首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
To elucidate gene regulation of flower colour formation, the gene expressions of the enzymes involved in flavonoid biosynthesis were investigated in correlation with their product during floral development in lisianthus. Full-length cDNA clones of major responsible genes in the central flavonoid biosynthetic pathway, including chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3',5'-hydroxylase (F3'5'H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and flavonol synthase (FLS), were isolated and characterized. In lisianthus, the stage of the accumulation of flavonols and anthocyanins was shown to be divided clearly. The flavonol content increased prior to anthocyanin accumulation during floral development and declined when anthocyanin began to accumulate. CHS, CHI, and F3H were necessary for both flavonol and anthocyanin biosynthesis and were coordinately expressed throughout all stages of floral development; their expressions were activated independently at the stages corresponding to flavonol accumulation and anthocyanin accumulation, respectively. Consistent with flavonol and anthocyanin accumulation patterns, FLS, a key enzyme in flavonol biosynthesis, was expressed prior to the expression of the genes involved in anthocyanin biosynthesis. The genes encoding F3'5'H, DFR, and ANS were expressed at later stages, just before pigmentation. The genes responsible for the flavonoid pathways branching to anthocyanins and flavonols were strictly regulated and were coordinated temporally to correspond to the biosynthetic order of their respective enzymes in the pathways, as well as in specific organs. In lisianthus, FLS and DFR, at the position of branching to flavonols and anthocyanins, were supposed to play a critical role in regulation of each biosynthesis.  相似文献   

4.
Flavonol glycosides constitute one of the most prominent plant natural product classes that accumulate in the model plant Arabidopsis thaliana. To date there are no reports of functionally characterized flavonoid glycosyltransferases in Arabidopsis, despite intensive research efforts aimed at both flavonoids and Arabidopsis. In this study, flavonol glycosyltransferases were considered in a functional genomics approach aimed at revealing genes involved in determining the flavonol-glycoside profile. Candidate glycosyltransferase-encoding genes were selected based on homology to other known flavonoid glycosyltransferases and two T-DNA knockout lines lacking flavonol-3-O-rhamnoside-7-O-rhamnosides (ugt78D1) and quercetin-3-O-rhamnoside-7-O-glucoside (ugt73C6 and ugt78D1) were identified. To confirm the in planta results, cDNAs encoding both UGT78D1 and UGT73C6 were expressed in vitro and analyzed for their qualitative substrate specificity. UGT78D1 catalyzed the transfer of rhamnose from UDP-rhamnose to the 3-OH position of quercetin and kaempferol, whereas UGT73C6 catalyzed the transfer of glucose from UDP-glucose to the 7-OH position of kaempferol-3-O-rhamnoside and quercetin-3-O-rhamnoside, respectively. The present results suggest that UGT78D1 and UGT73C6 should be classified as UDP-rhamnose:flavonol-3-Orhamnosyltransferase and UDP-glucose:flavonol-3-O-glycoside-7-O-glucosyltransferase, respectively.  相似文献   

5.
The seed coats of black soybean (Glycine max (L.) Merr.) accumulate red (cyanidin-), blue (delphinidin-), purple (petunidin-), and orange (pelargonidin-based) anthocyanins almost exclusively as 3-O-glucosides; however, the responsible enzyme has not been identified. In this study, the full-length cDNA which encodes the enzyme that catalyzes the final step in anthocyanin biosynthesis, namely UDP-glucose:flavonoid 3-O-glucosyltransferase (UGT78K1), was isolated from the seed coat tissue of black soybean using rapid amplification of cDNA ends (RACE). Of the 28 flavonoid substrates tested, the purified recombinant protein glucosylated only anthocyanidins and flavonols, and demonstrated strict 3-OH regiospecificity. Galactose could also be transferred with relatively low activity to the 3-position of cyanidin or delphinidin in vitro. These findings are consistent with previous reports of mainly 3-O-glucosylated and minor amounts of 3-O-galactosylated anthocyanins in the seed coat of black soybean. The recombinant enzyme exhibited pronounced substrate inhibition by cyanidin at 100 μM acceptor concentration. Transfer of UGT78K1 into the Arabidopsis T-DNA mutant (ugt78d2) deficient in anthocyanidin and flavonol 3-O-glucosyltransferase activity, restored the accumulation of anthocyanins and flavonols, suggesting the in vivo function of the enzyme as a flavonoid 3-O-glucosyltransferase. Genomic and phylogenetic analyses suggest the existence of three additional soybean sequences with high similarity to UGT78K1. RT-PCR confirmed the co-expression of one of these genes (Glyma08g07130) with UGT78K1 in the seed coat of black soybean, suggesting possible functional redundancies in anthocyanin biosynthesis in this tissue.  相似文献   

6.
Flavonol aglycones are required for pollen germination in petunia (Petunia hybrida L.). Mutant plants lacking chalcone synthase (CHS), which catalyzes the first committed step in flavonoid synthesis, do not accumulate flavonols and are self-sterile. The mutant pollen can be induced to germinate by supplementing it with kaempferol, a flavonol aglycone, either at the time of pollination or by addition to an in vitro germination system. Biochemical complementation occurs naturally when the mutant, flavonol-deficient pollen is crossed to wild-type, flavonoid-producing stigmas. We found that successful pollination depends on stigma maturity, indicating that flavonol aglycone accumulation may be developmentally regulated. Quantitative immunoblotting, in vitro and in vivo pollen germination, and high-performance liquid chromatographic analyses of stigma and anther extracts were used to determine the relationship between CHS levels and flavonol aglycone accumulation in developing petunia flowers. Although substantial levels of CHS were measured, we detected no flavonol aglycones in wild-type stigma or anther extracts. Instead, the occurrence of a conjugated form (flavonol glycoside) suggests that a mechanism may operate to convert glycosides to the active aglycone form.  相似文献   

7.
8.
Anthocyanins are major color pigments in plants. Their biosynthetic pathways are well established, and the majority of these biosynthetic enzymes have been identified in model plants such asArabidopsis, maize, and petunia. One exception inArabidopsis is UDP-glucose:flavonoid 3-O-glucosyltransferase (UF3GT). This enzyme is known as Bronze-1 (Bz1 ) in maize, where it converts anthocyanidins to anthocyanins. Phylogenetic sequence analysis of theArabidopsis thaliana UDP-glycosyltransferase (UGT) family previously indicated that UGT78D1, UGT78D2, and UGT78D3 cluster together with UF3GTs from other species. Here, we report thatUGT78D2 encodes a cytosolic UGT that is functionally consistent with maize Bz-1. Biochemically, UGT78D2 catalyzes the glucosylation of both flavonols and anthocyanidins at the 3-OH position. A T-DNA-insertedugt78d2 mutant accumulates very little anthocyanin and lacks 3-O-glucosylated quercetin. Expression analysis indicated thatUGT78D2, in opposite toBANYULS, is highly expressed in anthocyanin-accumulating seedlings but repressed in condensed tannin-accumulating seed coats. This suggests that the reciprocal regulation of these two genes is important in directing the metabolic flux to either anthocyanins or condensed tannins. Consistent with this, the ectopic expression of UGT78D2 produces purple-colored seed coats due to the accumulation of anthocyanins. Taken together, our data indicate thatUGT78D2 encodes an enzyme equivalent to maize Bz1, and that the reciprocal regulation of UGT78D2 and BANYULS is critical for the regulation of metabolic flux of anthocyanidins inArabidopsis.  相似文献   

9.
Flavonoids are a diverse group of phenolic secondary metabolites that occur naturally in plants and therefore form an integral component of the human diet. Many of the compounds belonging to this group are potent antioxidants in vitro and epidemiological studies suggest a direct correlation between high flavonoid intake and decreased risk of cardiovascular disease, cancer and other age-related diseases. Enhancing flavonoid biosynthesis in chosen crops may provide new raw materials that have the potential to be used in foods designed for specific benefits to human health. Using genetic modification, it was possible to generate several tomato lines with significantly altered flavonoid content and to probe the role and importance of several key enzymatic steps in the tomato flavonoid biosynthetic pathway. Most notably an up to 78-fold increase in total fruit flavonols was achieved through ectopic expression of a single biosynthetic enzyme, chalcone isomerase. In addition, chalcone synthase and flavonol synthase transgenes were found to act synergistically to up-regulate flavonol biosynthesis significantly in tomato flesh tissues.  相似文献   

10.
UDP‐glucose: anthocyanidin 3‐O‐glucosyltransferase (UGT78K6) from Clitoria ternatea catalyzes the transfer of glucose from UDP‐glucose to anthocyanidins such as delphinidin. After the acylation of the 3‐O‐glucosyl residue, the 3′‐ and 5′‐hydroxyl groups of the product are further glucosylated by a glucosyltransferase in the biosynthesis of ternatins, which are anthocyanin pigments. To understand the acceptor‐recognition scheme of UGT78K6, the crystal structure of UGT78K6 and its complex forms with anthocyanidin delphinidin and petunidin, and flavonol kaempferol were determined to resolutions of 1.85 Å, 2.55 Å, 2.70 Å, and 1.75 Å, respectively. The enzyme recognition of unstable anthocyanidin aglycones was initially observed in this structural determination. The anthocyanidin‐ and flavonol‐acceptor binding details are almost identical in each complex structure, although the glucosylation activities against each acceptor were significantly different. The 3‐hydroxyl groups of the acceptor substrates were located at hydrogen‐bonding distances to the Nε2 atom of the His17 catalytic residue, supporting a role for glucosyl transfer to the 3‐hydroxyl groups of anthocyanidins and flavonols. However, the molecular orientations of these three acceptors are different from those of the known flavonoid glycosyltransferases, VvGT1 and UGT78G1. The acceptor substrates in UGT78K6 are reversely bound to its binding site by a 180° rotation about the O1–O3 axis of the flavonoid backbones observed in VvGT1 and UGT78G1; consequently, the 5‐ and 7‐hydroxyl groups are protected from glucosylation. These substrate recognition schemes are useful to understand the unique reaction mechanism of UGT78K6 for the ternatin biosynthesis, and suggest the potential for controlled synthesis of natural pigments.  相似文献   

11.
Colliver  S.  Bovy  A.  Collins  G.  Muir  S.  Robinson  S.  de Vos  C.H.R.  Verhoeyen  M.E. 《Phytochemistry Reviews》2002,1(1):113-123
Flavonoids are a diverse group of phenolic secondary metabolites that occur naturally in plants and therefore form an integral component of the human diet. Many of the compounds belonging to this group are potent antioxidants in vitro and epidemiological studies suggest a direct correlation between high flavonoid intake and decreased risk of cardiovascular disease, cancer and other age-related diseases. Modifying flavonoid biosynthesis in chosen crops may provide new raw materials that have the potential to be used in foods designed for specific benefits to human health. We report that flavonoid biosynthesis in tomato fruit is subject to tissue specific and developmental regulation. Using transgenic modification, we have investigated the role of several of the enzymatic steps of tomato flavonol biosynthesis. Furthermore, we have generated several tomato lines with significantly altered flavonoid content. Most notably achieving an up to 78-fold increase in total fruit flavonols through ectopic expression of the biosynthetic enzyme, chalcone isomerase. This increase results principally from the accumulation of quercetin-glycosides in peel tissue. In addition, we report that chalcone synthase and flavonol synthase transgenes act synergistically to significantly up-regulate flavonol biosynthesis in tomato flesh tissues. A review of this work is presented in this paper.  相似文献   

12.
Many higher plants, including Arabidopsis, transiently display purple anthocyanin pigments just after seed germination. We observed that steady state levels of mRNAs encoded by four flavonoid biosynthetic genes, PAL1 (encoding phenylalanine ammonia-lyase 1), CHS (encoding chalcone synthase), CHI (encoding chalcone isomerase), and DFR (encoding dihydroflavonol reductase), were temporally regulated, peaking in 3-day-old seedlings grown in continuous white light. Except for the case of PAL1 mRNA, mRNA levels for these flavonoid genes were very low in seedlings grown in darkness. Light induction studies using seedlings grown in darkness showed that PAL1 mRNA began to accumulate before CHS and CHI mRNAs, which, in turn, began to accumulate before DFR mRNA. This order of induction is the same as the order of the biosynthetic steps in flavonoid biosynthesis. Our results suggest that the flavonoid biosynthetic pathway is coordinately regulated by a developmental timing mechanism during germination. Blue light and UVB light induction experiments using red light- and dark-grown seedlings showed that the flavonoid biosynthetic genes are induced most effectively by UVB light and that blue light induction is mediated by a specific blue light receptor.  相似文献   

13.
蔗糖调节拟南芥花青素的生物合成   总被引:1,自引:0,他引:1  
为了探讨糖在花青素合成过程中的调节作用,采用蔗糖和其代谢糖(葡萄糖 和果糖)组合处理拟南芥幼苗.实验结果表明,60 mmol/L蔗糖处理显著提高拟南芥 幼苗的花青素、还原糖含量,并上调花青素合成相关基因(CHS, FLS-1, DFR, LDOX, BANYULS)的转录,对叶绿素含量和UGT78D2基因的转录无影响;20 mmol/L 葡萄糖+20 mmol/L果糖处理,对花青素、叶绿素和还原糖的含量无影响,对花青素 合成相关基因转录影响不一;20 mmol/L蔗糖+20 mmol/L葡萄糖+20 mmol/L果糖处 理后,花青素和还原糖含量介于前两个处理之间,也上调花青素合成相关基因的转 录;但和蔗糖处理组相比,上调UGT78D2基因转录,下调FLS-1基因转录.在不同处 理组之间,花青素含量变化和还原糖含量变化趋势相同,有可能糖在调节花青素 合成的同时也调节还原糖含量.因此,蔗糖既可以通过蔗糖特异信号途径,也可以 和其代谢糖通过其他途径共同调节拟南芥花青素的生物合成.  相似文献   

14.
Flavonol 3‐O‐diglucosides with a 1→2 inter‐glycosidic linkage are representative pollen‐specific flavonols that are widely distributed in plants, but their biosynthetic genes and physiological roles are not well understood. Flavonoid analysis of four Arabidopsis floral organs (pistils, stamens, petals and calyxes) and flowers of wild‐type and male sterility 1 (ms1) mutants, which are defective in normal development of pollen and tapetum, showed that kaempferol/quercetin 3‐O‐β‐d ‐glucopyranosyl‐(1→2)‐β‐d ‐glucopyranosides accumulated in Arabidopsis pollen. Microarray data using wild‐type and ms1 mutants, gene expression patterns in various organs, and phylogenetic analysis of UDP‐glycosyltransferases (UGTs) suggest that UGT79B6 (At5g54010) is a key modification enzyme for determining pollen‐specific flavonol structure. Kaempferol and quercetin 3‐O‐glucosyl‐(1→2)‐glucosides were absent from two independent ugt79b6 knockout mutants. Transgenic ugt79b6 mutant lines transformed with the genomic UGT79B6 gene had the same flavonoid profile as wild‐type plants. Recombinant UGT79B6 protein converted kaempferol 3‐O‐glucoside to kaempferol 3‐O‐glucosyl‐(1→2)‐glucoside. UGT79B6 recognized 3‐O‐glucosylated/galactosylated anthocyanins/flavonols but not 3,5‐ or 3,7‐diglycosylated flavonoids, and prefers UDP‐glucose, indicating that UGT79B6 encodes flavonoid 3‐O‐glucoside:2″‐O‐glucosyltransferase. A UGT79B6‐GUS fusion showed that UGT79B6 was localized in tapetum cells and microspores of developing anthers.  相似文献   

15.
Enhanced shoot growth and a decrease in flavonoid concentration in apple trees grown under high nitrogen (N) supply was observed in previous studies, along with increasing scab susceptibility of cultivar "Golden Delicious" after high N nutrition. Several hypotheses have suggested that there is a trade-off between primary and secondary metabolism because of competition for common substrates, but nothing is known about regulation at the enzyme level. In this study, a set of experiments was performed to elucidate the effect of N nutrition on the activities of key enzymes involved in flavonoid biosynthesis (phenylalanine ammonia-lyase [PAL], chalcone synthase/chalcone isomerase [CHS/CHI}, flavanone 3-hydroxylase [FHT], flavonol synthase [FLS], dihydroflavonol 4-reductase [DFR]) and the accumulation of different groups of phenylpropanoids. The inhibition of flavonoid accumulation by high N nutrition could be confirmed, but the influence of N supply on the flavonoid enzymes CHS/CHI, FHT, DFR, and FLS was not evident. However, PAL activity seems to be downregulated, thus forming a bottleneck resulting in a generally decreased flavonoid accumulation. Furthermore, the response of the scab-resistant cultivar "Rewena" to high N nutrition was not as strong as that of the susceptible cultivar "Golden Delicious".  相似文献   

16.
Flavonols form an important class of flavonoids which serve an essential function during plant reproduction. Flavonoid biosynthesis is initiated by the enzyme chalcone synthase (CHS). A high abundance of flavonols and chs mRNA was demonstrated in male and female reproductive organs of Petunia hybrida. Detailed analyses revealed precise spatial and temporal regulation of the chs promoter and flavonol synthesis in the stigma, style and ovules. Transgenic plants were generated with a complete block of flavonol biosynthesis as the result of anti-sense inhibition of chs gene activity. The absence of flavonols by this dominant mutation rendered these plants self-sterile. Pollination experiments with wild-type and mutant plants revealed that the production of flavonols in either the anthers or the pistils was required for pollen tube growth and seed set. Mutant pollen without flavonols in their exine germinated normally. However, after a short period of in vitro pollen tube growth the tips of these tubes disrupted and the protoplasm was disloaded leading to the death of the pollen grain. Addition of flavonol aglycones but not other flavonoids complemented this phenotype. Confocal laser scanning microscopy revealed the localization of high levels of flavonols throughout the wild-type pollen tube. These compounds were not detected in the exine or cell wall of growing tubes. In addition, it was observed that the flavone apigenin could completely inhibit pollen tube growth. Taken together, it is shown that flavonols play an important role in the growth of the pollen tube and their mode of action is discussed.  相似文献   

17.
18.
W1, W3, W4, and Wm genes control flower color, whereas T and Td genes control pubescence color in soybean. W1, W3, Wm, and T are presumed to encode flavonoid 3'5'-hydroxylase (EC 1.14.13.88), dihydroflavonol 4-reductase (EC 1.1.1.219), flavonol synthase (EC 1.14.11.23), and flavonoid 3'-hydroxylase (EC 1.14.13.21), respectively. The objective of this study was to determine the structure of the primary anthocyanin, flavonol, and dihydroflavonol in flower petals. Primary component of anthocyanin in purple flower cultivars Clark (W1W1 w3w3 W4W4 WmWm TT TdTd) and Harosoy (W1W1 w3w3 W4W4 WmWm tt TdTd) was malvidin 3,5-di-O-glucoside with delphinidin 3,5-di-O-glucoside as a minor compound. Primary flavonol and dihydroflavonol were kaempferol 3-O-gentiobioside and aromadendrin 3-O-glucoside, respectively. Quantitative analysis of near-isogenic lines (NILs) for flower or pubescence color genes, Clark-w1 (white flower), Clark-w4 (near-white flower), Clark-W3w4 (dilute purple flower), Clark-t (gray pubescence), Clark-td (near-gray pubescence), Harosoy-wm (magenta flower), and Harosoy-T (tawny pubescence) was carried out. No anthocyanins were detected in Clark-w1 and Clark-w4, whereas a trace amount was detected in Clark-W3w4. Amount of flavonols and dihydroflavonol in NILs with w1 or w4 were largely similar to the NILs with purple flower suggesting that W1 and W4 affect only anthocyanin biosynthesis. Amount of flavonol glycosides was substantially reduced and dihydroflavonol was increased in Harosoy-wm suggesting that Wm is responsible for the production of flavonol from dihydroflavonol. The recessive wm allele reduces flavonol amount and inhibits co-pigmentation between anthocyanins and flavonols resulting in less bluer (magenta) flower color. Pubescence color genes, T or Td, had no apparent effect on flavonoid biosynthesis in flower petals.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号