the lac repressor, which binds to lacO-related sequences in plastid DNA, and to plastid ribosomal proteins Rpl1 and Rps2, respectively. Fluorescence from GFP-LacI co-localised with plastid DNA in nucleoids in all tissues of transgenic tobacco (Nicotiana tabacum L.) examined and there was no indication of its presence in stromules, not even in hypocotyl epidermal cells, which contain abundant stromules. Fluorescence from Rpl1-GFP and Rps2-GFP was also observed in a punctate pattern in chloroplasts of tobacco and Arabidopsis [Arabidopsis thaliana (L.) Heynh.], and fluorescent stromules were not detected. Rpl1-GFP was shown to assemble into ribosomes and was co-localised with plastid DNA. In contrast, in hypocotyl epidermal cells of dark-grown Arabidopsis seedlings, fluorescence from Rpl1-GFP was more evenly distributed in plastids and was observed in stromules on a total of only four plastids (<0.02% of the plastids observed). These observations indicate that plastid DNA and plastid ribosomes do not routinely move into stromules in tobacco and Arabidopsis, and suggest that transfer of genetic information by this route is likely to be a very rare event, if it occurs at all.  相似文献   

17.
Infraspecific heterogeneity of chloroplast genomes was found in four Vaucheria species (V. bursata, V. cruciata, V. geminata, V. prolifera) collected from six European countries. The degree of sequence variability among strains of each of the four species, as demonstrated by restriction site analysis, exceeds that of higher plant species or even genera. Mainly single base substitutions and, to a much lesser extent, minor insertions/deletions account for such differences, whereas the linear gene arrangement remains unaffected. Chloroplast genotypes found to be identical among strains collected from different geographical localities are considered the common genotype of a given species. These findings are discussed with respect to evolution, biogeographical distribution and the species concept of this genus.  相似文献   

18.
Little is known about genome organization in members of the order Batrachospermales, and the infra‐ordinal relationship remains unresolved. Plastid (cp) genomes of seven members of the freshwater red algal order Batrachospermales were sequenced, with the following aims: (i) to describe the characteristics of cp genomes and compare these with other red algal groups; (ii) to infer the phylogenetic relationships among these members to better understand the infra‐ordinal classification. Cp genomes of Batrachospermales are large, with several cases of gene loss, they are gene‐dense (high gene content for the genome size and short intergenic regions) and have highly conserved gene order. Phylogenetic analyses based on concatenated nucleotide genome data roughly supports the current taxonomic system for the order. Comparative analyses confirm data for members of the class Florideophyceae that cp genomes in Batrachospermales is highly conserved, with little variation in gene composition. However, relevant new features were revealed in our study: genome sizes in members of Batrachospermales are close to the lowest values reported for Florideophyceae; differences in cp genome size within the order are large in comparison with other orders (Ceramiales, Gelidiales, Gracilariales, Hildenbrandiales, and Nemaliales); and members of Batrachospermales have the lowest number of protein‐coding genes among the Florideophyceae. In terms of gene loss, apcF, which encodes the allophycocyanin beta subunit, is absent in all sequenced taxa of Batrachospermales. We reinforce that the interordinal relationships between the freshwater orders Batrachospermales and Thoreales within the Nemaliophycidae is not well resolved due to limited taxon sampling.  相似文献   

19.
Transgene expression from the plant's plastid genome represents a promising strategy in molecular farming because of the plastid's potential to accumulate foreign proteins to high levels and the increased biosafety provided by the maternal mode of organelle inheritance. In this article, we explore the potential of transplastomic plants to produce human immunodeficiency virus (HIV) antigens as potential components of an acquired immunodeficiency syndrome (AIDS) vaccine. It is shown that the HIV antigens p24 (the major target of T‐cell‐mediated immune responses in HIV‐positive individuals) and Nef can be expressed to high levels in plastids of tobacco, a non‐food crop, and tomato, a food crop with an edible fruit. Optimized p24‐Nef fusion gene cassettes trigger antigen protein accumulation to up to approximately 40% of the plant's total protein, demonstrating the great potential of transgenic plastids to produce AIDS vaccine components at low cost and high yield.  相似文献   

20.
We studied the speciose butterfly genus Erebia by reconstructing its phylogenetic relationships using parsimony and Bayesian approaches. We estimated times and rates of diversification for its lineages and employed a biogeographical analysis in order to reconstruct its evolutionary history. DNA sequence data from one mitochondrial gene and three nuclear genes were analyzed for a total of 74 species in Erebia. The estimated dates of origin and diversification for clades, in combination with a biogeographical analysis, suggest that the genus originated in Asian Russia and started its diversification process around 23 Myr. An important event was the dispersal of a lineage from Asia to Western Europe between 23 and 17 Myr, which allowed the radiation of most of species in the genus. The diversification pattern is consistent with a model of diversity limited by clade richness, which implies an early rapid diversification followed by deceleration due to a decrease in speciation. We argue that these characteristics of the evolutionary history of Erebia are consistent with a density‐dependent scenario, with species radiation limited by filling of niche space and reduced resources. We found that the Boeberia parmenio appears strongly supported in the genus Erebia and therefore we place Boeberia Prout, 1901 as a junior synonym of Erebia Dalman, 1816 ( syn. nov. ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号