首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathogen- and ethylene-inducible pepper-basic pathogenesis-related (PR)-1 gene, CABPR1 , was strongly expressed in pepper leaves by osmotic and oxidative stresses. The pepper CABPR1 was introduced into the Arabidopsis plants under the control of the cauliflower mosaic virus 35S promoter. Polymerase chain reaction-amplification with the Arabidopsis genomic DNA and Northern blot analyses confirmed that the pepper CABPR1 gene was integrated into the Arabidopsis genome, where it was overexpressed in the transgenic Arabidopsis plants under normal growth conditions. The constitutive overexpression of CABPR1 induced the expression of the Arabidopsis PR-genes including PR-4 , PR-5 and PDF1.2 . Enhanced resistance to phytopathogenic bacteria, Pseudomonas syringae pv. tomato DC3000, was also observed in the transgenic Arabidopsis plants. CABPR1 overexpression in the transgenic Arabidopsis caused enhanced seed germination under NaCl (ionic) and mannitol (non-ionic) osmotic stresses. Enhanced tolerances to high salinity and dehydration stresses during seed germination of the transgenic plants were not found at the early seedling stage. The transgenic Arabidopsis plants exhibited a higher tolerance to oxidative stress by methyl viologen at the seed germination, seedling and adult plant stages. These results suggest that the CABPR1 gene may function in the enhanced disease resistance and oxidative stress tolerance of transgenic Arabidopsis plants.  相似文献   

2.
Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) plays a key role in the plant stress signalling transduction pathway via phosphorylation. Here, a SnRK2 member of common wheat, TaSnRK2.7, was cloned and characterized. Southern blot analysis suggested that the common wheat genome contains three copies of TaSnRK2.7. Subcellular localization showed the presence of TaSnRK2.7 in the cell membrane, cytoplasm, and nucleus. Expression patterns revealed that TaSnRK2.7 is expressed strongly in roots, and responds to polyethylene glycol, NaCl, and cold stress, but not to abscisic acid (ABA) application, suggesting that TaSnRK2.7 might participate in non-ABA-dependent signal transduction pathways. TaSnRK2.7 was transferred to Arabidopsis under the control of the CaMV-35S promoter. Function analysis showed that TaSnRK2.7 is involved in carbohydrate metabolism, decreasing osmotic potential, enhancing photosystem II activity, and promoting root growth. Its overexpression results in enhanced tolerance to multi-abiotic stress. Therefore, TaSnRK2.7 is a multifunctional regulatory factor in plants, and has the potential to be utilized in transgenic breeding to improve abiotic stress tolerance in crop plants.  相似文献   

3.
Hyperosmotic stress caused by NaCl, LiCl, or sorbitol induces an immediate and short duration ( approximately 1 min) transient cytosolic Ca(2+) ([Ca(2+)](cyt)) increase (Ca(2+)-dependent aequorin luminescence) in Saccharomyces cerevisiae cells. The amplitude of the osmotically induced [Ca(2+)](cyt) transient was attenuated by the addition of chelating agents EGTA or BAPTA, cation channel pore blockers, competitive inhibitors of Ca(2+) transport, or mutations (cch1Delta or mid1Delta) that reduce Ca(2+) influx, indicating that Ca(ext)(2+) is a source for the transient. An osmotic pretreatment (30 min) administered by inoculating cells into media supplemented with either NaCl (0.4 or 0.5 m) or sorbitol (0.8 or 1.0 m) enhanced the subsequent growth of these cells in media containing 1 m NaCl or 2 m sorbitol. Inclusion of EGTA in the osmotic pretreatment media or the cch1Delta mutation reduced cellular capacity for NaCl but not hyperosmotic adaptation. The stress-adaptive effect of hyperosmotic pretreatment was mimicked by exposing cells briefly to 20 mm CaCl(2). Thus, NaCl- or sorbitol-induced hyperosmotic shock causes a [Ca(2+)](cyt) transient that is facilitated by Ca(2+) influx, which enhances ionic but not osmotic stress adaptation. NaCl-induced ENA1 expression was inhibited by EGTA, cch1Delta mutation, and FK506, indicating that the [Ca(2+)](cyt) transient activates calcineurin signaling to mediate ion homeostasis and salt tolerance.  相似文献   

4.
5.
Drought and salt stress tolerance of Arabidopsis (Arabidopsis thaliana) plants increased following treatment with the nonprotein amino acid beta-aminobutyric acid (BABA), known as an inducer of resistance against infection of plants by numerous pathogens. BABA-pretreated plants showed earlier and higher expression of the salicylic acid-dependent PR-1 and PR-5 and the abscisic acid (ABA)-dependent RAB-18 and RD-29A genes following salt and drought stress. However, non-expressor of pathogenesis-related genes 1 and constitutive expressor of pathogenesis-related genes 1 mutants as well as transgenic NahG plants, all affected in the salicylic acid signal transduction pathway, still showed increased salt and drought tolerance after BABA treatment. On the contrary, the ABA deficient 1 and ABA insensitive 4 mutants, both impaired in the ABA-signaling pathway, could not be protected by BABA application. Our data demonstrate that BABA-induced water stress tolerance is based on enhanced ABA accumulation resulting in accelerated stress gene expression and stomatal closure. Here, we show a possibility to increase plant tolerance for these abiotic stresses through effective priming of the preexisting defense pathways without resorting to genetic alterations.  相似文献   

6.
Aspects of low temperature behaviour of sycamore and soybeancell suspensions were studied following pregrowth in the presenceof 6 per cent mannitol or sorbitol. Sycamore cells exhibitedcontraction of the cell wall following treatment with 2 m cryoprotectantand improved recovery after cryopreservative procedures. Theseresponses were not paralleled by pregrown soybean cells. Studieson the behaviour of the cells in the presence of extracellularice, using cryomicroscopy, and in the absence of extracellularice, using differential scanning calorimetry (DSC), were unableto identify any alteration in the low temperature response ofpregrown sycamore cells which could readily explain their improvedfreeze tolerance. Acer pseudoplatanus L., sycamore, Glycine max L. var. Biloxi, soybean, suspension culture cells, osmotic stress, undercooling, cryopreservation, cryomicroscopy  相似文献   

7.
8.
Drought and salinity are two major limiting factors in crop productivity. One way to reduce crop loss caused by drought and salinity is to increase the solute concentration in the vacuoles of plant cells. The accumulation of sodium ions inside the vacuoles provides a 2-fold advantage: (i) reducing the toxic levels of sodium in cytosol; and (ii) increasing the vacuolar osmotic potential with the concomitant generation of a more negative water potential that favors water uptake by the cell and better tissue water retention under high soil salinity. The success of this approach was demonstrated in several plants, where the overexpression of the Arabidopsis gene AtNHX1 that encodes a vacuolar sodium/proton antiporter resulted in higher plant salt tolerance. Overexpression of AtNHX1 increases sodium uptake in vacuoles, which leads to increased vacuolar solute concentration and therefore higher salt tolerance in transgenic plants. In an effort to engineer cotton for higher drought and salt tolerance, we created transgenic cotton plants expressing AtNHX1. These AtNHX1-expressing cotton plants generated more biomass and produced more fibers when grown in the presence of 200 mM NaCl in greenhouse conditions. The increased fiber yield was probably due to better photosynthetic performance and higher nitrogen assimilation rates observed in the AtNHX1-expressing cotton plants as compared with wild-type cotton plants under saline conditions. Furthermore, the field-grown AtNHX1-expressing cotton plants produced more fibers with better quality, indicating that AtNHX1 can indeed be used for improving salt stress tolerance in cotton.  相似文献   

9.
10.
11.
12.
13.
The cell culture ofAngelica gigas Nakai producing decursin derivatives and immunostimulating polysaccharides was preserved in liquid nitrogen after pre-freezing in a deep freezer at −70°C for 480 min. The effects of the cryoprotectant and pretreatment before cooling were investigated to obtain the optimal procedure for cyropreservation. When compared to mannitol, sorbitol, or NaCl with a similar osmotic pressure, 0.7M sucrose was found to be the best osmoticum for the cryopreservation ofA. gigias cells. In the pre-culture medium, the cells in the exponential growth phase showed the best post-freezing survival after cryopre-servation. A mixture of sucrose, glycerol, and DMSO was found to be an effective cryoprotectant and a higher concentration of the cryoprotectant provided better cell viability. When compared with the vitrification, the optimum cryopreservation method proposed in this study would seem to be more effective for the long-term storage of suspension cells. The highest relative cell viability established with the optimal procedure was 89%.  相似文献   

14.
The CCCH type zinc finger proteins are a super family involved in many aspects of plant growth and development. In this study, we investigated the response of one CCCH type zinc finger protein AtZFP1 (At2g25900) to salt stress in Arabidopsis. The expression of AtZFP1 was upregulated by salt stress. Compared to transgenic strains, the germination rate, emerging rate of cotyledons and root length of wild plants were significantly lower under NaCl treatments, while the inhibitory effect was significantly severe in T-DNA insertion mutant strains. At germination stage, it was mainly osmotic stress when treated with NaCl. Relative to wild plants, overexpression strains maintained a higher K+, K+/Na+, chlorophyll and proline content, and lower Na+ and MDA content. Quantitative real-time PCR analysis revealed that the expression of stress related marker genes KIN1, RD29B and RD22 increased more significantly in transgenic strains by salt stress. Overexpression of AtZFP1 also enhanced oxidative and osmotic stress tolerance which was determined by measuring the expression of a set of antioxidant genes, osmotic stress genes and ion transport protein genes such as SOS1, AtP5CS1 and AtGSTU5. Overall, our results suggest that overexpression of AtZFP1 enhanced salt tolerance by maintaining ionic balance and limiting oxidative and osmotic stress.  相似文献   

15.
16.
17.
18.

The rice (Oryza sativa L.) BAHD acyltransferase gene OsAt10 affects growth and metabolism of cells and regulates cell response to environmental stress. However, influence of the OsAt10 gene on low-temperature stress tolerance has not been evaluated in plant cells. Here, cell suspension cultures of plant species Arabidopsis (Arabidopsis thaliana L.), cotton (Gossypium hirsutum L.), white pine (Pinus strobus L.), and rice (Oryza sativa L.) were used to generate transgenic cell lines via Agrobacterium tumefaciens-mediated genetic transformation to examine the effects of OsAt10 on cold stress tolerance. OsAt10 transgenic cell lines of A. thaliana, G. hirsutum, P. strobus, and O. sativa were confirmed by molecular analyses including Southern blotting ND northern blotting, following by physiological and biochemical analyses under cold stress. The experimental results demonstrated that growth rate, cell viability, lipid peroxidation, ion leakage, antioxidative enzyme activity, polyamines level, and cell morphology were changed in transgenic cells under cold stress, compared to the controls. In transgenic A. thaliana cells, overexpression of the OsAt10 gene increases expression of polyamines biosynthesis genes under cold stress. In transgenic A. thaliana plants, overexpression of the OsAt10 gene increased cold stress tolerance by regulating expression of stress marker genes, TBARS content, ion leakage level, antioxidant enzymes activity, and polyamines content, indicating that the OsAt10 gene could be economically important for improving low-temperature stress tolerance in plants.

  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号