首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used genotypes for 13 short tandem repeats (STRs) to assess the genetic diversity within and differentiation among populations of rhesus macaques (Macaca mulatta) from mainland Asia and long-tailed macaques (M. fascicularis) from mainland and insular Southeast Asia. The subjects were either recently captured in the wild or derived from wild-caught founders maintained in captivity for biomedical research. A large number of alleles are shared between the 2 macaque species but a significant genetic division between them persists. The distinction is more clear-cut among populations that are not, or are unlikely to have recently been, geographically contiguous. Our results suggest there has been significant interspecific nuclear gene flow between rhesus macaques and long-tailed macaques on the mainland. Comparisons of mainland and island populations of long-tailed macaques reflect marked genetic subdivisions due to barriers to migration. Geographic isolation has restricted gene flow, allowing island populations to become subdivided and genetically differentiated. Indonesian long-tailed macaques show evidence of long-term separation and genetic isolation from the mainland populations, whereas long-tailed macaques from the Philippines and Mauritius both display evidence of founder effects and subsequent isolation, with the impact from genetic drift being more profound in the latter.  相似文献   

2.
3.
Eight species of Ophrys sect. Pseudophrys (Orchidaceae) were cytogenetically studied. The analysed species possess the most symmetrical karyotypes of the genus (MCA ranged from 10.21 to 15.87 and CVCL from 19.61 to 23.93) with 2n = 2x = 36, being composed of mainly metacentric chromosomes. The karyotype formulae were: 36m for Ophrys archimedea, 32m + 4sm for O. flammeola, 32m + 4sm for O. funerea, 36m for O. laurensis, 36m for O. lojaconoi, 34m + 2sm for O. lucifera, 34m + 2sm for O. obaesa and 36m for O. pallida. Karyotype morphometric characters were evaluated by calculating MCA and CVCL for the assessment of karyotype asymmetry, and CVCI for the evaluation of heterogeneity in the position of the centromeres. The relationships between species were thus finally elucidated. The species characterised by wide distribution show greater karyomorphological distance than those with restricted distribution. The possible evolutionary role of chromosomal rearrangements as well as gene mutations in the speciation of Ophrys is discussed.  相似文献   

4.
《Zoology (Jena, Germany)》2015,118(6):377-385
The European wildcat (Felis silvestris silvestris) is an endangered felid impacted by genetic introgression with the domestic cat (Felis silvestris catus). The problem of hybridization has had different effects in different areas. In non-Mediterranean regions pure forms of wildcats became almost extinct, while in Mediterranean regions genetic introgression is a rare phenomenon. The study of the potential factors that prevent the gene flow in areas of lower hybridization may be key to wildcat conservation. We studied the population size and spatial segregation of wildcats and domestic cats in a typical Mediterranean area of ancient sympatry, where no evidence of hybridization had been detected by genetic studies. Camera trapping of wild-living cats and walking surveys of stray cats in villages were used for capture–recapture estimations of abundance and spatial segregation. Results showed (i) a low density of wildcats and no apparent presence of putative hybrids; (ii) a very low abundance of feral cats in spite of the widespread and large population sources of domestic cats inhabiting villages; (iii) strong spatial segregation between wildcats and domestic/feral cats; and (iv) no relationship between the size of the potential population sources and the abundance of feral cats. Hence, domestic cats were limited in their ability to become integrated into the local habitat of wildcats. Ecological barriers (habitat preferences, food limitations, intra-specific and intra-guild competition, predation) may explain the severe divergences of hybridization impact observed at a biogeographic level. This has a direct effect on key conservation strategies for wildcats (i.e., control of domestic cats).  相似文献   

5.
Human-mediated global change will probably increase the rates of natural hybridization and genetic introgression between closely related species, and this will have major implications for conservation of the taxa involved. In this study, we analyse both mitochondrial and nuclear data to characterize ongoing hybridization and genetic introgression between two sympatric sister species of mustelids, the endangered European mink (Mustela lutreola) and the more abundant polecat (M. putorius). A total of 317 European mink, 114 polecats and 15 putative hybrid individuals were collected from different localities in Europe and genotyped with 13 microsatellite nuclear markers. Recently developed Bayesian methods for assigning individuals to populations and identifying admixture proportions were applied to the genetic data. To identify the direction of hybridization, we additionally sequenced mtDNA and Y chromosomes from 78 individuals and 29 males respectively. We found that both hybridization and genetic introgression occurred at low levels (3% and 0.9% respectively) and indicated that hybridization is asymmetric, as only pure polecat males mate with pure European mink females. Furthermore, backcrossing and genetic introgression was detected only from female first-generation (F1) hybrids of European mink to polecats. This latter result implies that Haldane's rule may apply. Our results suggest that hybridization and genetic introgression between the two species should be considered a rather uncommon event. However, the current low densities of European mink might be changing this trend.  相似文献   

6.
The evolution of incompatibilities between eggs and sperm is thought to play important roles in establishing and maintaining reproductive isolation among species of broadcast-spawning marine invertebrates. However, the effectiveness of gametic isolation in initiating the speciation process and/or in limiting the introgression of genes among species at later stages of divergence remains largely unknown. In the present study, we collected DNA sequence data from five loci in four species of Strongylocentrotus sea urchins ( S. droebachiensis , S. pallidus , S. purpuratus , and S. franciscanus ) to test whether the susceptibility of S. droebachiensis eggs to fertilization by heterospecific sperm results in gene flow between species. Despite the potential for introgression, a small but statistically significant signal of introgression was observed only between the youngest pair of sister taxa ( S. pallidus and S. droebachiensis ) that was strongly asymmetrical (from the former into the latter). No significant gene flow was observed for either S. purpuratus or S. franciscanus despite the ability of their sperm to readily fertilize the eggs of S. droebachiensis . Our results demonstrate that asymmetrical gamete compatibilities in strongylocentrotids can give rise to asymmetrical patterns of introgression but suggest that gamete traits alone cannot be responsible for maintaining species integrities. The genetic boundaries between strongylocentrotid urchin species in the northeast Pacific appear to be related to postzygotic isolating mechanisms that scale with divergence times and not intrinsic gametic incompatibilities per se .  相似文献   

7.
Genetic structure and species relationships were studied in three closely related mosquito species, Anopheles dirus A, C and D in Thailand using 11 microsatellite loci and compared with previous mitochondrial DNA (mtDNA) data on the same populations. All three species were well differentiated from each other at the microsatellite loci. Given the almost complete absence of mtDNA differentiation between An. dirus A and D, this endorses the previous suggestion of mtDNA introgression between these species. The high degree of differentiation between the northern and southern population of An. dirus C (RST = 0.401), in agreement with mtDNA data, is suggestive of incipient species. The lack of genetic structure indicated by microsatellites in four populations of An. dirus A across northern Thailand also concurs with mtDNA data. However, in An. dirus D a limited but significant level of structure was detected by microsatellites over ~400 km in northern Thailand, whereas the mtDNA detected no population differentiation over a much larger area (>1200 km). There is prior evidence for population expansion in the mtDNA. If this is due to a selective sweep originating in An. dirus D, the microsatellite data may indicate greater barriers to gene flow within An. dirus D than in species A. Alternatively, there may have been historical introgression of mtDNA and subsequent demographic expansion which occurred first in An. dirus D so enabling it to accumulate some population differentiation. In the latter case the lack of migration-drift equilibrium precludes the inference of absolute or relative values of gene flow in An. dirus A and D.  相似文献   

8.
Abstract Orchids of the genus Ophrys (Orchidaceae) are pollinated by male bees and wasps through sexual deception. The Ophrys sphegodes group encompasses several closely related species that differ slightly in floral morphology and are pollinated by different solitary bee species. Populations representing different species of the O. sphegodes group often flower simultaneously in sympatry. To test whether gene flow across the species boundaries occurs in these sympatric populations, or whether they are reproductively isolated, we examined the distribution of genetic variation within and among populations and species of this group. We collected at each of five different localities in southern France and Italy two sympatric, co-flowering Ophrys populations, representing six Ophrys species in total. The six microsatellite loci surveyed were highly variable. Genetic differentiation among geographically distant populations of the same species was lower than differentiation among sympatric populations of different species. However, the strength of genetic differentiation among species was among the lowest reported for orchids. Genotype assignment tests and marker-based estimates of gene flow revealed that gene flow across species boundaries occurred and may account for the low observed differentiation among species. These results suggest that sexual deceit pollination in Ophrys may be less specific than thought, or that rare mistakes occur.  相似文献   

9.
C Cunha  I Doadrio  J Abrantes  M M Coelho 《Heredity》2011,106(1):100-112
Understanding the population structure, population dynamics and processes that give rise to polyploidy and helps to maintain it is central to our knowledge of the evolution of asexual vertebrates. Previous studies revealed high genetic diversity and several reproductive pathways in the southern populations of the Squalius alburnoides hybrid complex. In contrast, lower genetic variability and the associated limited chance of introducing new genetic combinations may threaten the survival of the northern Mondego populations. We analysed the genetic diversity and structure of nine populations of S. alburnoides in the Iberian Peninsula using microsatellite loci to provide further insights on the evolutionary history of this complex. Special attention was given to the less-studied northern populations (Mondego and Douro basins). Marked population structure, a high frequency of private alleles and a high diversity of some biotypes in the Douro basin indicate that some northern populations may not be at high risk of extinction, contrary to what was expected. The genetic diversity found in the northern Douro populations contradicts the general trend of remarkable genetic impoverishment northwards that occurs in other species and regions. The results indicate the possible existence of a glacial refugium in the Rabaçal River, corroborating findings in other species of this region. Historical events seem to have affected the geographical patterns of genetic variability found among and within the northern and southern populations of this complex and contributed to different patterns of genome composition. Therefore, historical events might have a major role in the long-term persistence of some polyploid hybrid taxa.  相似文献   

10.
Field DL  Ayre DJ  Whelan RJ  Young AG 《Heredity》2011,106(5):841-853
The patterns of hybridization and asymmetrical gene flow among species are important for understanding the processes that maintain distinct species. We examined the potential for asymmetrical gene flow in sympatric populations of Eucalyptus aggregata and Eucalyptus rubida, both long-lived trees of southern Australia. A total of 421 adults from three hybrid zones were genotyped with six microsatellite markers. We used genealogical assignments, admixture analysis and analyses of spatial genetic structure and spatial distribution of individuals, to assess patterns of interspecific gene flow within populations. A high number of admixed individuals were detected (13.9–40% of individuals), with hybrid populations consisting of F1 and F2 hybrids and backcrosses in both parental directions. Across the three sites, admixture proportions were skewed towards the E. aggregata genetic cluster (x=0.56–0.65), indicating that backcrossing towards E. aggregata is more frequent. Estimates of long-term migration rates also indicate asymmetric gene flow, with higher migration rates from E. aggregata to hybrids compared with E. rubida. Taken together, these results indicate a greater genetic input from E. aggregata into the hybrid populations. This asymmetry probably reflects differences in style lengths (E. rubida: ∼7 mm, E. aggregata: ∼4 mm), which can prevent pollen tubes of smaller-flowered species from fertilizing larger-flowered species. However, analyses of fine-scale genetic structure suggest that localized seed dispersal (<40 m) and greater clustering between hybrid and E. aggregata individuals may also contribute to directional gene flow. Our study highlights that floral traits and the spatial distributions of individuals can be useful predictors of the directionality of interspecific gene flow in plant populations.  相似文献   

11.
Hybrid zones provide biologists with the opportunity to examine genetic and ecological interactions between differentiated populations. Accurate identification of hybrid genealogies is considered a necessary prerequisite to understanding observed patterns of hybridization-related phenomena. We analysed molecular and morphological data from individuals in a hybrid zone between two species of willows (Salix sericea Marshall and S. eriocephala Michaux) and report the use of randomly amplified polymorphic DNA (RAPD), chloroplast DNA (cpDNA), and ribosomal DNA (rDNA) markers, as well as vegetative morphology and foliar chemistry data to identify individuals in terms of hybrid genealogy and to infer the direction and extent of backcrossing and introgression within the hybrid zone. A novel version of a maximum likelihood estimate approach (developed for this study) was used to calculate hybrid index scores from RAPD marker data; this method produced results similar to those obtained using traditional arithmetic methods. Distribution of rDNA, cpDNA, and chemistry data were examined within the graphical context of RAPD-based hybrid index score histograms and principal component analyses (PCA) on RAPD and morphology data. Seven of the 21 plants classified as S. eriocephala in the field were possible introgressants. Another plant presented an unequivocal example of backcrossed S. sericea chemistry and RAPD markers. Inter- and intraspecific chloroplast diversity found within the hybrid zone suggests both historic introgression (perhaps in a glacial refugium), and contemporary hybridization. Patterns of inheritance and expression within the hybrid zone suggest that morphological characters are often not expressed in a simple additive fashion, and problems associated with both morphological and molecular data are considered.  相似文献   

12.
We investigated temporal changes in hybridization and introgression between native red deer (Cervus elaphus) and invasive Japanese sika (Cervus nippon) on the Kintyre Peninsula, Scotland, over 15 years, through analysis of 1513 samples of deer at 20 microsatellite loci and a mtDNA marker. We found no evidence that either the proportion of recent hybrids, or the levels of introgression had changed over the study period. Nevertheless, in one population where the two species have been in contact since ~1970, 44% of individuals sampled during the study were hybrids. This suggests that hybridization between these species can proceed fairly rapidly. By analysing the number of alleles that have introgressed from polymorphic red deer into the genetically homogenous sika population, we reconstructed the haplotypes of red deer alleles introduced by backcrossing. Five separate hybridization events could account for all the recently hybridized sika‐like individuals found across a large section of the Peninsula. Although we demonstrate that low rates of F1 hybridization can lead to substantial introgression, the progress of hybridization and introgression appears to be unpredictable over the short timescales.  相似文献   

13.
Mangrove plants comprise plants with similar ecological features that have enabled them to adapt to life between the sea and the land. Within a geographic region, different mangrove species share not only similar adaptations but also similar genetic structure patterns. Along the eastern coast of South America, there is a subdivision between the populations north and south of the continent's northeastern extremity. Here, we aimed to test for this north‐south genetic structure in Rhizophora mangle, a dominant mangrove plant in the Western Hemisphere. Additionally, we aimed to study the relationships between R. mangle, R. racemosa, and R. × harrisonii and to test for evidence of hybridization and introgression. Our results confirmed the north‐south genetic structure pattern in R. mangle and revealed a less abrupt genetic break in the northern population than those observed in Avicennia species, another dominant and widespread mangrove genus in the Western Hemisphere. These results are consistent with the role of oceanic currents influencing sea‐dispersed plants and differences between Avicennia and Rhizophora propagules in longevity and establishment time. We also observed that introgression and hybridization are relevant biological processes in the northeastern coast of South America and that they are likely asymmetric toward R. mangle, suggesting that adaptation might be a process maintaining this hybrid zone.  相似文献   

14.
We examined six allozyme markers and shell morphology to study gene flow between the naturally sympatric freshwater snail species Viviparus ater and V. contectus in Lake Garda, Italy, using offspring from experimental crosses and snails collected from natural populations. Hybrid offspring obtained from experimental crosses and hybrids collected from natural populations were heterozygous at four or five out of five diagnostic loci. Shell morphology was a poor predictor of the hybrid status of individual snails. Backcrossed offspring from experimentally bred hybrids and either of the parental species morphologically resembled the parental species. There was no evidence of segregation distortion at the six loci. Linkage analysis revealed one pair of linked loci (GPI and PNP). These cross experiments indicated a Mendelian type hybrid system in which gene introgression may occur. F1 hybrids were found at four out of six sampling sites of Lake Garda, Italy. Local frequencies of F1 hybrids ranged from 0% to 1.6% (estimated average = 0.74%) of the total population including both species. Alleles typical of V. ater were found at low frequencies in V. contectus at all six sampling sites. Alleles typical of V. contectus were found at low frequencies in V. ater at three out of six sampling sites. This is consistent with the hypothesis of introgression in both directions.  相似文献   

15.
The relative roles of gene flow and natural selection in maintaining species differentiation have been a subject of debate for some time. The traditional view is that gene flow constrains adaptive divergence and maintains species cohesiveness. Alternatively, ecological speciation posits that the reverse is true: that adaptive ecological differentiation constrains gene flow. In this study, we examine gene flow and population differentiation among populations of two species of the Hawaiian silversword alliance, Dubautia arborea and D. ciliolata. We compare divergence in putatively neutral microsatellite markers with divergence in leaf morphometric traits, which may be selectively important or physiologically linked to selectively important traits. Gene flow between populations was found to be significant in only one of the two species, D. arborea. Leaf morphometric differentiation between species was significant, though not among populations within species. No evidence of effective genetic introgression was observed between apparently 'pure' populations of these species. Gene flow as measured by microsatellites was not correlated with geographic distance between populations, but was correlated with the linear placement of the widest part of the leaf. Because these two species are interfertile, as demonstrated by the presence of active hybrid zone, the lack of genetic introgression and the maintenance of species boundaries may be associated with natural selection on differential habitat.  相似文献   

16.
Three-spined sticklebacks (Gasterosteus aculeatus) are a powerful evolutionary model system due to the rapid and repeated phenotypic divergence of freshwater forms from a marine ancestor throughout the Northern Hemisphere. Many of these recently derived populations are found in overlapping habitats, yet are reproductively isolated from each other. This scenario provides excellent opportunities to investigate the mechanisms driving speciation in natural populations. Genetically distinguishing between such recently derived species, however, can create difficulties in exploring the ecological and genetic factors defining species boundaries, an essential component to our understanding of speciation. We overcame these limitations and increased the power of analyses by selecting highly discriminatory markers from the battery of genetic markers now available. Using species diagnostic molecular profiles, we quantified levels of hybridization and introgression within three sympatric species pairs of three-spined stickleback. Sticklebacks within Priest and Paxton lakes exhibit a low level of natural hybridization and provide support for the role of reinforcement in maintaining distinct species in sympatry. In contrast, our study provides further evidence for a continued breakdown of the Enos Lake species pair into a hybrid swarm, with biased introgression of the 'limnetic' species into that of the 'benthic'; a situation that highlights the delicate balance between persistence and breakdown of reproductive barriers between young species. A similar strategy utilizing the stickleback microsatellite resource can also be applied to answer an array of biological questions in other species' pair systems in this geographically widespread and phenotypically diverse model organism.  相似文献   

17.
Introgressive hybridization is an important evolutionary process and new analytical methods provide substantial power to detect and quantify it. In this study we use variation in the frequency of 657 AFLP fragments and DNA sequence variation from 15 genes to measure the extent of admixture and the direction of interspecific gene flow among three Heliconius butterfly species that diverged recently as a result of natural selection for Miillerian mimicry, and which continue to hybridize. Bayesian clustering based on AFLP genotypes correctly delineated the three species and identified four H. cydno, three H. pachinus, and three H. melpomene individuals that were of mixed ancestry. Gene genealogies revealed substantial shared DNA sequence variation among all three species and coalescent simulations based on the Isolation with Migration (IM) model pointed to interspecific gene flow as its cause. The IM simulations further indicated that interspecific gene flow was significantly asymmetrical, with greater gene flow from H. pachinus into H. cydno (2Nm = 4.326) than the reverse (2Nm = 0.502), and unidirectional gene flow from H. cydno and H. pachinus into H. melpomene (2Nm = 0.294 and 0.252, respectively). These asymmetries are in the directions expected based on the genetics of wing patterning and the probability that hybrids of various phenotypes will survive and reproduce in different mimetic environments. This empirical demonstration of extensive interspecific gene flow is in contrast to a previous study which found little evidence of gene flow between another pair of hybridizing Heliconius species, H. himera and H. erato, and it highlights the critical role of natural selection in maintaining species diversity. Furthermore, these results lend support to the hypotheses that phenotypic diversification in the genus Heliconius has been fueled by introgressive hybridization and that reinforcement has driven the evolution of assortative mate preferences.  相似文献   

18.
The Corsican swallowtail butterfly, Papilio hospiton , is endemic to Corsica and Sardinia (France and Italy) and included in the list of endangered species by the Washington Convention, It is spread all over Corsica in scattered populations linked to diverse habitats. A study by enzyme electrophoresis showed that the genetic diversity of the species is of the same order of magnitude as that of Papilio machaon from continental France and Corsica. The differentiation between populations is rather low, which is consistent with the high vagility of the adults. Natural hybridization between P. hospiton and P. machaon is frequent, and laboratory crosses show that the hybrids are not sterile. However, developmental perturbations impair the viability of further hybrid progenies. Although limited introgression between the two species is likely to take place, enzyme electrophoresis and PCR-RFLP analysis of mitochondrial DNA show that their gene pools remain distincfTtienetic assimilation by P. machaon therefore does not seem to be a threat for P. hospiton.  相似文献   

19.
The renewed interest in the use of hybrid zones for studying speciation calls for the identification and study of hybrid zones across a wide range of organisms, especially in long-lived taxa for which it is often difficult to generate interpopulation variation through controlled crosses. Here, we report on the extent and direction of introgression between two members of the "model tree" genus Populus: Populus alba (white poplar) and Populus tremula (European aspen), across a large zone of sympatry located in the Danube valley. We genotyped 93 hybrid morphotypes and samples from four parental reference populations from within and outside the zone of sympatry for a genome-wide set of 20 nuclear microsatellites and eight plastid DNA restriction site polymorphisms. Our results indicate that introgression occurs preferentially from P. tremula to P. alba via P. tremula pollen. This unidirectional pattern is facilitated by high levels of pollen vs. seed dispersal in P. tremula (pollen/seed flow = 23.9) and by great ecological opportunity in the lowland floodplain forest in proximity to P. alba seed parents, which maintains gene flow in the direction of P. alba despite smaller effective population sizes (N(e)) in this species (P. alba N(e)c. 500-550; P. tremula N(e)c. 550-700). Our results indicate that hybrid zones will be valuable tools for studying the genetic architecture of the barrier to gene flow between these two ecologically divergent Populus species.  相似文献   

20.
The role of the Y chromosome in speciation is unclear. Hybrid zones provide natural arenas for studying speciation, as differential introgression of markers may reveal selection acting against incompatibilities. Two subspecies of the European rabbit (Oryctolagus cuniculus) form a hybrid zone in the Iberian Peninsula. Previous work on mitochondrial DNA (mtDNA), Y- and X-linked loci revealed the existence of two divergent lineages in the rabbit genome and that these lineages are largely subspecies-specific for mtDNA and two X-linked loci. Here we investigated the geographic distribution of the two Y chromosome lineages by genotyping two diagnostic single nucleotide polymorphisms in a sample of 353 male rabbits representing both subspecies, and found that Y chromosome lineages are also largely subspecies-specific. We then sequenced three autosomal loci and discovered considerable variation in levels of differentiation at these loci. Finally, we compared estimates of population differentiation between rabbit subspecies at 26 markers and found a surprising bimodal distribution of F(ST)values. The vast majority of loci showed little or no differentiation between rabbit subspecies while a few loci, including the SRY gene, showed little or no introgression across the hybrid zone. Estimates of population differentiation for the Y chromosome were surprisingly high given that there is male-biased dispersal in rabbits. Taken together, these data indicate that there is a clear dichotomy in the rabbit genome and that some loci remain highly differentiated despite extensive gene flow following secondary contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号