首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkyl and trifluoromethyl derivatives of 4-aminobiphenyl (1) (4ABP) and 2-aminofluorene (7) (2AF) were synthesised and assayed for mutagenicity using Salmonella typhimurium tester strains TA98 and TA100 with and without the addition of S9 mix. Modification of 1 was achieved by attachment of alkyl groups (methyl, ethyl, iso-propyl, n-butyl, tert-butyl) and a trifluoromethyl group (CF(3)) in the 4'-position, the 3'-position (Me, CF(3)) and the 3'-, 5'-positions (DiMe, DiCF(3)). Compound 7 was modified by introduction of alkyl groups (methyl, tert-butyl, adamantyl) and a trifluoromethyl group (CF(3)) in the 7-position. The derivatives of 1 and 7 show for groups with growing steric demand decreased mutagenic activity. The bulkiest groups (CF(3), tert-butyl and adamantyl) induce the strongest effects on the mutagenicity. It was even possible to eliminate the mutagenicity of 1 and 7 by introduction of such substituents. In the last part of the work, we compared the experimental mutagenicities with calculated values derived from QSAR correlations. Our findings show that the predictions for aromatic amines with bulky substituents were generally too high. The strongest deviations were observed in the case of the CF(3)-, tert-butyl- and the adamantyl-group. Only the parent compounds and derivatives with small alkyl groups were predicted well. These investigations show that "large" substituents have an influence on the mutagenicity caused by their steric demand. To predict the correct mutagenicities of such compounds, it is necessary to introduce steric parameters in the respective QSAR equations which will be done in a forthcoming paper.  相似文献   

2.
3.
Surflex-Dock was applied to study interactions between 30 thiourea analogs and neuraminidase (NA). The docking results showed that hydrogen bonding and electrostatic interactions were highly correlated with the activities of neuraminidase inhibitors (NIs), followed by hydrophobic and steric factors. Moreover, there was a strong correlation between the predicted binding affinity (total score) and experimental pIC50 (correlation coefficient r = 0.870; P < 0.0001). A three dimensional holographic vector of atomic interaction field (3D-HoVAIF) was employed to construct a QSAR model. The r 2, q 2 and r 2 test values of the optimal QSAR model were 0.849, 0.724 and 0.689, respectively. From the QSAR model, it could be seen that electrostatic, hydrophobic and steric interactions were closely related to inhibitory activity, which was consistent with the docking results. Based on the docking and QSAR results, five new compounds with high predicted activities were designed.  相似文献   

4.
Phosphodiesterase10A (PDE10A) is an important enzyme with diverse biological actions in intracellular signaling systems, making it an emerging target for diseases such as schizophrenia, Huntington's disease, and diabetes mellitus. The objective of the current 3D QSAR study is to uncover some of the structural parameters which govern PDE10A inhibitory activity over PDE3A/B. Thus, comparative molecular field analysis (CoMFA) and hologram quantitative structure-activity relationship (HQSAR) studies were carried out on recently reported 6,7-dimethoxy-4-pyrrolidylquinazoline derivatives as PDE10A inhibitors. The best CoMFA model using atom-fit alignment approach with the bound conformation of compound 21 as the template yielded the steric parameter as a major contributor (nearly 70%) to the observed variations in biological activity. The best CoMFA model produced statistically significant results, with the cross-validated (r(cv)(2)) and conventional correlation (r(ncv)(2)) coefficients being 0.557 and 0.991, respectively, for the 21 training set compounds. Validation of the model by external set of six compounds yielded a high (0.919) predictive value. The CoMFA models of PDE10A and PDE3A/B activity were compared in order to address the selectivity issue of these inhibitors. The best HQSAR model for PDE10A was obtained with an r(cv)(2) of 0.704 and r(ncv)(2) of 0.902 using atoms, bonds, connections, chirality, donor, and acceptor as fragment distinction and default fragment size of 4-7 with three components for the 21 compounds. The HQSAR model predicted the external test-set of compounds well since a good agreement between the experimental and predicted values was verified. Taken together, the present QSAR models were found to accurately predict the PDE10A inhibitory activity of the test-set compounds and to yield reliable clues for further optimization of the quinazoline derivatives in the dataset.  相似文献   

5.
Molecular docking and 3D-QSAR analyses were performed to understand how PDE5 and PDE6 interact with a series of (49) cyclic guanine derivatives. Using the conformations of the compounds revealed by molecular docking, CoMFA and CoMSIA analyses resulted in the first quantitative structure-activity relationship (QSAR) and first quantitative structure-selectivity relationship (QSSR) models (with high cross-validated correlation coefficient q(2) and conventional correlation coefficient r(2) values) for predicting the inhibitory activity against PDE5 and the selectivity against PDE6. The high q(2) and r(2) values, along with further testing, indicate that the obtained 3D-QSAR and 3D-QSSR models will be valuable in predicting both the inhibitory activity and selectivity of cyclic guanine derivatives for these protein targets. A set of 3D contour plots drawn based on the 3D-QSAR and 3D-QSSR models reveal some useful clues to improve both the activity and selectivity by modifying structures of the compounds. It has been demonstrated that both the steric and electrostatic factors should appropriately be taken into account in future rational design and development of more active and more selective PDE5 inhibitors for the therapeutic treatment of erectile dysfunction (ED).  相似文献   

6.
This paper is an attempt to design 4-anilinoquinazoline compounds having promising anticancer activities against epidermal growth factor (EGFR) kinase inhibition, using virtual combinatorial library approach. Partial least squares method has been applied for the development of a quantitative structure–activity relationship (QSAR) model based on training and test set approaches. The partial least squares model showed some interesting results in terms of internal and external predictability against EGFR kinase inhibition for such type of anilinoquinazoline derivatives. In virtual screening study, out of 4860 compounds in chemical library, 158 compounds were screened and finally, 10 compounds were selected as promising EGFR kinase inhibitors based on their predicted activities from the QSAR model. These derivatives were subjected to molecular docking study to investigate the mode of binding with the EGFR kinase, and the two compounds (ID 3639 and 3399) showing similar type of docking score and binding patterns with that of the existing drug molecules like erlotinib were finally reported.  相似文献   

7.
8.
QSAR analysis based on classical Hansch approach was adopted on two recently reported novel series of 2-phenylpyran-4-ones as selective cyclooxygenase-2 (COX-2) inhibitors. The 6-methyl derivatives of title compounds bifurcate as 3-phenoxypyran-4-ones (subset A) and 3-phenylpyran-4-ones (subset B) among series 1. Series 2 consists of 5-chloro derivatives of title compounds. Various regression equations were derived to study the influence of phenoxy and phenyl ring substituents of series 1 compounds on COX-2, COX-1 and selective COX-2 over COX-1 inhibitory activity. The best triparametric equation derived for 36 compounds of series 1 explains the hydrophobic, electronic and steric requirements for improved COX-2 inhibitory activity. QSAR model derived to explore the selective COX-2 over COX-1 inhibition showed that selectivity could be influenced by size and lipophilicity of substituents. The size of the first atom of 2 substituents appears to have negative effect on selectivity, whereas highly polar 3 substituents at R are favorable for improved selectivity. QSAR investigations on series 2 compounds revealed some interesting correlation of COX-2 inhibitory activity with calculated physicochemical properties of whole molecules. The positive logP confirms the hydrophobic interaction of series 2 compounds with COX-2 enzyme. The positive MR term indicates that an overall increase in size and polarizabilty of the molecules increases COX-2 inhibitory activity. The positive contribution of structural variable suggests biphenyl analogs are extremely potent COX-2 inhibitors.  相似文献   

9.
10.
Alkyl-substituted derivatives of 2-aminonaphthalene (2-AN) 1, 2-aminofluorene (2-AF) 6 and 4-aminobiphenyl (4-ABP) 11 were synthesized and the mutagenic activity of these compounds determined in Salmonella typhimurium strains TA98 and TA100 with and without S9 mix. In the case of the ortho-substituted 4-aminobiphenyls 12-15 (3-alkyl=ethyl, iso-propyl, n-butyl, tert-butyl) the substituent with the strongest steric demand (3-tert-butyl) shows the strongest influence on the decrease of mutagenicity if compared with the parent compound. In the series of the bis-ortho-disubstituted compounds 16-18 (3,5-dimethyl-, 3,5-diethyl- and 3,5-diisopropyl-4-aminobiphenyl) generation of non-mutagenic species occurs already with the introduction of two ethyl groups. For the 4-aminobiphenyl derivatives 12-15 and 16-18, as well as for the 1-alkylated 2-aminofluorenes 7-10 and the 1-alkylated 2-aminonaphthalenes 2-5 a smaller mutagenicity was observed if compared with predicted mutagenicities as calculated by the QSAR equations of Debnath et al. (Environ. Mol. Mutagen. 19 (1992) 37). The largest differences resulted in the cases of the tert-butyl substituted compounds. Only with smaller alkyl groups like ethyl the QSAR predictions and the experimentally determined mutagenicities come close to each other. Thus, these results show that appropriate alkyl substitution reduces (eliminates) mutagenicity, secondly, it is necessary to introduce steric parameters to predict the mutagenicity of such compounds correctly.  相似文献   

11.
Following our research for human dihydroorotate dehydrogenase (hDHODH) inhibitors as anticancer agents, herein we describe 3D QSAR-based design, synthesis and in vitro screening of 2-,4,-6-, and/or 7-substituted quinoline derivatives as hDHODH inhibitors and anticancer agents. We have designed 2-,4,-6-, and/or 7-substituted quinoline derivatives and predicted their hDHODH inhibitory activity based on 3D QSAR study on 45 substituted quinoline derivatives as hDHODH inhibitors, and also predicted toxicity. Designed compounds were docked into the binding site of hDHODH. Designed compounds which showed good predictive activity, no toxicity, and good docking score were selected for the synthesis, and in vitro screening as hDHODH inhibitors in an enzyme inhibition assay, and anticancer agents in MTT assay against cancer cell lines (HT-29 and MDA-MB-231). Synthesized compounds 7 and 14 demonstrated IC50 value of 1.56?µM and 1.22?µM, against hDHODH, respectively, and these are our lead compounds for the development of new hDHODH inhibitors and anticancer agents.  相似文献   

12.
3D-QSAR and molecular docking analysis were performed to explore the interaction of estrogen receptors (ERα and ERβ) with a series of 3-arylquinazolinethione derivatives. Using the conformations of these compounds revealed by molecular docking, CoMFA analysis resulted in the first quantitative structure-activity relationship (QSAR) and first quantitative structure-selectivity relationship (QSSR) models predicting the inhibitory activity against ERβ and the selectivity against ERá. The q2 and R2 values, along with further testing, indicate that the obtained 3D-QSAR and 3D-QSSR models will be valuable in predicting both the inhibitory activity and selectivity of 3-arylquinazolinethione derivatives for these protein targets. A set of 3D contour plots drawn based on the 3D-QSAR and 3D-QSSR models reveal modifications of substituents at C2 and C5 of the quinazoline which my be useful to improve both the activity and selectivity of ERβ/ ERα. Results showed that both the steric and electrostatic factors should appropriately be taken into account in future rational design and development of more active and more selective ERβ inhibitors for the therapeutic treatment of osteoporosis. Figure Structures of ERβ binding with compounds 1aar, 1ax and 1aag obtained from molecular docking  相似文献   

13.
Although several flavonoids have been reported to exert inhibitory effects on influenza H1N1 neuraminidase (NA), little is known about the structure-activity relationship and binding mode. Three dimensional QSAR (quantitative structure-activity relationship) and molecular docking approaches were applied to explore the structural requisites of flavone derivatives for NA inhibitory activity. A meaningful QSAR model with R(2) of 0.5968, Q(2) of 0.6457, and Pearson-R value of 0.8679, was constructed. From the QSAR model, it could be seen how 6-OH, 3'-OH, 4'-OH, and 8-position substituent affect the NA inhibitory activity. Molecular docking study between the most active compound and NA suggested that hydrogen bonds, hydrophobic and electrostatic interactions were closely related to NA inhibitory activity, 5-OH and 7-OH may be essential for this activity. The results provide a set of useful guidelines for the rational design of novel NA inhibitors.  相似文献   

14.
In the present work, QSAR models for predicting the activities of ursolic acid analogs against human lung (A-549) and CNS (SF-295) cancer cell lines were developed by a forward stepwise multiple linear regression method using a leave-one-out approach. The regression coefficient (r(2)) and the cross-validation regression coefficient (rCV(2)) of the QSAR model for cytotoxic activity against the human lung cancer cell line (A-549) were 0.85 and 0.80, respectively. The QSAR study indicated that the LUMO energy, ring count, and solvent-accessible surface area were strongly correlated with anticancer activity. Similarly, the QSAR model for cytotoxic activity against the human CNS cancer cell line (SF-295) also showed a high correlation (r(2) = 0.99 and rCV(2) = 0.96), and indicated that dipole vector and solvent-accessible surface area were strongly correlated with activity. Ursolic acid analogs that were predicted to be active against these cancer cell lines by the QSAR models were semisynthesized and characterized on the basis of their (1)H and (13)C NMR spectroscopic data, and were then tested in vitro against the human lung (A-549) and CNS (SF-295) cancer cell lines. The experimental results obtained agreed well with the predicted values.  相似文献   

15.
To develop novel antimicrobial agents a series of 2(4)-hydrazone derivatives of quinoline were designed, synthesized and tested. QSAR models of the antibacterial activity of quinoline derivatives were developed by the OCHEM web platform using different machine learning methods. A virtual set of quinoline derivatives was verified with a previously published classification model of anti-E. coli activity and screened using the regression model of anti-S. aureus activity. Selected and synthesized 2(4)-hydrazone derivatives of quinoline exhibited antibacterial activity against the standard and antibiotic-resistant S. aureus and E. coli strains in the range from 15 to 30 mm by the diameter of growth inhibition zones. Molecular docking showed the complex formation of the studied compounds into the catalytic domain of dihydrofolate reductase with an estimated binding affinity from −8.4 to −9.4 kcal/mol.  相似文献   

16.
17.
Seven new derivatives of diindenopyridine were synthesized by Hantsch pyridine synthesis. Their biological activity to inhibit cell proliferation was assessed by MTT assay on seven cell lines. 11-(4-Fluoro-phenyl)-diindeno[1,2-b;2',1'-e]pyridine-10,12-dione and 11-(2-nitro-phenyl)-diindeno[1,2-b;2',1'-e]pyridine-10,12-dione were active on K-562 cell line with IC50 values of 79.66 and 78.2 microM, respectively. Effect of structural parameters on the cytotoxicity was evaluated by quantitative structure activity relationship (QSAR) analysis and a linear relationship was found between the -logIC15 of these compounds and their surface area and molar refractivity. To model the DNA-intercalator complex, force field molecular mechanic calculation was employed and the binding energy of the reaction between the intercalating agent and each reasonable double base pairs of DNA was calculated. It was found that these molecules could intercalate into the DNA. Also, it was observed that 11-(2-nitro-phenyl)-diindeno[1,2-b;2',1'-e]pyridine-10,12-dione, which showed the highest activity in K-562 cell line, produced the most negative binding energy with a moderate selectivity toward A-G/T-C double base pairs.  相似文献   

18.
In this study, two series of 35 new chalcone derivatives containing aryl-piperazine or aryl-sulfonyl-piperazine fragment were synthesized and their structures were characterized by 1H, 13C and ESI-MS. The in vivo and in vitro anti-inflammatory activities of target compounds were evaluated by using classical para-xylene-induced mice ear-swelling model and ELISA assays. Furthermore, docking studies were performed in COX-2 (4PH9). The in vivo anti-inflammatory assays indicated that most of the target compounds showed significant anti-inflammatory activities. Docking results revealed that the anti-inflammatory activities of compounds correlated with their docking results. Especially, compound 6o exhibited the most potent anti-inflammatory activity in vivo with the lowest docking score of ?17.4 kcal/mol and could significantly inhibit the release of LPS-induced IL-6 and TNF-α in a dose-dependent manner in vitro.  相似文献   

19.
20.
Many protein kinase (PK) inhibitors have been reported in recent years, but only a few have been approved for clinical use. The understanding of the available molecular information using computational tools is an alternative to contribute to this process. With this in mind, we studied the binding modes of 77 maleimide derivates inside the PK glycogen synthase kinase 3 beta (GSK3β) using docking experiments. We found that the orientations that these compounds adopt inside GSK3β binding site prioritize the formation of hydrogen bond (HB) interactions between the maleimide group and the residues at the hinge region (residues Val135 and Asp133), and adopt propeller-like conformations (where the maleimide is the propeller axis and the heterocyclic substituents are two slanted blades). In addition, quantitative structure–activity relationship (QSAR) models using CoMSIA methodology were constructed to explain the trend of the GSK3β inhibitory activities for the studied compounds. We found a model to explain the structure–activity relationship of non-cyclic maleimide (NCM) derivatives (54 compounds). The best CoMSIA model (training set included 44 compounds) included steric, hydrophobic, and HB donor fields and had a good Q2 value of 0.539. It also predicted adequately the most active compounds contained in the test set. Furthermore, the analysis of the plots of the steric CoMSIA field describes the elements involved in the differential potency of the inhibitors that can be considered for the selection of suitable inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号