首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:建立生物传感器检测小鼠肝脏中microRNA (miRNA)活性的方法,测定miR-21在正常小鼠肝脏中的活性。方法:首先,分子克隆方法构建检测miRNA活性的通用型质粒传感器Dsensor。将各种miRNA的互补序列插入Dsensor中构建成相应miRNA活性检测传感器。用水动力法将检测miR-21的Dsensor注射至正常小鼠体内,以miR-122 Dsensor为阳性对照,miR-206 Dsensor为阴性对照,以不插入任何miRNA互补序列的Dsensor为空白对照。不同时间点尾静脉采血测定Gluc表达,处死小鼠测定肝脏中Fluc表达,比较计算得出miRNA活性。最后,用QRT-PCR法测定小鼠肝脏组织中miR-21、miR-122和miR-206表达水平。结果:用RIF(Relative inhibiting fold)值表示miRNA活性,miR-21、miR-122和miR-206活性分别为80.03±21.25,29.90±5.90和0.92±0.29,表明小鼠正常肝脏中miR-21的负调控活性明显高于miR-122。然而,QRT-PCR法测定结果显示,miR-21的表达水平明显低于miR-122,而miR-206几乎没有表达。从miR-21与miR-122的活性与表达水平比较发现,miR-21的表达水平并没有真实反映其活性。结论:成功建立了一种小鼠肝脏中miRNA活性检测方法;首次发现小鼠正常肝脏中miR-21活性水平比miR-122更高,而表达水平却明显低于miR-122。提示miR-21对于维持肝脏的正常生理功能的重要作用,值得进一步研究其调控的靶基因和机理。  相似文献   

2.
3.
Li S  Zhu J  Fu H  Wan J  Hu Z  Liu S  Li J  Tie Y  Xing R  Zhu J  Sun Z  Zheng X 《Nucleic acids research》2012,40(2):884-891
microRNAs (miRNAs) are a versatile class of non-coding RNAs involved in regulation of various biological processes. miRNA-122 (miR-122) is specifically and abundantly expressed in human liver. In this study, we employed 3'-end biotinylated synthetic miR-122 to identify its targets based on affinity purification. Quantitative RT-PCR analysis of the affinity purified RNAs demonstrated a specific enrichment of several known miR-122 targets such as CAT-1 (also called SLC7A1), ADAM17 and BCL-w. Using microarray analysis of affinity purified RNAs, we also discovered many candidate target genes of miR-122. Among these candidates, we confirmed that protein kinase, interferon-inducible double-stranded RNA-dependent activator (PRKRA), a Dicer-interacting protein, is a direct target gene of miR-122. miRNA quantitative-RT-PCR results indicated that miR-122 and small interfering RNA against PRKRA may facilitate the accumulation of newly synthesized miRNAs but did not detectably affect endogenous miRNAs levels. Our findings will lead to further understanding of multiple functions of this hepato-specific miRNA. We conclude that miR-122 could repress PRKRA expression and facilitate accumulation of newly synthesized miRNAs.  相似文献   

4.
As the most abundant liver-specific microRNA (miRNA), miR-122 has been extensively studied for its role in the regulation of lipid metabolism, hepatocarcinogenesis and hepatitis C virus (HCV) replication, but little is known regarding its role in the replication of Hepatitis B virus (HBV), a highly prevalent hepatotropic virus that can cause life-threatening complications. In this study we examined the effects of antisense inhibition of miR-122 and transfection of a miR-122 mimic on HBV expression in hepatoma cells. The over-expression of miR-122 inhibited HBV expression, whereas the depletion of endogenous miR-122 resulted in increased production of HBV in transfected cells. We further found that the down-regulation of Heme oxygenase-1 (HO-1) by miR-122 plays a negative role in the miR-122-mediated inhibition of viral expression. Our study demonstrates the anti-HBV activity of miR-122, suggesting that therapies that increase miR-122 and HO-1 may be an effective strategy to limit HBV replication.  相似文献   

5.
6.
MicroRNA-122 (miR-122) is an abundant liver-specific miRNA, implicated in fatty acid and cholesterol metabolism as well as hepatitis C viral replication. Here, we report that a systemically administered 16-nt, unconjugated LNA (locked nucleic acid)-antimiR oligonucleotide complementary to the 5′ end of miR-122 leads to specific, dose-dependent silencing of miR-122 and shows no hepatotoxicity in mice. Antagonism of miR-122 is due to formation of stable heteroduplexes between the LNA-antimiR and miR-122 as detected by northern analysis. Fluorescence in situ hybridization demonstrated uptake of the LNA-antimiR in mouse liver cells, which was accompanied by markedly reduced hybridization signals for mature miR-122 in treated mice. Functional antagonism of miR-122 was inferred from a low cholesterol phenotype and de-repression within 24 h of 199 liver mRNAs showing significant enrichment for miR-122 seed matches in their 3′ UTRs. Expression profiling extended to 3 weeks after the last LNA-antimiR dose revealed that most of the changes in liver gene expression were normalized to saline control levels coinciding with normalized miR-122 and plasma cholesterol levels. Combined, these data suggest that miRNA antagonists comprised of LNA are valuable tools for identifying miRNA targets in vivo and for studying the biological role of miRNAs and miRNA-associated gene-regulatory networks in a physiological context.  相似文献   

7.
The P body protein LSm1 stimulates translation and replication of hepatitis C virus (HCV). As the liver-specific microRNA-122 (miR-122) is required for HCV replication and is associated with P bodies, we investigated whether regulation of HCV by LSm1 involves miR-122. Here, we demonstrate that LSm1 contributes to activation of HCV internal ribosome entry site (IRES)-driven translation by miR-122. This role for LSm1 is specialized for miR-122 translation activation, as LSm1 depletion does not affect the repressive function of miR-122 at 3′ untranslated region (UTR) sites, or miR-122–mediated cleavage at a perfectly complementary site. We find that LSm1 does not influence recruitment of the microRNA (miRNA)-induced silencing complex to the HCV 5′UTR, implying that it regulates miR-122 function subsequent to target binding. In contrast to the interplay between miR-122 and LSm1 in translation, we find that LSm1 is not required for miR-122 to stimulate HCV replication, suggesting that miR-122 regulation of HCV translation and replication have different requirements. For the first time, we have identified a protein factor that specifically contributes to activation of HCV IRES-driven translation by miR-122, but not to other activities of the miRNA. Our results enhance understanding of the mechanisms by which miR-122 and LSm1 regulate HCV.  相似文献   

8.
9.
MicroRNAs (miRNAs) have been implicated in the orchestration of diverse cellular processes including differentiation, proliferation, and apoptosis and are believed to play pivotal roles as oncogenes and tumor suppressors. miR-122, a liver specific miRNA, is significantly down-regulated in most hepatocellular carcinomas (HCCs) but its role in tumorigenesis remains poorly understood. Here we identify AKT3 as a novel and direct target of miR-122. Restoration of miR-122 expression in HCC cell lines decreases AKT3 levels, inhibits cell migration and proliferation, and induces apoptosis. These anti-tumor phenotypes can be rescued by reconstitution of AKT3 expression indicating the essential role of AKT3 in miR-122 mediated HCC transformation. In vivo, restoration of miR-122 completely inhibited xenograft growth of HCC tumor in mice. Our data strongly suggest that miR-122 is a tumor suppressor that targets AKT3 to regulate tumorigenesis in HCCs and a potential therapeutic candidate for liver cancer.  相似文献   

10.
人肝脏特异性miR-122表达载体的构建及鉴定   总被引:3,自引:0,他引:3  
人肝脏特异性miRNA-122是肝脏中表达丰度最高的miRNA。为研究该miR-122的生物学功能,从HepG2细胞基因组中用PCR的方法扩增了miR-122的前体,构建了miR-122的表达载体pLMP-miR-122。pLMP-miR-122质粒转染人正常肝细胞系L-O2和肝癌细胞系HepG2后,细胞内成熟miRNA-122的表达量显著增加。该质粒与HBV1.3共转染HepG2细胞72h后,HBV的HBs和HBe蛋白水平的表达量均下降,说明miRNA-122参与了HBV基因的复制和表达的调控,为进一步研究miRNA-122的功能和其他一些肝病如HCC的调控机制打下基础。  相似文献   

11.
Hepatocellular carcinoma (HCC) is a severe disease with high mortality in the world. It has been shown that long noncoding RNA (lncRNA) might play a role in HCC. The aim of the present study was to identify the role of long intergenic noncoding RNA 01551 (LINC01551) in the HCC development and explore the underlying mechanism of LINC01551/miR-122-5p/ADAM10 axis. The differentially expressed lncRNAs associated with HCC were screened out by a microarray analysis. The expression of LINC01551, miR-122-5p, and ADAM10 was determined in HCC tissues and cells. The potential miRNA (miR-122-5p) regulated by LINC01551 was explored, and the target relationship between miR-122-5p and ADAM10 was confirmed. To evaluate the effect of LINC01551 and miR-122-5p on proliferation, migration, invasion, and apoptosis of HCC, different plasmids were delivered into MHCC97-H cells. High expression of LINC01551 and ADAM10 yet low-expression of miR-122-5p were revealed in HCC tissues and cells. Overexpression of miR-122-5p could downregulate ADAM10. Biological prediction websites and fluorescence in situ hybridization assay verified that LINC01551 was mainly expressed in the cytoplasm. Silencing LINC01551 reduced HCC cell viability, proliferation, migration, invasion, and cell cycle entry yet induce cell apoptosis. Upregulation of LINC01551 increased its ability of competitively binding to miR-122-5p, thus reducing miR-122-5p and upregulating ADAM10 expression, as well as promoting the proliferative, migrative, and invasive ability. Taken together the results, it is highly possible that LINC01551 functions as an competing endogenous RNA (ceRNA) to regulate the miRNA target ADAM10 by sponging miR-122-5p and therefore promotes the development of HCC, highlighting a promising competitive new target for the HCC treatment.  相似文献   

12.
Technology for monitoring in vivo microRNA (miRNA) activity is extremely important for elucidating miRNA biology. However, in vivo studies of miRNA have been hampered by the lack of a convenient approach to reliably reflect real-time functional changes in miRNAs. Sensors for miRNA were developed by adding miRNA target sequences to the 3′-untranslated region of Gaussia princeps luciferase (Gluc) mRNA. These sensors were then evaluated in vitro and in vivo by measuring Gluc activity in cell supernatants and in peripheral blood. Sensors driven by the CMV promoter were effective for monitoring miR-122 in living cells, but not for the long-term monitoring of miR-122 or miR-142 in mouse liver because of CMV-promoter silencing. Replacing the CMV promoter with a CAG promoter rendered these sensors effective for the long-term monitoring of relevant liver miRNA activities. We subsequently used the CAG-promoter-based sensor for the long-term monitoring of endogenous liver miR-122, miR142 and miR-34a activities, as well as for exogenous miR-34a activity. Our study demonstrates that real-time in vivo activities of miRNAs can be continuously and conveniently detected in mouse liver using the sensors that we have developed.  相似文献   

13.
Functional sequestration of microRNA 122 (miR-122) by treatment with an oligonucleotide complementary to the miRNA results in long-lasting suppression of hepatitis C virus (HCV) viremia in primates. However, the safety of the constitutive miR-122 silencing approach to HCV inhibition is unclear, since miR-122 can modulate the expression of many host genes. In this study, a regulation system capable of specifically inhibiting miR-122 activity only upon HCV infection was developed. To this end, an allosteric self-cleavable ribozyme capable of releasing antisense sequence to miR-122 only in the presence of HCV nonstructural protein 5B was developed using in vitro selection method. The activity of the reporter construct with miR-122 target sequences at its 3' untranslated region and the expression of endogenous miR-122 target proteins were specifically stimulated through sequestration of miR-122 only in HCV replicon Huh-7 cells, but not in na?ve Huh-7 cells, when transfected with expression vector encoding the specific allosteric ribozyme. These findings indicate that miR-122 function can be specifically inhibited by the allosteric ribozyme only in HCV-replicating cells. Importantly, HCV replicon replication was efficiently inhibited by the allosteric ribozyme. This ribozyme could be useful for the specific, safe, and efficacious anti-HCV modulation.  相似文献   

14.
15.
16.
MicroRNAs (miRNAs) bind to mRNAs and fine-tune protein output by affecting mRNA stability and/or translation. miR-21 is a ubiquitous, highly abundant, and stress-responsive miRNA linked to several diseases, including cancer, fibrosis, and inflammation. Although the RNA silencing activity of miR-21 in diseased cells has been well documented, the roles of miR-21 under healthy cellular conditions are not well understood. Here, we show that pharmacological inhibition or genetic deletion of miR-21 in healthy mouse liver has little impact on regulation of canonical seed-matched mRNAs and only a limited number of genes enriched in stress response pathways. These surprisingly weak and selective regulatory effects on known and predicted target mRNAs contrast with those of other abundant liver miRNAs such as miR-122 and let-7. Moreover, miR-21 shows greatly reduced binding to polysome-associated target mRNAs compared to miR-122 and let-7. Bioinformatic analysis suggests that reduced thermodynamic stability of seed pairing and target binding may contribute to this deficiency of miR-21. Significantly, these trends are reversed in human cervical carcinoma (HeLa) cells, where miRNAs including miR-21 show enhanced target binding within polysomes and where miR-21 triggers strong degradative activity toward target mRNAs. Taken together, our results suggest that, under normal cellular conditions in liver, miR-21 activity is maintained below a threshold required for binding and silencing most of its targets. Consequently, enhanced association with polysome-associated mRNA is likely to explain in part the gain of miR-21 function often found in diseased or stressed cells.  相似文献   

17.
18.
MicroRNAs (miRNAs) are small non-coding RNAs involved in fine-tuning of gene regulation. Antisense oligonucleotides (ONs) are promising tools as anti-miRNA (anti-miR) agents toward therapeutic applications and to uncover miRNA function. Such anti-miR ONs include 2'-O-methyl (OMe), cationic peptide nucleic acids like K-PNA-K3, and locked nucleic acid (LNA)-based anti-miRs such as LNA/DNA or LNA/OMe. Northern blotting is a widely used and robust technique to detect miRNAs. However, miRNA quantification in the presence of anti-miR ONs has proved to be challenging, due to detection artifacts, which has led to poor understanding of miRNA fate upon anti-miR binding. Here we show that anti-miR ON bound to miR-122 can prevent the miRNA from being properly precipitated into the purified RNA fraction using the standard RNA extraction protocol (TRI-Reagent), yielding an RNA extract that does not reflect the real cellular levels of the miRNA. An increase in the numbers of equivalents of isopropanol during the precipitation step leads to full recovery of the targeted miRNA back into the purified RNA extract. Following our improved protocol, we demonstrate by Northern blotting, in conjunction with a PNA decoy strategy and use of high denaturing PAGE, that high-affinity anti-miRs (K-PNA-K3, LNA/DNA, and LNA/OMe) sequester miR-122 without causing miRNA degradation, while miR-122 targeting with a lower-affinity anti-miR (OMe) seems to promote degradation of the miRNA. The technical issues explored in this work will have relevance for other hybridization-based techniques for miRNA quantification in the presence of anti-miR ONs.  相似文献   

19.
miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting   总被引:21,自引:0,他引:21  
Current understanding of microRNA (miRNA) biology is limited, and antisense oligonucleotide (ASO) inhibition of miRNAs is a powerful technique for their functionalization. To uncover the role of the liver-specific miR-122 in the adult liver, we inhibited it in mice with a 2'-O-methoxyethyl phosphorothioate ASO. miR-122 inhibition in normal mice resulted in reduced plasma cholesterol levels, increased hepatic fatty-acid oxidation, and a decrease in hepatic fatty-acid and cholesterol synthesis rates. Activation of the central metabolic sensor AMPK was also increased. miR-122 inhibition in a diet-induced obesity mouse model resulted in decreased plasma cholesterol levels and a significant improvement in liver steatosis, accompanied by reductions in several lipogenic genes. These results implicate miR-122 as a key regulator of cholesterol and fatty-acid metabolism in the adult liver and suggest that miR-122 may be an attractive therapeutic target for metabolic disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号