首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Mean body size decreases with increasing temperature in a variety of organisms. This size–temperature relationship has generally been tested through space but rarely through time. We analyzed the sedimentary archive of dinoflagellate cysts in a sediment record taken from the West Greenland shelf and show that mean cell size decreased at both intra‐ and interspecific scales in a period of relatively warm temperatures, compared with a period of relatively cold temperatures. We further show that intraspecific changes accounted for more than 70% of the change in community mean size, whereas shifts in species composition only accounted for about 30% of the observed change. Literature values on size ranges and midpoints for individual taxa were in several cases not representative for the measured sizes, although changes in community mean size, calculated from literature values, did capture the direction of change. While the results show that intraspecific variation is necessary to accurately estimate the magnitude of change in protist community mean size, it may be possible to investigate general patterns, that is relative size differences, using interspecific‐level estimates.  相似文献   

2.
Aim   Nutrient resorption from senescing leaves is an important mechanism of nutrient conservation in plants, but the patterns of nutrient resorption at the global scale are unknown. Because soil nutrients vary along climatic gradients, we hypothesize that nutrient resorption changes with latitude, temperature and precipitation.
Location   Global.
Methods   We conducted a meta-analysis on a global data set collected from published literature on nitrogen (N) and phosphorus (P) resorption of woody plants.
Results    For all data pooled, both N resorption efficiency (NRE) and P resorption efficiency (PRE) were significantly related to latitude, mean annual temperature (MAT) and mean annual precipitation (MAP): NRE increased with latitude but decreased with MAT and MAP. In contrast, PRE decreased with latitude but increased with MAT and MAP. When functional groups (shrub versus tree, coniferous versus broadleaf and evergreen versus deciduous) were examined individually, the patterns of NRE and PRE in relation to latitude, MAT and MAP were generally similar.
Main conclusions   The relationships between N and P resorption and latitude, MAT and MAP indicate the existence of geographical patterns of plant nutrient conservation strategies in relation to temperature and precipitation at the global scale, particularly for PRE, which can be an indicator for P limitation in the tropics and selective pressure shaping the evolution of plant traits. Our results suggest that, although the magnitude of plant nutrient resorption might be regulated by local factors such as substrate, spatial patterns are also controlled by temperature or precipitation.  相似文献   

3.
Investigating how seed germination of multiple species in an ecosystem responds to environmental conditions is crucial for understanding the mechanisms for community structure and biodiversity maintenance. However, knowledge of seed germination response of species to environmental conditions is still scarce at the community level. We hypothesized that responses of seed germination to environmental conditions differ among species at the community level, and that germination response is not correlated with seed size. To test this hypothesis, we determined the response of seed germination of 20 common species in the Siziwang Desert Steppe, China, to seasonal temperature regimes (representing April, May, June, and July) and drought stress (0, ?0.003, ?0.027, ?0.155, and ?0.87 MPa). Seed germination percentage increased with increasing temperature regime, but Allium ramosum, Allium tenuissimum, Artemisia annua, Artemisia mongolica, Artemisia scoparia, Artemisia sieversiana, Bassia dasyphylla, Kochia prastrata, and Neopallasia pectinata germinated to >60% in the lowest temperature regime (April). Germination decreased with increasing water stress, but Allium ramosum, Artemisia annua, Artemisia scoparia, Bassia dasyphylla, Heteropappus altaicus, Kochia prastrata, Neopallasia pectinata, and Potentilla tanacetifolia germinated to near 60% at ?0.87 MPa. Among these eight species, germination of six was tolerant to both temperature and water stress. Mean germination percentage in the four temperature regimes and the five water potentials was not significantly correlated with seed mass or seed area, which were highly correlated. Our results suggest that the species‐specific germination responses to environmental conditions are important in structuring the desert steppe community and have implications for predicting community structure under climate change. Thus, the predicted warmer and dryer climate will favor germination of drought‐tolerant species, resulting in altered proportions of germinants of different species and subsequently change in community composition of the desert steppe.  相似文献   

4.
5.
Seed mass and morphology are plant life history traits that influence seed dispersal ability, seeding establishment success, and population distribution pattern. Southeastern Tibet is a diversity center for Rhododendron species, which are distributed from a few hundred meters to 5500 m above sea level. We examined intra‐ and interspecific variation in seed mass and morphology in relation to altitude, habitat, plant height, and phylogeny. Seed mass decreased significantly with the increasing altitude and increased significantly with increasing plant height among populations of the same species. Seed mass differed significantly among species and subsections, but not among sections and subgenera. Seed length, width, surface area, and wing length were significantly negative correlated with altitude and significantly positive correlated with plant height. Further, these traits differed significantly among habitats and varied among species and subsection, but not among sections and subgenera. Species at low elevation had larger seeds with larger wings, and seeds became smaller and the wings of seeds tended to be smaller with the increasing altitude. Morphology of the seed varied from flat round to long cylindrical with increasing altitude. We suggest that seed mass and morphology have evolved as a result of both long‐term adaptation and constraints of the taxonomic group over their long evolutionary history.  相似文献   

6.
段俊鹏  王峰  张卫军  戴文红  宋垚彬  董鸣 《生态学报》2022,42(24):10276-10287
了解树木生长对气候的响应对过去气候重建和预测其对未来气候变化的响应都至关重要。就珍稀濒危树种而言,这还会有助于对其的有效保护。在中国红豆杉属珍稀濒危植物中,密叶红豆杉(Taxus fuana)分布面积最小,野外生存压力大,属于极小种群植物。本研究运用年轮生态学方法,对西藏吉隆地区开热和吉普两地的密叶红豆杉种群进行树轮盘采样,分析了吉隆地区密叶红豆杉径向生长与温度和降水相关气候因子的相关性,旨在揭示影响密叶红豆杉生长的主要气候因子。结果表明,两个种群径向生长对温度的响应不同。开热种群密叶红豆杉径向生长与各月温度多呈显著正相关;吉普种群密叶红豆杉径向生长与各月温度的相关性较弱,且多为负相关,尤以3月份的最显著。两个种群的径向生长对降水的响应也不同。冬季休眠期(12月)的降水对开热种群密叶红豆杉径向生长呈负相关,而生长季初期(5月)和生长季末期(9月)的降水呈正相关。各月的降水对吉普种群密叶红豆杉的径向生长未表现出显著的影响。研究结果可为探讨气候变化下密叶红豆杉的适宜分布区、以及密叶红豆杉的保护和可持续管理提供参考。  相似文献   

7.
内蒙古羊草群落、功能群、物种变化及其与气候的关系   总被引:1,自引:0,他引:1  
谭丽萍  周广胜 《生态学报》2013,33(2):650-658
基于1981-1994年内蒙古羊草草原的群落学调查数据和同期气象资料,分析了羊草草原群落、功能群与主要物种变化及其生物量与气候的关系.结果表明,1981-1994年5月羊草群落多样性指数、优势度指数、丰富度指数、群落高度、群落生物量的年际变异显著高于其他月,其中羊草群落生物量的变异性自5-9月依次降低,生物量和多样性不存在显著相关性.羊草群落、功能群、物种的年际变异依次增大;不同功能群中一二年生草本和中生植物的年际波动最大,不同物种间的均衡效应降低了群落的变异性.羊草群落生物量具有气候累积效应,主要受上年10月至当年12月的均温、4-8月降水、上年10月至当年8月累积降水的影响,表明羊草群落生物量变化由不同时段的水热因子协同作用决定.  相似文献   

8.
9.
While early models of ejaculate allocation predicted that both relative testes and ejaculate size should increase with sperm competition intensity across species, recent models predict that ejaculate size may actually decrease as testes size and sperm competition intensity increase, owing to the confounding effect of potential male mating rate. A recent study demonstrated that ejaculate volume decreased in relation to increased polyandry across bushcricket species, but testes mass was not measured. Here, we recorded testis mass for 21 bushcricket species, while ejaculate (ampulla) mass, nuptial gift mass, sperm number and polyandry data were largely obtained from the literature. Using phylogenetic-comparative analyses, we found that testis mass increased with the degree of polyandry, but decreased with increasing ejaculate mass. We found no significant relationship between testis mass and either sperm number or nuptial gift mass. While these results are consistent with recent models of ejaculate allocation, they could alternatively be driven by substances in the ejaculate that affect the degree of polyandry and/or by a trade-off between resources spent on testes mass versus non-sperm components of the ejaculate.  相似文献   

10.
Identifying the genes underlying rapid evolutionary changes, describing their function and ascertaining the environmental pressures that determine fitness are the central elements needed for understanding of evolutionary processes and phenotypic changes that improve the fitness of populations. It has been hypothesized that rapid adaptive changes in new environments may contribute to the rapid spread and success of invasive plants and animals. As yet, studies of adaptation during invasion are scarce, as is knowledge of the genes underlying adaptation, especially in multiple replicated invasions. Here, we quantified how genotype frequencies change during invasions, resulting in rapid evolution of naturalized populations. We used six fully replicated common garden experiments in Brazil where Pinus taeda (loblolly pine) was introduced at the same time, in the same numbers, from the same seed sources, and has formed naturalized populations expanding outward from the plantations. We used a combination of nonparametric, population genetics and multivariate statistics to detect changes in genotype frequencies along each of the six naturalization gradients and their association with climate as well as shifts in allele frequencies compared to the source populations. Results show 25 genes with significant shifts in genotype frequencies. Six genes had shifts in more than one population. Climate explained 25% of the variation in the groups of genes under selection across all locations, but specific genes under strong selection during invasions did not show climate‐related convergence. In conclusion, we detected rapid evolutionary changes during invasive range expansions, but the particular gene‐level patterns of evolution may be population specific.  相似文献   

11.
Background and AimsWe investigate patterns of evolution of genome size across a morphologically and ecologically diverse clade of Brassicaceae, in relation to ecological and life history traits. While numerous hypotheses have been put forward regarding autecological and environmental factors that could favour small vs. large genomes, a challenge in understanding genome size evolution in plants is that many hypothesized selective agents are intercorrelated.MethodsWe contribute genome size estimates for 47 species of Streptanthus Nutt. and close relatives, and take advantage of many data collections for this group to assemble data on climate, life history, soil affinity and composition, geographic range and plant secondary chemistry to identify simultaneous correlates of variation in genome size in an evolutionary framework. We assess models of evolution across clades and use phylogenetically informed analyses as well as model selection and information criteria approaches to identify variables that can best explain genome size variation in this clade.Key ResultsWe find differences in genome size and heterogeneity in its rate of evolution across subclades of Streptanthus and close relatives. We show that clade-wide genome size is positively associated with climate seasonality and glucosinolate compounds. Model selection and information criteria approaches identify a best model that includes temperature seasonality and fraction of aliphatic glucosinolates, suggesting a possible role for genome size in climatic adaptation or a role for biotic interactions in shaping the evolution of genome size. We find no evidence supporting hypotheses of life history, range size or soil nutrients as forces shaping genome size in this system.ConclusionsOur findings suggest climate seasonality and biotic interactions as potential forces shaping the evolution of genome size and highlight the importance of evaluating multiple factors in the context of phylogeny to understand the effect of possible selective agents on genome size.  相似文献   

12.
《Plant Ecology & Diversity》2013,6(5-6):521-528
Background: Plant and soil nitrogen stable isotope (δ15N) can integrate several fundamental biogeochemical processes in ecosystem nitrogen dynamics, and reflect characteristics of ecosystem nitrogen cycling.

Aims: We investigated how climate change influenced plant-soil nitrogen cycling by relating soil δ15N, plant δ15N and Δδ15N (difference between soil and plant δ15N) with climatic factors.

Methods: Field investigation was conducted in temperate grasslands in Inner Mongolia during August 2015. Plant δ15N, soil δ15N and Δδ15N were determined, and their relationships with climatic factors were examined by simple regression analyses and general linear models.

Results: Soil δ15N was significantly higher than plant δ15N, and there was a positive linear correlation between them. Soil and plant δ15N were negatively related with mean annual precipitation (MAP) and positively with mean annual temperature (MAT); conversely, Δδ15N was positively related with MAP and negatively with MAT.

Conclusion: Soil δ15N was dominantly controlled by MAT, while it was MAP for plant δ15N. Climate factors influenced plant δ15N not only through their effects on soil nitrogen dynamics but also strategies of plant nitrogen acquisition. Thus, compared with plant δ15N, soil δ15N can more accurately reflect soil nitrogen dynamics, while plant δ15N may integrate soil nitrogen dynamics and plant nitrogen acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号