共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct quantitative measurement of muscle forces is not possible. Forces in the trunk muscles were estimated for standing and flexion of the upper body using three-dimensional, nonlinear finite element models of the lumbar spine with and without an internal spinal fixation device. Muscle forces assumed were two pairs dorsally and one ventrally, each representing several muscles. Muscle forces in the model with internal fixators were varied in discrete steps until the implant loads calculated closely corresponded to those measured in a patient with an instrumented implant. The calculated angles between adjacent lumbar vertebrae were compared with corresponding values measured on X-ray films of a patient as well as with literature values and served as a second criterion for predicting muscle forces. For the model without an implant, the muscle forces of the first model were slightly varied until the lumbar spine shape and the intradiscal pressure were physiological. The abdomen was shown to have a considerable supporting function for flexion. 相似文献
2.
Experimental flexion/extension data corridors for validation of finite element models of the young, normal cervical spine 总被引:6,自引:0,他引:6
Finite element (FE) modeling is an important tool for studying the cervical spine in normal, injured and diseased conditions. To understand the role of mechanical changes on the spine as it goes from a normal to a diseased or injured state, experimental studies are needed to establish the external response of young, normal cervical spinal segments compared to injured or degenerated cervical spinal segments under physiologic loading. It is important to differentiate injured or degenerated specimens from young, normal specimens to provide accurate experimental results necessary for the validation of FE models. This study used seven young, normal fresh adult cadaver cervical spine segments C2-T1 ranging in age from 20 to 51 years. Prior to testing, the spines were graded in three ways: specimen quality, facet degeneration and disc degeneration. Spine segments were tested in flexion/extension, and the range of loads applied to the specimens was 0.33, 0.5, 1.0, 1.5 and 2.0 Nm. These loads resulted in rotations in the direction of loading as the primary response to loading. In general, results for young, normal specimens showed greater flexibility in flexion and less flexibility in extension than results previously reported in the literature. The flexion/extension curves are asymmetric with a greater magnitude in flexion than in extension. These experimental results will be used to validate FE models of young, normal cervical spines. 相似文献
3.
The biomechanical properties of the ligamentous cadaver spine have been previously examined using a variety of experimental testing protocols. Ongoing technical challenges in the biomechanical testing of the spine include the application of physiologic compressive loads and the application of dynamic bending moments while allowing unconstrained three-dimensional motion. The purpose of this study was to report the development of a novel pendulum apparatus that addressed these challenges and to determine the effects of various axial compressive loads on the dynamic biomechanical properties of the lumbar functional spinal unit (FSU). Lumbar FSUs were tested in flexion and extension under five axial compressive loads chosen to represent physiologic loading conditions. After an initial rotation, the FSUs behaved as a dynamic, underdamped vibrating elastic system. Bending stiffness and coefficient of damping increased significantly as the compressive pendulum load increased. The apparatus described herein is a relatively simple approach to determining the dynamic bending properties of the FSU, and potentially disc arthroplasty devices. It is capable of applying physiologic compressive loads at dynamic rates without constraining the kinematics of the joints, crucial requirements for testing FSUs in vitro. 相似文献
4.
Sadegh Naserkhaki Marwan El-Rich 《Computer methods in biomechanics and biomedical engineering》2017,20(5):550-557
The follower load (FL) combined with moments is commonly used to approximate flexed/extended posture of the lumbar spine in absence of muscles in biomechanical studies. There is a lack of consensus as to what magnitudes simulate better the physiological conditions. Considering the in-vivo measured values of the intradiscal pressure (IDP), intervertebral rotations (IVRs) and the disc loads, sensitivity of these spinal responses to different FL and flexion moment magnitudes was investigated using a 3D nonlinear finite element (FE) model of ligamentous lumbosacral spine. Optimal magnitudes of FL and moment that minimize deviation of the model predictions from in-vivo data were determined. Results revealed that the spinal parameters i.e. the IVRs, disc moment, and the increase in disc force and moment from neutral to flexed posture were more sensitive to moment magnitude than FL magnitude in case of flexion. The disc force and IDP were more sensitive to the FL magnitude than moment magnitude. The optimal ranges of FL and flexion moment magnitudes were 900–1100 N and 9.9–11.2 Nm, respectively. The FL magnitude had reverse effect on the IDP and disc force. Thus, magnitude for FL or flexion that minimizes the deviation of all the spinal parameters together from the in-vivo data can vary. To obtain reasonable compromise between the IDP and disc force, our findings recommend that FL of low magnitude must be combined with flexion moment of high intensity and vice versa. 相似文献
5.
Previous in-vivo studies suggest that the ratio of total lumbar rotation over pelvic rotation (lumbo-pelvic rhythm) during trunk sagittal movement is essential to evaluate spinal loads and discriminate between low back pain and asymptomatic population. Similarly, there is also evidence that the lumbo-pelvic rhythm is key for evaluation of realistic muscle and joint reaction forces and moments predicted by various computational musculoskeletal models. This study investigated the effects of three lumbo-pelvic rhythms defined based on in-vivo measurements on the spinal response during moderate forward flexion (60°) using a combined approach of musculoskeletal modeling of the upper body and finite element model of the lumbosacral spine. The muscle forces and joint loads predicted by the musculoskeletal model, together with the gravitational forces, were applied to the finite element model to compute the disc force and moment, intradiscal pressure, annular fibers strain, and load-sharing. The results revealed that a rhythm with high pelvic rotation and low lumbar flexion involves more global muscles and increases the role of the disc in resisting spinal loads, while its counterpart, with low pelvic rotation, recruits more local muscles and engages the ligaments to lower the disc loads. On the other hand, a normal rhythm that has balanced pelvic and lumbar rotations yields almost equal disc and ligament load-sharing and results in more balanced synergy between global and local muscles. The lumbo-pelvic rhythm has less effect on the intradiscal pressure and annular fibers strain. This work demonstrated that the spinal response during forward flexion is highly dependent on the lumbo-pelvic rhythm. It is therefore, essential to adapt this parameter instead of using the default values in musculoskeletal models for accurate prediction of muscle forces and joint reaction forces and moments. The findings provided by this work are expected to improve knowledge of spinal response during forward flexion, and are clinically relevant towards low back pain treatment and disc injury prevention. 相似文献
6.
Ugur M. Ayturk 《Computer methods in biomechanics and biomedical engineering》2013,16(8):695-705
The primary objective of this study was to generate a finite element model of the human lumbar spine (L1–L5), verify mesh convergence for each tissue constituent and perform an extensive validation using both kinematic/kinetic and stress/strain data. Mesh refinement was accomplished via convergence of strain energy density (SED) predictions for each spinal tissue. The converged model was validated based on range of motion, intradiscal pressure, facet force transmission, anterolateral cortical bone strain and anterior longitudinal ligament deformation predictions. Changes in mesh resolution had the biggest impact on SED predictions under axial rotation loading. Nonlinearity of the moment-rotation curves was accurately simulated and the model predictions on the aforementioned parameters were in good agreement with experimental data. The validated and converged model will be utilised to study the effects of degeneration on the lumbar spine biomechanics, as well as to investigate the mechanical underpinning of the contemporary treatment strategies. 相似文献
7.
Ayturk UM Puttlitz CM 《Computer methods in biomechanics and biomedical engineering》2011,14(8):695-705
The primary objective of this study was to generate a finite element model of the human lumbar spine (L1-L5), verify mesh convergence for each tissue constituent and perform an extensive validation using both kinematic/kinetic and stress/strain data. Mesh refinement was accomplished via convergence of strain energy density (SED) predictions for each spinal tissue. The converged model was validated based on range of motion, intradiscal pressure, facet force transmission, anterolateral cortical bone strain and anterior longitudinal ligament deformation predictions. Changes in mesh resolution had the biggest impact on SED predictions under axial rotation loading. Nonlinearity of the moment-rotation curves was accurately simulated and the model predictions on the aforementioned parameters were in good agreement with experimental data. The validated and converged model will be utilised to study the effects of degeneration on the lumbar spine biomechanics, as well as to investigate the mechanical underpinning of the contemporary treatment strategies. 相似文献
8.
Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element 总被引:1,自引:0,他引:1
Shirazi-Adl A 《Journal of biomechanics》2006,39(2):267-275
Axial compression on the spine could reach large values especially in lifting tasks which also involve large rotations. Experimental and numerical investigations on the spinal multi motion segments in presence of physiological compression loads cannot adequately be carried out due to the structural instability and artefact loads. To circumvent these problems, a novel wrapping cable element is used in a nonlinear finite element model of the lumbosacral spine (L1-S1) to investigate the role of moderate to large compression loads on the lumbar stiffness in flexion and axial moments/rotations. The compression loads up to 2,700 N was applied with no instability or artefact loads. The lumbar stiffness substantially increased under compression force, flexion moment, and axial torque when applied alone. The presence of compression preloads significantly stiffened the load-displacement response under flexion and axial moments/rotations. This stiffening effect was much more pronounced under larger preloads and smaller moments/rotations. Compression preloads also increased intradiscal pressure, facet contact forces, and maximum disc fibre strain at different levels. Forces in posterior ligaments were, however, diminished with compression preload. The significant increase in spinal stiffness, hence, should be considered in biomechanical studies for accurate investigation of the load partitioning, system stability, and fixation systems/disc prostheses. 相似文献
9.
Sean M. Finley Darrel S. Brodke Nicholas T. Spina Christine A. DeDen 《Computer methods in biomechanics and biomedical engineering》2018,21(6):444-452
Finite element analysis has proven to be a viable method for assessing many structure-function relationships in the human lumbar spine. Several validated models of the spine have been published, but they typically rely on commercial packages and are difficult to share between labs. The goal of this study is to present the development of the first open-access models of the human lumbar spine in FEBio. This modeling framework currently targets three deficient areas in the field of lumbar spine modeling: 1) open-access models, 2) accessibility for multiple meshing schemes, and 3) options to include advanced hyperelastic and biphasic constitutive models. 相似文献
10.
Zeinali-Davarani S Shirazi-Adl A Dariush B Hemami H Parnianpour M 《Computer methods in biomechanics and biomedical engineering》2011,14(7):645-656
The effects of external resistance on the recruitment of trunk muscles in sagittal movements and the coactivation mechanism to maintain spinal stability were investigated using a simple computational model of iso-resistive spine sagittal movements. Neural excitation of muscles was attained based on inverse dynamics approach along with a stability-based optimisation. The trunk flexion and extension movements between 60° flexion and the upright posture against various resistance levels were simulated. Incorporation of the stability constraint in the optimisation algorithm required higher antagonistic activities for all resistance levels mostly close to the upright position. Extension movements showed higher coactivation with higher resistance, whereas flexion movements demonstrated lower coactivation indicating a greater stability demand in backward extension movements against higher resistance at the neighbourhood of the upright posture. Optimal extension profiles based on minimum jerk, work and power had distinct kinematics profiles which led to recruitment patterns with different timing and amplitude of activation. 相似文献
11.
Shahrokh Zeinali-Davarani Aboulfazl Shirazi-Adl Behzad Dariush Hooshang Hemami 《Computer methods in biomechanics and biomedical engineering》2013,16(7):645-656
The effects of external resistance on the recruitment of trunk muscles in sagittal movements and the coactivation mechanism to maintain spinal stability were investigated using a simple computational model of iso-resistive spine sagittal movements. Neural excitation of muscles was attained based on inverse dynamics approach along with a stability-based optimisation. The trunk flexion and extension movements between 60° flexion and the upright posture against various resistance levels were simulated. Incorporation of the stability constraint in the optimisation algorithm required higher antagonistic activities for all resistance levels mostly close to the upright position. Extension movements showed higher coactivation with higher resistance, whereas flexion movements demonstrated lower coactivation indicating a greater stability demand in backward extension movements against higher resistance at the neighbourhood of the upright posture. Optimal extension profiles based on minimum jerk, work and power had distinct kinematics profiles which led to recruitment patterns with different timing and amplitude of activation. 相似文献
12.
Binhui Jiang Libo Cao Haojie Mao Christina Wagner Stan Marek 《Computer methods in biomechanics and biomedical engineering》2014,17(11):1185-1197
Thoracic injury in the paediatric population is a relatively common cause of severe injury and has an accompanying high mortality rate. However, no anatomically accurate, complex paediatric chest finite element (FE) component model is available for a 10-year old in the published literature. In this study, a 10-year-old thorax FE model was developed based on internal and external geometries segmented from medical images. The model was then validated against published data measured during cardiopulmonary resuscitation performed on paediatric subjects. 相似文献
13.
Prediction of antagonistic muscle forces using inverse dynamic optimization during flexion/extension of the knee. 总被引:1,自引:0,他引:1
This paper examined the feasibility of using different optimization criteria in inverse dynamic optimization to predict antagonistic muscle forces and joint reaction forces during isokinetic flexion/extension and isometric extension exercises of the knee. Both quadriceps and hamstrings muscle groups were included in this study. The knee joint motion included flexion/extension, varus/valgus, and internal/external rotations. Four linear, nonlinear, and physiological optimization criteria were utilized in the optimization procedure. All optimization criteria adopted in this paper were shown to be able to predict antagonistic muscle contraction during flexion and extension of the knee. The predicted muscle forces were compared in temporal patterns with EMG activities (averaged data measured from five subjects). Joint reaction forces were predicted to be similar using all optimization criteria. In comparison with previous studies, these results suggested that the kinematic information involved in the inverse dynamic optimization plays an important role in prediction of the recruitment of antagonistic muscles rather than the selection of a particular optimization criterion. Therefore, it might be concluded that a properly formulated inverse dynamic optimization procedure should describe the knee joint rotation in three orthogonal planes. 相似文献
14.
Gagnon D Arjmand N Plamondon A Shirazi-Adl A Larivière C 《Journal of biomechanics》2011,44(8):1521-1529
Muscle force partitioning methods and musculoskeletal system simplifications are key modeling issues that can alter outcomes, and thus change conclusions and recommendations addressed to health and safety professionals. A critical modeling concern is the use of single-joint equilibrium to estimate muscle forces and joint loads in a multi-joint system, an unjustified simplification made by most lumbar spine biomechanical models. In the context of common occupational tasks, an EMG-assisted optimization method (EMGAO) is modified in this study to simultaneously account for the equilibrium at all lumbar joints (M-EMGAO). The results of this improved approach were compared to those of its conventional single-joint equivalent (S-EMGAO) counterpart, the latter method being applied to the same lumbar joints but one at a time. Despite identical geometrical configurations and passive contributions used in both models, computed outcomes clearly differed between single- and multi-joint methods, especially at larger trunk flexed postures and during asymmetric lifting. Moreover, muscle forces predicted by L5-S1 single-joint analyses do not maintain mechanical equilibrium at other spine joints crossed by the same muscles. Assuming that the central nervous system does not attempt to balance the external moments one joint at a time and that a given muscle cannot exert different forces at different joints, the proposed multi-joint method represents a substantial improvement over its single-joint counterpart. This improved approach, hence, resolves trunk muscle forces with biological integrity but without compromising mechanical equilibrium at the lumbar joints. 相似文献
15.
A finite element model technique to determine the mechanical response of a lumbar spine segment under complex loads 总被引:1,自引:0,他引:1
Tsouknidas A Michailidis N Savvakis S Anagnostidis K Bouzakis KD Kapetanos G 《Journal of applied biomechanics》2012,28(4):448-456
This study presents a CT-based finite element model of the lumbar spine taking into account all function-related boundary conditions, such as anisotropy of mechanical properties, ligaments, contact elements, mesh size, etc. Through advanced mesh generation and employment of compound elements, the developed model is capable of assessing the mechanical response of the examined spine segment for complex loading conditions, thus providing valuable insight on stress development within the model and allowing the prediction of critical loading scenarios. The model was validated through a comparison of the calculated force-induced inclination/deformation and a correlation of these data to experimental values. The mechanical response of the examined functional spine segment was evaluated, and the effect of the loading scenario determined for both vertebral bodies as well as the connecting intervertebral disc. 相似文献
16.
Concurrent multiscale simulation strategies are required in computational biomechanics to study the interdependence between body scales. However, detailed finite element models rarely include muscle recruitment due to the computational burden of both the finite element method and the optimization strategies widely used to estimate muscle forces. The aim of this study was twofold: first, to develop a computationally efficient muscle force prediction strategy based on proportional-integral-derivative (PID) controllers to track gait and chair rise experimental joint motion with a finite element musculoskeletal model of the lower limb, including a deformable knee representation with 12 degrees of freedom; and, second, to demonstrate that the inclusion of joint-level deformability affects muscle force estimation by using two different knee models and comparing muscle forces between the two solutions. The PID control strategy tracked experimental hip, knee, and ankle flexion/extension with root mean square errors below 1°, and estimated muscle, contact and ligament forces in good agreement with previous results and electromyography signals. Differences up to 11% and 20% in the vasti and biceps femoris forces, respectively, were observed between the two knee models, which might be attributed to a combination of differing joint contact geometry, ligament behavior, joint kinematics, and muscle moment arms. The tracking strategy developed in this study addressed the inevitable tradeoff between computational cost and model detail in musculoskeletal simulations and can be used with finite element musculoskeletal models to efficiently estimate the interdependence between muscle forces and tissue deformation. 相似文献
17.
The development of a three-dimensional finite element model of a posteriorly plated canine cervical spine (C3-C6) including contact nonlinearities is described. The model was created from axial CT scans and the material properties were derived from the literature. The model demonstrated sufficient accuracy from the results of a mesh convergence test. Significant steps were taken toward establishing model validation by comparison of plate surface strains with a posteriorly plated canine cervical spine under three-point bending. This model was developed to better characterize the contact pressures at the various interfaces under average physiologic canine loading. The analysis showed that the screw-plate interfaces had the highest values of all the mechanical parameters evaluated. 相似文献
18.
Idsart Kingma Didier Staudenmann Jaap H van Die?n 《Journal of electromyography and kinesiology》2007,17(1):14-24
High anterior intervertebral shear loads could cause low back injuries and therefore the neuromuscular system may actively counteract these forces. This study investigated whether, under constant moment loading relative to L3L4, an increased externally applied forward force on the trunk results in a shift in muscle activation towards the use of muscles with more backward directed lines of action, thereby reducing the increase in total joint shear force. Twelve participants isometrically resisted forward forces, applied at several locations on the trunk, while moments were held constant relative to L3L4. Surface EMG and lumbar curvature were measured, and an EMG-driven muscle model was used to calculate compression and shear forces at all lumbar intervertebral joints. Larger externally applied forward forces resulted in a flattening of the lumbar lordosis and a slightly more backward directed muscle force. Furthermore, the overall muscle activation increased. At the T12L1 to L3L4 joint, resulting joint shear forces remained small (less than 200N) because the average muscle force pulled backward relative to those joints. However, at the L5S1 joint the average muscle force pulled the trunk forward so that the increase in muscle force with increasing externally applied forward force caused a further rise in shear force (by 102.1N, SD=104.0N), resulting in a joint shear force of 1080.1N (SD=150.4N) at 50Nm moment loading. It is concluded that the response of the neuromuscular system to shear force challenges tends to increase rather than reduce the shear loading at the lumbar joint that is subjected to the highest shear forces. 相似文献
19.
Kouroush Sadegh Zadeh Howard C Elman Hubert J Montas Adel Shirmohammadi 《Biomedical engineering online》2007,6(1):24
Background
Biological mass transport processes determine the behavior and function of cells, regulate interactions between synthetic agents and recipient targets, and are key elements in the design and use of biosensors. Accurately predicting the outcomes of such processes is crucial to both enhancing our understanding of how these systems function, enabling the design of effective strategies to control their function, and verifying that engineered solutions perform according to plan. 相似文献20.
Östh J Brolin K Happee R 《Computer methods in biomechanics and biomedical engineering》2012,15(4):347-361
Mathematical human body models (HBMs) are important research tools that are used to study the human response in car crash situations. Development of automotive safety systems requires the implementation of active muscle response in HBM, as novel safety systems also interact with vehicle occupants in the pre-crash phase. In this study, active muscle response was implemented using feedback control of a nonlinear muscle model in the right upper extremity of a finite element (FE) HBM. Hill-type line muscle elements were added, and the active and passive properties were assessed. Volunteer tests with low impact loading resulting in elbow flexion motions were performed. Simulations of posture maintenance in a gravity field and the volunteer tests were successfully conducted. It was concluded that feedback control of a nonlinear musculoskeletal model can be used to obtain posture maintenance and human-like reflexive responses in an FE HBM. 相似文献