首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermotolerant methylotrophic yeast Hansenula polymorpha has recently been gaining interest as a promising host for bioethanol production due to its ability to ferment xylose, glucose, and cellobiose at elevated temperatures up to 48 °C. In this study, we identified and characterized alcohol dehydrogenase 1 of H. polymorpha (HpADH1). HpADH1 seems to be a cytoplasmic protein since no N-terminal mitochondrial targeting extension was detected. Compared to the ADHs of other yeasts, recombinant HpADH1 overexpressed in Escherichia coli exhibited much higher catalytic efficiency for ethanol oxidation along with similar levels of acetaldehyde reduction. HpADH1 showed broad substrate specificity for alcohol oxidation but had an apparent preference for medium chain length alcohols. Both ADH isozyme pattern analysis and ADH activity assay indicated that ADH1 is the major ADH in H. polymorpha DL-1. Moreover, an HpADH1-deleted mutant strain produced less ethanol in glucose or glycerol media compared to wild-type. Interestingly, when the ADH1 mutant was complemented with an HpADH1 expression cassette, the resulting strain produced significantly increased amounts of ethanol compared to wild-type, up to 36.7 g l−1. Taken together, our results suggest that optimization of ADH1 expression would be an ideal method for developing H. polymorpha into an efficient bioethanol production strain.  相似文献   

2.
A strain of Saccharomyces cerevisiae has been constructed which is deficient in the four alcohol dehydrogenase (ADH) isozymes known at present. This strain (adh0), being irreversibly mutated in the genes ADH1, ADH3, and ADH4 and carrying a point mutation in the gene ADH2 coding for the glucose-repressible isozyme ADHII, still produces up to one third of the theoretical maximum yield of ethanol in a homofermentative conversion of glucose to ethanol. Analysis of the glucose metabolism of adh0 cells shows that the lack of all known ADH isozymes results in the formation of glycerol as a major fermentation product, accompanied by a significant production of acetaldehyde and acetate. Treatment of glucose-growing adh0 cells with the respiratory-chain inhibitor antimycin A leads to an immediate cessation of ethanol production, demonstrating that ethanol production in adh0 cells is dependent on mitochondrial electron transport. Reduction of acetaldehyde to ethanol in isolated mitochondria could also be demonstrated. This reduction is apparently linked to the oxidation of acetaldehyde to acetate. Preliminary data suggest that this novel type of ethanol formation in S. cerevisiae is associated with the inner mitochondrial membrane.  相似文献   

3.
LeBrun LA  Park DH  Ramaswamy S  Plapp BV 《Biochemistry》2004,43(11):3014-3026
Histidine-51 in horse liver alcohol dehydrogenase (ADH) is part of a hydrogen-bonded system that appears to facilitate deprotonation of the hydroxyl group of water or alcohol ligated to the catalytic zinc. The contribution of His-51 to catalysis was studied by characterizing ADH with His-51 substituted with Gln (H51Q). The steady-state kinetic constants for ethanol oxidation and acetaldehyde reduction at pH 8 are similar for wild-type and H51Q enzymes. In contrast, the H51Q substitution significantly shifts the pH dependencies for steady-state and transient reactions and decreases by 11-fold the rate constant for the transient oxidation of ethanol at pH 8. Modest substrate deuterium isotope effects indicate that hydride transfer only partially limits the transient oxidation and turnover. Transient data show that the H51Q substitution significantly decreases the rate of isomerization of the enzyme-NAD(+) complex and becomes a limiting step for ethanol oxidation. Isomerization of the enzyme-NAD(+) complex is rate limiting for acetaldehyde reduction catalyzed by the wild-type enzyme, but release of alcohol is limiting for the H51Q enzyme. X-ray crystallography of doubly substituted His51Gln:Lys228Arg ADH complexed with NAD(+) and 2,3- or 2,4-difluorobenzyl alcohol shows that Gln-51 isosterically replaces histidine in interactions with the nicotinamide ribose of the coenzyme and that Arg-228 interacts with the adenosine monophosphate of the coenzyme without affecting the protein conformation. The difluorobenzyl alcohols bind in one conformation. His-51 participates in, but is not essential for, proton transfers in the mechanism.  相似文献   

4.
5.
Perturbation of the aerobic steady-state in a chemostat culture of the ethanol-producing bacterium Zymomonas mobilis with a small pulse of ethanol causes a burst of ethanol oxidation, although the reactant ratio of the alcohol dehydrogenase (ADH) reaction ([NADH][acetaldehyde][H(+)])/([ethanol][NAD(+)]) remains above the K(eq) value. Simultaneous catalysis of ethanol synthesis and oxidation by the two ADH isoenzymes, residing in different redox microenvironments, has been proposed previously. In the present study, this hypothesis is verified by construction of an ADH-deficient strain and by demonstration that it lacks the oxidative burst in response to perturbation of its aerobic steady-state with ethanol.  相似文献   

6.
Elimination of [2H]ethanol in vivo as studied by gas chromatography/mass spectrometry occurred at about half the rate in deer mice reported to lack alcohol dehydrogenase (ADH-) compared with ADH+ deer mice and exhibited kinetic isotope effects on Vmax and Km (D(V/K] of 2.2 +/- 0.1 and 3.2 +/- 0.8 in the two strains, respectively. To an equal extent in both strains, ethanol elimination was accompanied by an ethanol-acetaldehyde exchange with an intermolecular transfer of hydrogen atoms, indicating the occurrence of dehydrogenase activity. This exchange was also observed in perfused deer mouse livers. Based on calculations it was estimated that at least 50% of ethanol elimination in ADH- deer mice was caused by the action of dehydrogenase systems. NADPH-supported cytochrome P-450-dependent ethanol oxidation in liver microsomes from ADH+ and ADH- deer mice was not stereoselective and occurred with a D(V/K) of 3.6. The D(V/K) value of catalase-dependent oxidation was 1.8, whereas a kinetic isotope effect of cytosolic ADH in the ADH+ strain was 3.2. Mitochondria from both ADH+ and ADH- deer mice catalyzed NAD+-dependent ethanol oxidation and NADH-dependent acetaldehyde reduction. The kinetic isotope effects of NAD+-dependent ethanol oxidation in the mitochondrial fraction from ADH+ and ADH- deer mice were 2.0 +/- 0.1 and 2.3 +/- 0.3, respectively. The results indicate only a minor contribution by cytochrome P-450 to ethanol elimination, whereas the isotope effects are consistent with ethanol oxidation by the catalase-H2O2 system in ADH- deer mice in addition to the dehydrogenase systems.  相似文献   

7.
A soluble NAD-dependent alcohol dehydrogenase (ADH) activity was detected in mycelium and yeast cells of wild-type Mucor rouxii. In the mycelium of cells grown in the absence of oxygen, the enzyme activity was high, whereas in yeast cells, ADH activity was high regardless of the presence or absence of oxygen. The enzyme from aerobically or anaerobically grown mycelium or yeast cells exhibited a similar optimum pH for the oxidation of ethanol to acetaldehyde (∼pH 8.5) and for the reduction of acetaldehyde to ethanol (∼pH 7.5). Zymogram analysis conducted with cell-free extracts of the wild-type and an alcohol-dehydrogenase-deficient mutant strain indicated the existence of a single ADH enzyme that was independent of the developmental stage of dimorphism, the growth atmosphere, or the carbon source in the growth medium. Purified ADH from aerobically grown mycelium was found to be a tetramer consisting of subunits of 43 kDa. The enzyme oxidized primary and secondary alcohols, although much higher activity was displayed with primary alcohols. K m values obtained for acetaldehyde, ethanol, NADH2, and NAD+ indicated that physiologically the enzyme works mainly in the reduction of acetaldehyde to ethanol. Received: 11 March 1999 / Accepted: 14 July 1999  相似文献   

8.
Hydrophobic anion activation of human liver chi chi alcohol dehydrogenase   总被引:13,自引:0,他引:13  
Class III alcohol dehydrogenase (chi chi-ADH) from human liver binds both ethanol and acetaldehyde so poorly that their Km values cannot be determined, even at ethanol concentrations up to 3 M. However, long-chain carboxylates, e.g., pentanoate, octanoate, deoxycholate, and other anions, substantially enhance the binding of ethanol and other substrates and hence the activity of class III ADH up to 30-fold. Thus, in the presence of 1 mM octanoate, ethanol displays Michaelis-Menten kinetics. The degree of activation depends on the size both of the substrate and of the activator; generally, longer, negatively charged activators result in greater activation. At pH 10, the activator binds to the E-NAD+ form of the enzyme to potentiate substrate binding. Pentanoate activates methylcrotyl alcohol oxidation and methylcrotyl aldehyde reduction 14- and 30-fold, respectively. Such enhancements of both oxidation and reduction are specific for class III ADH; neither class I nor class II shows this effect. The implications as to the nature of the physiological substrate(s) of class III ADH are discussed in light of the recent finding that this ADH and glutathione-dependent formaldehyde dehydrogenase are identical. A new rapid purification procedure for chi chi-ADH is presented.  相似文献   

9.
When cultured on a defined diet, ethanol was an efficient substrate for lipid synthesis in wild-type Drosophila melanogaster larvae. At certain dietary levels both ethanol and sucrose could displace the other as a lipid substrate. In wild-type larvae more than 90% of the flux from ethanol to lipid was metabolized via the alcohol dehydrogenase (ADH) system. The ADH and aldehyde dehydrogenase activities of ADH were modulated in tandem by dietary ethanol, suggesting that ADH provided substrate for lipogenesis by degrading ethanol to acetaldehyde and then to acetic acid. The tissue activity of catalase was suppressed by dietary ethanol, implying that catalase was not a major factor in ethanol metabolism in larvae. The activities of lipogenic enzymes, sn-glycerol-3-phosphate dehydrogenase, fatty acid synthetase (FAS), and ADH, together with the triacylglycerol (TG) content of wild-type larvae increased in proportion to the dietary ethanol concentration to 4.5% (v/v). Dietary ethanol inhibited FAS and repressed the accumulation of TG in ADH-deficient larvae, suggesting that the levels of these factors may be subject to a complex feedback control.This research was supported by National Institutes of Health Grant GM-28779 to B.W.G. and a Monash University Research Grant to S.W.M.  相似文献   

10.
We report the isolation of mutant strains of the methylotrophic yeast Hansenula polymorpha that are able to efficiently oxidize ethanol to acetaldehyde in an intact cell system. The oxidation reaction is catalyzed by alcohol oxidase (AOX), a key enzyme in the methanol metabolic pathway that is typically present only in H. polymorpha cells growing on methanol. At least three mutations were introduced in the strains. Two of the mutations resulted in high levels of AOX in glucose-grown cells of the yeast. The third mutation introduced a defect in the cell's normal ability to degrade AOX in response to ethanol, and thus stabilizing the enzyme in the presence of this substrate. Using these strains, conditions for bioconversion of ethanol to acetaldehyde were examined. In addition to pH and buffer concentration, we found that the yield of acetaldehyde was improved by the addition of the proteinase inhibitor phenylmethylsulfonyl fluoride (PMSF) and by permeabilization of the cells with digitonin. Under optimal shake-flask conditions using one of the H. polymorpha mutant strains, conversion of ethanol to acetaldehyde was nearly quantitative.  相似文献   

11.
Rates of exchange catalysed by alcohol dehydrogenase were determined in vivo in order to find rate-limiting steps in ethanol metabolism. Mixtures of [1,1-2H2]- and [2,2,2-2H3]ethanol were injected in rats with bile fistulas. The concentrations in bile of ethanols having different numbers of 2H atoms were determined by g.l.c.-m.s. after the addition of [2H6]ethanol as internal standard and formation of the 3,5-dinitrobenzoates. Extensive formation of [2H4]ethanol indicated that acetaldehyde formed from [2,2,2-2H3]ethanol was reduced to ethanol and that NADH used in this reduction was partly derived from oxidation of [1,1-2H2]ethanol. The rate of acetaldehyde reduction, the degree of labelling of bound NADH and the isotope effect on ethanol oxidation were calculated by fitting models to the found concentrations of ethanols labelled with 1-42H atoms. Control experiments with only [2,2,2-2H3]ethanol showed that there was no loss of the C-2 hydrogens by exchange. The isotope effect on ethanol oxidation appeared to be about 3. Experiments with (1S)-[1-2H]- and [2,2,2-2H3]ethanol indicated that the isotope effect on acetaldehyde oxidation was much smaller. The results indicated that both the rate of reduction of acetaldehyde and the rate of association of NADH with alcohol dehydrogenase were nearly as high as or higher than the net ethanol oxidation. Thus, the rate of ethanol oxidation in vivo is determined by the rates of acetaldehyde oxidation, the rate of dissociation of NADH from alcohol dehydrogenase, and by the rate of reoxidation of cytosolic NADH. In cyanamide-treated rats, the elimination of ethanol was slow but the rates in the oxidoreduction were high, indicating more complete rate-limitation by the oxidation of acetaldehyde.  相似文献   

12.
《Life sciences》1992,51(21):PL195-PL200
We have recently shown that Helicobacter pylori possesses marked alcohol dehydrogenase (ADH) activity and is capable - when incubated with an ethanol containing solution in vitro - of producing large amounts of acetaldehyde. In the present study we report that some drugs commonly used for the eradication of H. pylori and for the treatment of gastroduodenal diseases are potent ADH inhibitors and, consequently, effectively prevent bacterial oxidation of ethanol to acetaldehyde. Colloidal bismuth subcitrate (CBS), already at a concentration of 0.01 mM, inhibited H. pylori ADH by 93% at 0.5 M ethanol and decreased oxidation of 22 mM ethanol to acetaldehyde to 82% of control. At concentrations above 5 mM, CBS almost totally inhibited acetaldehyde formation. Omeprazole, a drug also known to suppress growth of H. pylori, also inhibited H. pylori ADH and suppressed bacterial acetaldehyde formation significantly to 69% of control at a drug concentration of 0.1 mM. By contrast, the H2-receptor antagonists ranitidine and famotidine showed only modest effect on bacterial ADH and acetaldehyde production. We suggest that inhibition of bacterial ADH and a consequent suppression of acetaldehyde production from endogenous or exogenous ethanol may be a novel mechanism by which CBS and omeprazole exert their effect both on the growth of H. pylori as well as on H. pylori associated gastric injury.  相似文献   

13.
The thermotolerant methylotrophic yeast Hansenula polymorpha is able to ferment xylose to ethanol at high temperatures. H. polymorpha xylose reductase and xylitol dehydrogenase are involved during the first steps of this fermentation. In this article, expression of bacterial xylA genes coding for xylose isomerases from Escherichia coli or Streptomyces coelicolor in the yeast H. polymorpha was shown. The expression was achieved by integration of the xylA genes driven by the promoter of the H. polymorpha glyceraldehyde-3-phosphate dehydrogenase gene ( HpGAP) into the H. polymorpha genome. Expression of the bacterial xylose isomerase genes restored the ability of the H. polymorpha Deltaxyl1 mutant to grow in a medium with xylose as the sole carbon source. This mutant has a deletion of the XYL1 gene encoding xylose reductase and is not able to grow in the xylose medium. The H. polymorpha Deltaxyl1(xylA) transformants displayed xylose isomerase activities, which were near 20% of that of the bacterial host strain. The transformants did not differ from the yeast wild-type strain with respect to ethanol production in xylose medium.  相似文献   

14.
Multiple alcohol dehydrogenases (ADH) were demonstrated in Acinetobacter sp. strain HO1-N. ADH-A and ADH-B were distinguished on the basis of electrophoretic mobility, pyridine nucleotide cofactor requirement, and substrate specificity. ADH-A is a soluble, NAD-linked, inducible ethanol dehydrogenase (EDH) exhibiting an apparent Km for ethanol of 512 microM and a Vmax of 138 nmol/min. An ethanol-negative mutant (Eth1) was isolated which contained 6.5% of wild-type EDH activity and was deficient in ADH-A. Eth1 exhibited normal growth on hexadecane and hexadecanol. A second ethanol-negative mutant (Eth3) was acetaldehyde dehydrogenase (ALDH) deficient, having 12.5% of wild-type ALDH activity. Eth3 had threefold-higher EDH activity than the wild-type strain. ALDH is a soluble, NAD-linked, ethanol-inducible enzyme which exhibited an apparent Km for acetaldehyde of 50 microM and a Vmax of 183 nmol/min. Eth3 exhibited normal growth on hexadecane, hexadecanol, and fatty aldehyde. ADH-B is a soluble, constitutive, NADP-linked ADH which was active with medium-chain-length alcohols. Hexadecanol dehydrogenase (HDH), a soluble and membrane-bound, NAD-linked ADH, was induced 5- to 11-fold by growth on hexadecane or hexadecanol. HDH exhibited apparent Kms for hexadecanol of 1.6 and 2.8 microM in crude extracts derived from hexadecane- and hexadecanol-grown cells, respectively. HDH was distinct from ADH-A and ADH-B, since HDH and ADH-A were not coinduced; Eth1 had wild-type levels of HDH; and HDH requires NAD, while ADH-B requires NADP. NAD- and NADP-independent HDH activity was not detected in the soluble or membrane fraction of extracts derived from hexadecane- or hexadecanol-grown cells. NAD-linked HDH appears to possess a functional role in hexadecane and hexadecanol dissimilation.  相似文献   

15.
The role of alcohol dehydrogenase (ADH) activity in ethanol toxicity was investigated in Drosophila melanogaster. Flies from three congenic Adh strains (high, medium, and low ADH activity) were allowed to deposit eggs on medium containing 0, 4, or 8% ethanol. The resulting larvae were allowed to complete their development in the medium, and emerging flies were examined for defects. Flies with high ADH activity had malformation incidences of 0.8, 2.4, and 5.2% at 0, 4, and 8% ethanol, respectively. The comparable incidences for the low ADH strain were 1.0, 4.1, and 8.4%, while those for the medium ADH strain were intermediate in value. These results indicate that ethanol teratogenesis may be inversely related to ADH activity. When larvae were treated with ethanol for different lengths of time during development, the incidence of defects in flies from the high ADH strain was 3.9% when exposure started at the first instar and 3.09% when exposure started at the third instar. Results of the same exposures for the intermediate ADH strain were 5.2 and 3.4%, respectively, while those for the low ADH strain were 6.9 and 5.5%, respectively. Thus, length of ethanol exposure was directly related to the increased incidence of malformations in all tested Drosophila strains. For all tested strains, defect incidences appeared to be dose-related as well, regardless of length of exposure. ADH in Drosophila has a dual function and thus can catalyze oxidation of both ethanol and its toxic metabolite, acetaldehyde. This suggests that ethanol is the proximate teratogen in Drosophila.  相似文献   

16.
The leaves of trees emit significant amounts of acetaldehyde which is synthesized there by the oxidation of ethanol. In the present study, we examined plant internal and environmental factors controlling the emission of acetaldehyde by the leaves of young poplar ( Populus tremula × P. alba ) trees. The enzymes possibly involved in the oxidation of ethanol in the leaves of trees are catalase (CAT; EC 1.11.1.6) and alcohol dehydrogenase (ADH; EC 1.1.1.1), both expressed constitutively in the leaves of poplars. Inhibition of ADH in excised leaves caused a significant decrease of acetaldehyde emission accompanied by an increased ethanol emission. Since inhibition of CAT by aminotriazole did not affect acetaldehyde and ethanol emission, it is concluded that the oxidation of ethanol in the leaves is mediated by ADH rather than by CAT. Further studies indicated that aldehyde dehydrogenase (ALDH; EC 1.2.1.5) seems to be responsible for the oxidation of acetaldehyde. The present results demonstrate that acetaldehyde emission is clearly dependent on its production in the leaves as controlled by the delivery of ethanol to the leaves via the transpiration stream. Environmental factors that control stomatal conductance seem to be of less importance for acetaldehyde emission by the leaves.  相似文献   

17.
Wild-type strains of the thermotolerant methylotrophic yeast Hansenula polymorpha are able to ferment glucose, cellobiose and xylose to ethanol. H. polymorpha most actively fermented sugars to ethanol at 37 degrees C, whereas the well-known xylose-fermenting yeast Pichia stipitis could not effectively ferment carbon substrates at this temperature. H. polymorpha even could ferment both glucose and xylose up to 45 degrees C. This species appeared to be more ethanol tolerant than P. stipitis but more susceptible than Saccharomyces cerevisiae. A riboflavin-deficient mutant of H. polymorpha increased its ethanol productivity from glucose and xylose under suboptimal supply with riboflavin. Mutants of H. polymorpha defective in alcohol dehydrogenase activity produced lower amounts of ethanol from glucose, whereas levels of ethanol production from xylose were identical for the wild-type strain and the alcohol dehydrogenase-defective mutant.  相似文献   

18.
Differences in the pharmacokinetics of alcohol absorption and elimination are, in part, genetically determined. There are polymorphic variants of the two main enzymes responsible for ethanol oxidation in liver, alcohol dehydrogenase and aldehyde dehydrogenase. The frequency of occurrence of these variants, which have been shown to display strikingly different catalytic properties, differs among different racial populations. Since the activity of alcohol dehydrogenase in liver is a rate-limiting factor for ethanol metabolism in experimental animals, it is likely that the type and content of the polymorphic isoenzyme subunit encoded at ADH2, beta-subunit, and at ADH3, the gamma-subunit, are contributing factors to the genetic variability in ethanol elimination rate. The recent development of methods for genotyping individuals at these loci using white cell DNA will allow us to test this hypothesis as well as any relationship between ADH genotype and the susceptibility to alcoholism or alcohol-related pathology. A polymorphic variant of human liver mitochondrial aldehyde dehydrogenase, ADLH2, which has little or no acetaldehyde oxidizing activity has been identified. Individuals with the deficient ALDH2 phenotype do not have altered ethanol elimination rates but they do exhibit high blood acetaldehyde levels and dysphoric symptoms such as facial flushing, nausea and tachycardia, after drinking alcohol. Because acetaldehyde is so reactive, it binds to free amino groups of proteins including a 37 kilodalton hepatic protein-acetaldehyde adduct and may elicit an antibody response. We would predict that individuals who have low ALDH2 activity because of liver disease or because they have the inactive ALDH2 variant isoenzyme might form more protein-acetaldehyde adducts and elicit a greater immune response. These adducts may represent good biological markers of alcohol abuse and may also play a role in liver injury due to chronic alcohol consumption.  相似文献   

19.

Objectives

Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH).

Methods

ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined.

Results

Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O2 •−. Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-α, Fas receptor, Fas L and cytosolic AIF.

Conclusions

Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.  相似文献   

20.
The green alga Chlamydomonas reinhardtii has numerous genes encoding enzymes that function in fermentative pathways. Among these, the bifunctional alcohol/acetaldehyde dehydrogenase (ADH1), highly homologous to the Escherichia coli AdhE enzyme, is proposed to be a key component of fermentative metabolism. To investigate the physiological role of ADH1 in dark anoxic metabolism, a Chlamydomonas adh1 mutant was generated. We detected no ethanol synthesis in this mutant when it was placed under anoxia; the two other ADH homologs encoded on the Chlamydomonas genome do not appear to participate in ethanol production under our experimental conditions. Pyruvate formate lyase, acetate kinase, and hydrogenase protein levels were similar in wild-type cells and the adh1 mutant, while the mutant had significantly more pyruvate:ferredoxin oxidoreductase. Furthermore, a marked change in metabolite levels (in addition to ethanol) synthesized by the mutant under anoxic conditions was observed; formate levels were reduced, acetate levels were elevated, and the production of CO(2) was significantly reduced, but fermentative H(2) production was unchanged relative to wild-type cells. Of particular interest is the finding that the mutant accumulates high levels of extracellular glycerol, which requires NADH as a substrate for its synthesis. Lactate production is also increased slightly in the mutant relative to the control strain. These findings demonstrate a restructuring of fermentative metabolism in the adh1 mutant in a way that sustains the recycling (oxidation) of NADH and the survival of the mutant (similar to wild-type cell survival) during dark anoxic growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号