首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maternally transmitted endosymbionts of the genus Spiroplasma infecting several species of Drosophila are known to cause selective death of male offspring (male killing). The male-killing trait is considered to be advantageous for maternally transmitted endosymbionts. However, a non-male-killing spiroplasma is present in Japanese populations of Drosophila hydei at high frequencies (23-66%). This spiroplasma is phylogenetically closely related to the male-killing spiroplasma infecting other Drosophila species. It is unknown why this spiroplasma is maintained in its host populations despite its inability to cause male killing. We examined the susceptibilities of the spiroplasma in D. hydei to four different temperatures (28, 25, 18, and 15 degrees C). Diagnostic PCR revealed that vertical transmission of the spiroplasma was nearly perfect at 28 and 25 degrees C, partially suppressed at 18 degrees C, and completely blocked at 15 degrees C. Furthermore, quantitative PCR demonstrated that offspring treated at 18 degrees C exhibited dramatically lower densities of spiroplasma (i.e., approximately one-tenth) compared to offspring treated at 28 and 25 degrees C. Considering the low temperatures during winter in Japan, some unknown advantageous effects of the spiroplasma that compensate for the failure of vertical transmission are suggested to act in natural populations of D. hydei.  相似文献   

2.
We investigated the vertical transmission, reproductive phenotype, and infection density of a male-killing Spiroplasma symbiont in two Drosophila species under physiological high and low temperatures through successive host generations. In both the native host Drosophila nebulosa and the nonnative host Drosophila melanogaster, the symbiont infection and the male-killing phenotype were stably maintained at 25 degrees C, rapidly lost at 18 degrees C, and gradually lost at 28 degrees C. In the nonnative host, both the high and low temperatures significantly suppressed the infection density of the spiroplasma. In the native host, by contrast, the low temperature suppressed the infection density of the spiroplasma whereas the high temperature had little effect on the infection density. These results suggested that the low temperature suppresses both the infection density and the vertical transmission of the spiroplasma whereas the high temperature suppresses the vertical transmission preferentially. The spiroplasma density was consistently higher in the native host than in the nonnative host, suggesting that the host genotype may affect the infection density of the symbiont. The temperature- and genotype-dependent instability of the symbiont infection highlights a complex genotype-by-genotype-by-environment interaction and may be relevant to the low infection frequencies of the male-killing spiroplasmas in natural Drosophila populations.  相似文献   

3.
Environmental factors can affect transmission or phenotype expression of selfish cytoplasmic endosymbionts such as embryonic male killers. Temperature is one factor that usually affects the transmission rate of selfish cytoplasmic endosymbionts. Heat cures have been described for several host-parasite systems, cold cures, however, are rare. We report a temperature cure of the Drosophila melanogaster male-killing agent, which occurs when flies are raised at 16.5 degrees C. Flies grown at 20, 24, and 28 degrees C maintained an extremely female biased sexual proportion.  相似文献   

4.
Cross-generational effects refer to nongenetic influences of the parental phenotype or environment on offspring phenotypes. Such effects are commonly observed, but their adaptive significance is largely unresolved. We examined cross-generational effects of parental temperature on offspring fitness (estimated via a serial-transfer assay) at different temperatures in a laboratory population of Drosophila melanogaster. Parents were reared at 18 degrees C, 25 degrees C, or 29 degrees C (Tpar) and then their offspring were reared at 18 degrees C, 25 degrees C, or 29 degrees C (Toff) to evaluate several competing hypotheses (including an adaptive one) involving interaction effects of parental and offspring temperature on offspring fitness. The results clearly show that hotter parents are better; in other words, the higher the temperature of the parents, the higher the fitness of their offspring, independent of offspring thermal environment. These data contradict the adaptive cross-generational hypothesis, which proposes that offspring fitness is maximal when the offspring thermal regime matches the parental one. Flies with hot parents have high fitness seemingly because their own offspring develop relatively quickly, not because they have higher fecundity early in life.  相似文献   

5.
When parental Drosophila melanogaster were chronically exposed at 28 degrees C or 24 degrees C to ethanol during their larval and pupal stages of development, their progeny, produced when parents were 5-16-day-old adults, showed modified expression of vestigial alleles in heterozygous and homozygous combinations. Parental alcohol effects were dependent on parental rearing temperature. We conclude that parental environment (alcohol, temperature) causes heritable but transitory changes in progeny phenotype that are elicited by exposure of germ cells to alcohol.  相似文献   

6.
The S character of Drosophila simulans, the absence or malformation or both of bristles and other cuticular structures, was described by Comendador (Drosophila Inf. Serv. 55:26-28, 1980). Its characteristics (maternal transmission, low pathogenicity, and sensitivity to temperature) suggested the existence of a virus as the causative agent. Indeed, reoviruslike particles were found in subcuticular cells of S individuals, and its association with S phenotypic expression was shown. This virus was called Drosophila S virus (DSV) (C. Louis, M. López-Ferber, N. Plus, G. Kuhl, and S. Baker, J. Virol. 62:1266-1270, 1988). We report here the purification and analysis of some properties of DSV particles, the morphology (spherical, 60 nm in diameter with an electron dense central core and less dense shell) and genome composition (double-stranded RNA divided into segments), which classify DSV as a new member of the family Reoviridae.  相似文献   

7.
8.
Isometric reolike virions were found in all the examined Drosophila simulans flies from two strains (SimES-st and Israel-st) presenting the S phenotype, a maternally inherited morphological trait (abnormalities of bristles). Normal flies of both strains appeared virus-free. Virions were found in the cytoplasm of male and female gonads and epidermal cells, including the bristle-forming cells, which appeared disorganized. Steps of virogenesis were described. A positive correlation was demonstrated between expressivity of the S phenotype and degree of viral infection. This hereditary reolike virus seems to be responsible for the S character of D. simulans and was named DSV (Drosophila S virus).  相似文献   

9.
In the temperature sensitive mutant of Drosophila, shibirets1 (shi), synaptic transmission in the dorsal longitudinal flight muscles (DLM) is normal at 19 degrees C, but is diminished progressively as the temperature is raised, and is blocked at 29 degrees C. The purpose of this paper is to determine whether this defect is located presynaptically, postsynaptically, or both. It is demonstrated here that the postsynaptic sensitivity to L-glutamate, the putative transmitter for this synapse, is not decreased at 29 degrees C. Furthermore, studies conducted with genetic mosaics of this mutant show that transmission is blocked when a mutant motor neuron synapses on a wild-type muscle fiber, but is not blocked when a wild-type motor neuron synapses on a mutant muscle fiber. Thus, the shi phenotype (temperature dependent transmission block) correlates with a shi motor neuron, not with a shi muscle fiber. The data, therefore, suggest that the defect is not postsynaptic, but presynaptic.  相似文献   

10.
The effects of environmental factors and exudates from the amphipod Corophium volutator on the emergence of Maritrema subdolum cercariae (Digenea: Microphallidae) from the snail Hydrobia ulvae were investigated in the laboratory. Increasing the temperature (15 to 25 degrees C) caused an overall 11-fold increase in emergence rate under varying salinities (24 to 36 per thousand). The effect of salinity depended on the experimental temperature. Emergence increased with increasing salinity at higher temperatures, but decreased with increasing salinity at 15 degrees C.Whereas the different levels of salinity had no effect, increasing the temperature significantly reduced the life span of cercariae. In comparison with complete darkness, light caused a two-fold increase in emergence, whereas an increment of the water pressure from 1.0 to 1.3 ATM (corresponding to 0 and 3 m of depth) left the shedding rate unaffected. Unidentified exudates from the second intermediate host, C. volutator, significantly depressed the cercarial emergence rate. The main transmission window of M. subdolum seems to occur during low water in tidal pools where light levels are high and solar radiation rapidly elevates the water temperature, as well as salinity through evaporation. The consequence of such a transmission strategy is discussed in relation to the impact of M. subdolum on the population dynamics of the second intermediate host.  相似文献   

11.
Most hypotheses that have been put forward in order to explain the persistence of environmental sex determination (ESD) in reptiles assume a relatively fixed association of sex with temperature-induced phenotype and no maternal influence on offspring sex. Here we demonstrate the association of maternally derived yolk hormone levels with the offspring sex ratio and describe two new aspects of temperature-dependent sex determination (TSD), i.e. seasonal variation in both thermal response and yolk steroid levels. Eggs from painted turtles (Chrysemys picta) were incubated at 28 degrees C. The hatchling sex ratio at 28 degrees C (i.e. the phenotypic reaction norm for sex at 28 degrees C) shifted seasonally from ca. 72% male to ca. 76% female. Yolk oestradiol (E2) increased seasonally while testosterone (T) decreased. The proportion of males in a clutch decreased as E2 levels increased and the E2:T ratio increased. These new findings are discussed in relation to heritability and adaptive explanations for the persistence of ESD in reptiles. Maternally derived yolk hormones may provide a mechanism for the seasonal shift in the sex ratio which in turn may help explain the persistence of ESD in reptiles. They may also explain those clutches of other reptiles with TSD that fail to yield only males at maximally masculinizing conditions.  相似文献   

12.
Cytoplasmic 19 S particles were isolated from postpolysomal supernatants of 25 degrees C Drosophila embryos and culture cells. The particles were purified by salt extraction and sucrose gradient centrifugation. Electron microscopic investigation showed that the 19 S particles possess a ring-shaped morphology with an outer diameter of 12 nm and a hollow core of 3 nm. Biochemically the particles are characterized by a group of 16 polypeptides within the molecular weight range of 35 to 23 kDa, and small RNA molecules in the size range of 200 to 60 nucleotides. The RNP character of the particles is also shown by their buoyant density in Cs2SO4 of rho = 1.29 g/cm3 and their susceptibility to uv crosslinking and density in CsCl of rho = 1.38 g/cm3. Antibodies were raised against the proteins of the 19 S particles isolated from 25 degrees C cells and tested by immunoblotting after one- and two-dimensional gel-electrophoresis. Two of the antibodies raised cross react with the small heat-shock proteins hsp 28/27 and hsp 23. Comparative protease V8 cleavage of hsp 23 and the 23-kDa particle protein demonstrates that these two proteins are identical and that the small hsp of Drosophila must be a genuine part of the 19 S cytoplasmic ring-shaped complexes at normal growth temperature. The data support the idea of a general developmental role of some of the so-called heat-shock proteins.  相似文献   

13.
Jiang H  Dian W  Wu P 《Phytochemistry》2003,63(1):53-59
Rice (Oryza sativa L.) grain quality is affected by the environmental temperature it experiences. To investigate the physiological molecular mechanisms of the effect of high temperatures on rice grain, a non-waxy indica rice was grown under two temperature conditions, (29/35 degrees C) and (22/28 degrees C), during the ripening stage in two phytotrons. The activities and gene expression of key enzymes for the biosynthesis of amylose and amylopectin were examined. The activity and expression levels of soluble endosperm starch synthase I were higher at 29/35 degrees C than that at 22/28 degrees C. In contrast, the activities and expression levels of the rice branching enzyme1, the branching enzyme3 and the granule bound starch synthase of the endosperm were lower at 29/35 degrees C than those at 22/28 degrees C. These results suggest that the decreased activity of starch branching enzyme reduces the branching frequency of the branches of amylopectin, which results in the increased amount of long chains of amylopectin of endosperm in rice grain at high temperature.  相似文献   

14.
Change in division capability as a phenotypic expression of cellular transformation was investigated by using one of the temperature-sensitive (ts) mutants of the polyoma virus-transformed cell line, the 121-6-5 cells of BALB/3T3. When contact -inhibited cells were treated with hyaluronidase at 39 degrees C, a single round of cell division was induced after which cell growth was inhibited by cell density. However, if the cells were incubated at 35 degrees C, after the enzyme treatment, density-inhibition block disappeared and the cells entered a second division. This indicates that the release of cells from density-inhibition depends on the low temperature incubation. The ability of cells to complete a second division was examined by shifting the cells from 39 degrees C to 35 degrees C during different phases of the first division cycle after the enzyme-treatment. A 6-hour incubation of S phase cells at 35 degrees C resulted in a second cycle of division, while the 24-hour incubation of G1 cells at 35 degrees C did not induce a second round of division. These results suggest that expression of the transformed phenotype in 121-6-5 cells is clearly dependent upon both the temperature and the phase of the division cycle.  相似文献   

15.
Non-Mendelian Inheritance of "Heat-Sensitivity" in DROSOPHILA MELANOGASTER   总被引:1,自引:1,他引:0  
Stephanou G  Alahiotis SN 《Genetics》1983,103(1):93-107
Non-Mendelian inheritance was revealed for the "heat-sensitivity" character of the poikilothermic insect Drosophila melanogaster. Genetic analyses were performed on heat-sensitive (S, S(1)) strains, derived through indirect selection, and on stocks constructed through extensive chromosomal and cytoplasmic substitutions between strains obtained from two replicate cage populations. The populations were kept for about 7 years under different temperatures (14 degrees -25 degrees ) and exhibited different survival. We conclude that the character studied is quantitative, responds to selection pressure and is transmitted through the maternal cytoplasm, while nuclear genes modify its expression.  相似文献   

16.
Global warming may affect the future pattern of many arthropod-borne diseases, yet the relationship between temperature and development has been poorly described for many key vectors. Here the development of the aquatic stages of Africa's principal malaria vector, Anopheles gambiae s.s. Giles, is described at different temperatures. Development time from egg to adult was measured under laboratory conditions at constant temperatures between 10 and 40 degrees C. Rate of development from one immature stage to the next increased at higher temperatures to a peak around 28 degrees C and then declined. Adult development rate was greatest between 28 and 32 degrees C, although adult emergence was highest between 22 and 26 degrees C. No adults emerged below 18 degrees C or above 34 degrees C. Non-linear models were used to describe the relationship between developmental rate and temperature, which could be used for developing process-based models of malaria transmission. The utility of these findings is demonstrated by showing that a map where the climate is suitable for the development of aquatic stages of A. gambiae s.s. corresponded closely with the best map of malaria risk currently available for Africa.  相似文献   

17.
The effects of temperature and humidity on the emergence patterns of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), were studied at four temperatures (20, 25, 28, and 33 degrees C),three relative humidities (50, 70, and 90%) and a photoperiod of 14:10 (L:D) h. Both sexes emerged primarily in the late afternoon to early morning, and the peaks of emergence varied depending on temperature and humidity. Females emerged significantly earlier than males. Incubation at 33 degrees C and 90% RH had a significant effect on the emergence rate, but no significant interaction was found between temperature and humidity. Emergence duration was 25.3 h for both sexes at 90% RH, with emergence duration at 33 degrees C lower than the other treatments. The sex ratios of diamondback moth under different temperature and humidity treatments were approximately 1:1, and there were no significant effects of temperature and humidity or interactions between these two factors.  相似文献   

18.
When Telenomus nawai Ashmead or Trichogramma ostriniae Pang & Chen (Hymenoptera: Trichogrammatidae) was inoculated into intact egg masses of Spodoptera litura (Fabricius) that were covered with a scale-hair layer, T. nawai emerged from 76% of the eggs, while emergence of T. ostriniae was from only 3% of the eggs. When the hair layer was removed before inoculation, the rate by the latter increased to 21%. These observations confirmed that the hair layer effectively protects S. litura egg masses from attack by T. ostriniae, and that T. nawai parasitism is more effective. In order to assess the feasibility of T. nawai as a biological control agent for S. litura, parasitism rate, development time and adult longevity were examined in the laboratory. Emergence of T. nawai was observed in more than 95% of 0- and 1-day-old separated eggs of S. litura, but the rate decreased to 60% and 0% for 2- and 3-day-old eggs, respectively. The emergence rates of T. nawai were near 95% for temperatures in a range from 25 degrees C to 35 degrees C, but decreased to 80% at 20 degrees C. No parasitoids emerged at 15 degrees C. The developmental periods decreased as temperature increased from 20 degrees C to 35 degrees C. The developmental threshold occurred at 13.7 degrees C and 13.9 degrees C, and the effective accumulative temperatures from egg to adult emergence were 149.3 and 147.1 degree-days for females and males, respectively. Mean longevity of the adult females decreased with increasing temperature; 87.0 days at 15 degrees C and 9.5 days at 35 degrees C. The feasibility of the use of T. nawai for controlling S. litura is discussed.  相似文献   

19.
Marine bivalves harbour a diversity of trematode parasites affecting population and community dynamics of their hosts. Although ecologically and economically important, factors influencing transmission between first (snail) and second (bivalve) intermediate hosts have rarely been studied in marine systems. In laboratory experiments, the effect of temperature (10, 15, 20, 25 degrees C) was investigated on (1) emergence from snails, (2) survival outside hosts and (3) infectivity in second intermediate hosts of cercariae of the trematode Renicola roscovita (Digenea: Renicolidae), a major parasite in North Sea bivalves. Emergence of cercariae peaked at 20 degrees C (2609 +/- 478 cercariae snail(-1) 120 h(-1)) and was considerably lower at 10 degrees C (80 +/- 79), 15 degrees C (747 +/- 384) and 25 degrees C (1141 +/- 334). Survival time decreased with increasing temperature, resulting in 50% mortality of the cercariae after 32.8 +/- 0.6 h (10 degrees C), 26.8 +/- 0.8 h (15 degrees C), 20.2 +/- 0.5 h (20 degrees C) and 16.6 +/- 0.3 h (25 degrees C ). Infectivity of R. roscovita cercariae in cockles Cerastoderma edule increased with increasing temperature and was highest at 25 degrees C (42.6 +/- 3.9%). However, mesocosm experiments with infected snails and cockle hosts in small aquaria, integrating cercarial emergence, survival and infectivity, showed highest infection of cockles at 20 degrees C (415 +/- 115 metacercariae host(-1)), indicating 20 degrees C to be the optimum temperature for transmission of this species. A field experiment showed metacercariae of R. roscovita to appear in C. edule with rising water temperature in April; highest infection rates were in August, when the water temperature reached 20 degrees C. Since another trematode species (Himasthla elongata; Digenea: Echinostomatidae) occurring at the experimental site showed a similar temporal pattern, trematode transmission to second intermediate bivalve hosts may peak during especially warm (> or = 20 degrees C) summers in the variable climate regime of the North Sea.  相似文献   

20.
Transmission of parasites to new hosts crucially depends on the timing of production of transmission stages and their capacity to start an infection. These parameters may be influenced by genetic factors, but also by the environment. We tested the effects of temperature and host genotype on infection probability and latency in experimental populations of the ciliate Paramecium caudatum, after exposure to infectious forms of its bacterial parasite Holospora undulata. Temperature had a significant effect on the expression of genetic variation for transmission and maintenance of infection. Overall, low temperature (10 degrees C) increased levels of (multiple) infection, but arrested parasite development; higher temperatures (23 and 30 degrees C) accelerated the onset of production of infectious forms, but limited transmission success. Viability of infectious forms declined rapidly at 23 and 30 degrees C, thereby narrowing the time window for transmission. Thus, environmental conditions can generate trade-offs between transmission relevant parameters and alter levels of multiple infection or parasite-mediated selection, which may affect evolutionary trajectories of parasite life history or virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号