首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ventriglia F 《Bio Systems》2006,86(1-3):38-45
Global oscillations of the neural field represent some of the most interesting expressions of the hippocampal activity, being related also to learning and memory. To study oscillatory activities of the CA3 field in theta range, a model of this sub-field of Hippocampus has been formulated. The model describes the firing activity of CA3 neuronal populations within the frame of a kinetic theory of neural systems and it has been used for computer simulations. The results show that the propagation of activities induced in the neural field by hippocampal afferents occurs only in narrow time windows confined by inhibitory barrages, whose time-course follows the theta rhythm. Moreover, during each period of a theta wave, the entire CA3 field bears a firing activity with peculiar space-time patterns, a sort of specific imprint, which can induce effects with similar patterns on brain regions driven by the hippocampal formation. The simulation has also demonstrated the ability of medial septum to influence the global activity of the CA3 pyramidal population through the control of the population of inhibitory interneurons. At last, the possible involvement of global population oscillations in neural coding has been discussed.  相似文献   

2.
Zhang L  Chen G  Niu R  Wei W  Ma X  Xu J  Wang J  Wang Z  Lin L 《Hippocampus》2012,22(8):1781-1793
The two-dipole model of theta generation in hippocampal CA1 suggests that the inhibitory perisomatic theta dipole is generated by local GABAergic interneurons. Various CA1 interneurons fire preferentially at different theta phases, raising the question of how these theta-locked interneurons contribute to the generation of theta oscillations. We here recorded interneurons in the hippocampal CA1 area of freely behaving mice, and identified a unique subset of theta-locked interneurons by using the Granger causality approach. These cells fired in an extremely reliable theta-burst pattern at high firing rates (~90 Hz) during exploration and always locked to ascending phases of the theta waves. Among theta-locked interneurons we recorded, only these cells generated strong Granger causal influences on local field potential (LFP) signals within the theta band (4-12 Hz), and the influences were persistent across behavioral states. Our results suggest that this unique type of theta-locked interneurons serve as the local inhibitory theta dipole control cells in shaping hippocampal theta oscillations.  相似文献   

3.
Reduction of excitatory currents onto GABAergic interneurons in the forebrain results in impaired spatial working memory and altered oscillatory network patterns in the hippocampus. Whether this phenotype is caused by an alteration in hippocampal interneurons is not known because most studies employed genetic manipulations affecting several brain regions. Here we performed viral injections in genetically modified mice to ablate the GluA4 subunit of the AMPA receptor in the hippocampus (GluA4(HC-/-) mice), thereby selectively reducing AMPA receptor-mediated currents onto a subgroup of hippocampal interneurons expressing GluA4. This regionally selective manipulation led to a strong spatial working memory deficit while leaving reference memory unaffected. Ripples (125-250 Hz) in the CA1 region of GluA4(HC-/-) mice had larger amplitude, slower frequency and reduced rate of occurrence. These changes were associated with an increased firing rate of pyramidal cells during ripples. The spatial selectivity of hippocampal pyramidal cells was comparable to that of controls in many respects when assessed during open field exploration and zigzag maze running. However, GluA4 ablation caused altered modulation of firing rate by theta oscillations in both interneurons and pyramidal cells. Moreover, the correlation between the theta firing phase of pyramidal cells and position was weaker in GluA4(HC-/-) mice. These results establish the involvement of AMPA receptor-mediated currents onto hippocampal interneurons for ripples and theta oscillations, and highlight potential cellular and network alterations that could account for the altered working memory performance.  相似文献   

4.
Activity of parvalbumin-positive hippocampal interneurons is critical for network synchronization but the receptors involved therein have remained largely unknown. Here we report network and behavioral deficits in mice with selective ablation of NMDA receptors in parvalbumin-positive interneurons (NR1(PVCre-/-)). Recordings of local field potentials and unitary neuronal activity in the hippocampal CA1 area revealed altered theta oscillations (5-10 Hz) in freely behaving NR1(PVCre-/-) mice. Moreover, in contrast to controls, in NR1(PVCre-/-) mice the remaining theta rhythm was abolished by the administration of atropine. Gamma oscillations (35-85 Hz) were increased and less modulated by the concurrent theta rhythm in the mutant. Positional firing of pyramidal cells in NR1(PVCre-/-) mice was less spatially and temporally precise. Finally, NR1(PVCre-/-) mice exhibited impaired spatial working as well as spatial short- and long-term recognition memory but showed no deficits in open field exploratory activity and spatial reference learning.  相似文献   

5.
The behaviour-contingent rhythmic synchronization of neuronal activity is reported by local field potential oscillations in the theta, gamma and sharp wave-related ripple (SWR) frequency ranges. In the hippocampus, pyramidal cell assemblies representing temporal sequences are coordinated by GABAergic interneurons selectively innervating specific postsynaptic domains, and discharging phase locked to network oscillations. We compare the cellular network dynamics in the CA1 and CA3 areas recorded with or without anaesthesia. All parts of pyramidal cells, except the axon initial segment, receive GABA from multiple interneuron types, each with distinct firing dynamics. The axon initial segment is exclusively innervated by axo-axonic cells, preferentially firing after the peak of the pyramidal layer theta cycle, when pyramidal cells are least active. Axo-axonic cells are inhibited during SWRs, when many pyramidal cells fire synchronously. This dual inverse correlation demonstrates the key inhibitory role of axo-axonic cells. Parvalbumin-expressing basket cells fire phase locked to field gamma activity in both CA1 and CA3, and also strongly increase firing during SWRs, together with dendrite-innervating bistratified cells, phasing pyramidal cell discharge. Subcellular domain-specific GABAergic innervation probably developed for the coordination of multiple glutamatergic inputs on different parts of pyramidal cells through the temporally distinct activity of GABAergic interneurons, which differentially change their firing during different network states.  相似文献   

6.
 During different behavioral states different population activities are present in the hippocampal formation. These activities are not independent: sharp waves often occur together with high-frequency ripples, and gamma-frequency activity is usually superimposed on theta oscillations. There is both experimental and theoretical evidence supporting the notion that gamma oscillation is generated intrahippocampally, but there is no generally accepted view about the origin of theta waves. Precise timing of population bursts of pyramidal cells may be due to a synchronized external drive. Membrane potential oscillations recorded in the septum are unlikely to fulfill this purpose because they are not coherent enough. We investigated the prospects of an intrahippocampal mechanism supplying pyramidal cells with theta frequency periodic inhibition, by studying a model of a network of hippocampal inhibitory interneurons. As shown previously, interneurons are capable of generating synchronized gamma-frequency action potential oscillations. Exciting the neurons by periodic current injection, the system could either be entrained in an oscillation with the frequency of the inducing current or exhibit in-phase periodic changes at the frequency of single cell (and network) activity. Simulations that used spatially inhomogeneous stimulus currents showed anti-phase frequency changes across cells, which resulted in a periodic decrease in the synchrony of the network. As this periodic change in synchrony occurred in the theta frequency range, our network should be able to exhibit the theta-frequency weakening of inhibition of pyramidal cells, thus offering a possible mechanism for intrahippocampal theta generation. Received: 23 February 2000 / Accepted in revised form: 30 June 2000  相似文献   

7.
The phase relationship between the activity of hippocampal place cells and the hippocampal theta rhythm systematically precesses as the animal runs through the region in an environment called the place field of the cell. We present a minimal biophysical model of the phase precession of place cells in region CA3 of the hippocampus. The model describes the dynamics of two coupled point neurons—namely, a pyramidal cell and an interneuron, the latter of which is driven by a pacemaker input. Outside of the place field, the network displays a stable, background firing pattern that is locked to the theta rhythm. The pacemaker input drives the interneuron, which in turn activates the pyramidal cell. A single stimulus to the pyramidal cell from the dentate gyrus, simulating entrance into the place field, reorganizes the functional roles of the cells in the network for a number of cycles of the theta rhythm. In the reorganized network, the pyramidal cell drives the interneuron at a higher frequency than the theta frequency, thus causing a systematic precession relative to the theta input. The frequency of the pyramidal cell can vary to account for changes in the animal's running speed. The transient dynamics end after up to 360 degrees of phase precession when the pacemaker input to the interneuron occurs at a phase to return the network to the stable background firing pattern, thus signaling the end of the place field. Our model, in contrast to others, reports that phase precession is a temporally, and not spatially, controlled process. We also predict that like pyramidal cells, interneurons phase precess. Our model provides a mechanism for shutting off place cell firing after the animal has crossed the place field, and it explains the observed nearly 360 degrees of phase precession. We also describe how this model is consistent with a proposed autoassociative memory role of the CA3 region.  相似文献   

8.
Phase precession is one of the most well known examples within the temporal coding hypothesis. Here we present a biophysical spiking model for phase precession in hippocampal CA1 which focuses on the interaction between place cells and local inhibitory interneurons. The model's functional block is composed of a place cell (PC) connected with a local inhibitory cell (IC) which is modulated by the population theta rhythm. Both cells receive excitatory inputs from the entorhinal cortex (EC). These inputs are both theta modulated and space modulated. The dynamics of the two neuron types are described by integrate-and-fire models with conductance synapses, and the EC inputs are described using non-homogeneous Poisson processes. Phase precession in our model is caused by increased drive to specific PC/IC pairs when the animal is in their place field. The excitation increases the IC's firing rate, and this modulates the PC's firing rate such that both cells precess relative to theta. Our model implies that phase coding in place cells may not be independent from rate coding. The absence of restrictive connectivity constraints in this model predicts the generation of phase precession in any network with similar architecture and subject to a clocking rhythm, independently of the involvement in spatial tasks.  相似文献   

9.
By simultaneously recording the activity of individual neurons and field potentials in freely behaving mice, we found two types of interneurons firing at high frequency in the hippocampal CA1 region, which had high correlations with characteristic sharp wave-associated ripple oscillations (100–250 Hz) during slow-wave sleep. The firing of these two types of interneurons highly synchronized with ripple oscillations during slow-wave sleep, with strongly increased firing rates corresponding to individual ripple episodes. Interneuron type I had at most one spike in each sub-ripple cycle of ripple episodes and the peak firing rate was 310±33.17 Hz. Interneuron type II had one or two spikes in each sub-ripple cycle and the peak firing rate was 410±47.61 Hz. During active exploration, their firing was phase locked to theta oscillations with the highest probability at the trough of theta wave. Both two types of interneurons increased transiently their firing rates responding to the startling shake stimuli. The results showed that these two types of high-frequency interneurons in the hippocampal CA1 region were involved in the modulation of the hippocampal neural network during different states.  相似文献   

10.
The hippocampal theta and neocortical gamma rhythms are two prominent examples of oscillatory neuronal activity. The hippocampus has often been hypothesized to influence neocortical networks by its theta rhythm, and, recently, evidence for such a direct influence has been found. We examined a possible mechanism for this influence by means of a biophysical model study using conductance-based model neurons. We found, in agreement with previous studies, that networks of fast-spiking GABA -ergic interneurons, coupled with shunting inhibition, synchronize their spike activity at a gamma frequency and are able to impose this rhythm on a network of pyramidal cells to which they are coupled. When our model was supplied with hippocampal theta-modulated input fibres, the theta rhythm biased the spike timings of both the fast-spiking and pyramidal cells. Furthermore, both the amplitude and frequency of local field potential gamma oscillations were influenced by the phase of the theta rhythm. We show that the fast-spiking cells, not pyramidal cells, are essential for this latter phenomenon, thus highlighting their crucial role in the interplay between hippocampus and neocortex.  相似文献   

11.
The origins and functional significance of theta phase precession in the hippocampus remain obscure, in part, because of the difficulty of reproducing hippocampal place cell firing in experimental settings where the biophysical underpinnings can be examined in detail. The present study concerns a neurobiologically based computational model of the emergence of theta phase precession in which the responses of a single model CA3 pyramidal cell are examined in the context of stimulation by realistic afferent spike trains including those of place cells in entorhinal cortex, dentate gyrus, and other CA3 pyramidal cells. Spike-timing dependent plasticity in the model CA3 pyramidal cell leads to a spatially correlated associational synaptic drive that subsequently creates a spatially asymmetric expansion of the model cell’s place field. Following an initial training period, theta phase precession can be seen in the firing patterns of the model CA3 pyramidal cell. Through selective manipulations of the model it is possible to decompose theta phase precession in CA3 into the separate contributing factors of inheritance from upstream afferents in the dentate gyrus and entorhinal cortex, the interaction of synaptically controlled increasing afferent drive with phasic inhibition, and the theta phase difference between dentate gyrus granule cell and CA3 pyramidal cell activity. In the context of a single CA3 pyramidal cell, the model shows that each of these factors plays a role in theta phase precession within CA3 and suggests that no one single factor offers a complete explanation of the phenomenon. The model also shows parallels between theta phase encoding and pattern completion within the CA3 autoassociative network. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Zou X  Coyle D  Wong-Lin K  Maguire L 《PloS one》2011,6(6):e21579
Electroencephagraphy (EEG) of many dementia patients has been characterized by an increase in low frequency field potential oscillations. One of the characteristics of early stage Alzheimer's disease (AD) is an increase in theta band power (4-7 Hz). However, the mechanism(s) underlying the changes in theta oscillations are still unclear. To address this issue, we investigate the theta band power changes associated with β-Amyloid (Aβ) peptide (one of the main markers of AD) using a computational model, and by mediating the toxicity of hippocampal pyramidal neurons. We use an established biophysical hippocampal CA1-medial septum network model to evaluate four ionic channels in pyramidal neurons, which were demonstrated to be affected by Aβ. They are the L-type Ca2? channel, delayed rectifying K? channel, A-type fast-inactivating K? channel and large-conductance Ca2?-activated K? channel. Our simulation results demonstrate that only the Aβ inhibited A-type fast-inactivating K? channel can induce an increase in hippocampo-septal theta band power, while the other channels do not affect theta rhythm. We further deduce that this increased theta band power is due to enhanced synchrony of the pyramidal neurons. Our research may elucidate potential biomarkers and therapeutics for AD. Further investigation will be helpful for better understanding of AD-induced theta rhythm abnormalities and associated cognitive deficits.  相似文献   

13.
By simultaneously recording the activity of individual neurons and field potentials in freely behaving mice, we found two types of interneurons firing at high frequency in the hippocampal CA1 region, which had high correlations with characteristic sharp wave-associated ripple oscillations (100―250 Hz) during slow-wave sleep. The firing of these two types of interneurons highly synchronized with ripple oscillations during slow-wave sleep, with strongly increased firing rates corresponding to individual ripple episodes. Interneuron type I had at most one spike in each sub-ripple cycle of ripple episodes and the peak firing rate was 310±33.17 Hz. Interneuron type II had one or two spikes in each sub-ripple cycle and the peak firing rate was 410±47.61 Hz. During active exploration, their firing was phase locked to theta oscillations with the highest probability at the trough of theta wave. Both two types of interneurons increased transiently their firing rates responding to the startling shake stimuli. The results showed that these two types of high-frequency interneurons in the hippocampal CA1 region were involved in the modulation of the hippocampal neural network during different states.  相似文献   

14.
A current status of knowledge about high-frequency (140-200 Hz) ripple oscillations in the CA1 hippocampal subfield is summarized and considered in the context of two-stage model of the hippocampal memory processing. A large body of evidence suggests highly-selective recruitment of pyramidal cells and interneurons in the generation of the oscillatory pattern after co-operative sharp-wave-related discharge of CA3 pyramidal neurons. We also discuss a role of transmission via gap junctions in the mechanisms of ripple oscillations as well as their adaptive aminergic (histaminergic) modulation. Patterns of neuronal firing in the hippocampus observed during ripple oscillations reproduce space-dependant neuronal activity from the previous waking period. Together with a data about efficacy of high-frequency stimulation for induction of synaptic modification it points out a role for ripples in the formation of long-term memory. Focal ultra fast ripples (up to 500 Hz) have been shown to participate in the development of temporal lobe epilepsy.  相似文献   

15.
Hippocampal interneurons consist of functionally diverse cell types, most of them target the dendrites or perisomatic region of pyramidal cells with a few exceptions, like the calretinin-containing cells in the rat: they selectively innervate other interneurons. However, no electron microscopic data are available about the synaptic connections of calretinin-immunoreactive neurons in the human hippocampus. We aimed to provide these data to establish whether interneuron-selective interneurons indeed represent an essential feature of hippocampal circuits across distant species. Two types of calretinin-immunostained terminals were found in the CA1 region: one of them presumably derived from the thalamic reuniens nucleus, and established asymmetric synapses on dendrites and spines. The other type originating from local interneurons formed symmetric synapses on both pyramidal and interneuron dendrites. Distribution of postsynaptic targets showed that 26.8% of the targets were CR-positive interneuron dendrites, and 25.2% proved to be proximal pyramidal dendrites. CR-negative interneuron dendrites were also contacted (12.4%). Small caliber postsynaptic dendrites were not classified (28%). Somata were rarely contacted (7.6%). The present data suggest that calretinin-positive boutons do show a preference for other interneurons, but a considerable proportion of the targets are pyramidal cells. We propose that interneuron-selective inhibitory cells exist in the human Ammon's horn, and boutons innervating pyramidal cells derive from another cell type that might not exist in rodents.  相似文献   

16.
EPSP amplification and the precision of spike timing in hippocampal neurons   总被引:13,自引:0,他引:13  
Fricker D  Miles R 《Neuron》2000,28(2):559-569
The temporal precision with which EPSPs initiate action potentials in postsynaptic cells determines how activity spreads in neuronal networks. We found that small EPSPs evoked from just subthreshold potentials initiated firing with short latencies in most CA1 hippocampal inhibitory cells, while action potential timing in pyramidal cells was more variable due to plateau potentials that amplified and prolonged EPSPs. Action potential timing apparently depends on the balance of subthreshold intrinsic currents. In interneurons, outward currents dominate responses to somatically injected EPSP waveforms, while inward currents are larger than outward currents close to threshold in pyramidal cells. Suppressing outward potassium currents increases the variability in latency of synaptically induced firing in interneurons. These differences in precision of EPSP-spike coupling in inhibitory and pyramidal cells will enhance inhibitory control of the spread of excitation in the hippocampus.  相似文献   

17.
In the cerebral cortex, GABAergic interneurons are often regarded as fast-spiking cells. We have identified a type of slow-spiking interneuron that offers distinct contributions to network activity. "Ivy" cells, named after their dense and fine axons innervating mostly basal and oblique pyramidal cell dendrites, are more numerous than the parvalbumin-expressing basket, bistratified, or axo-axonic cells. Ivy cells express nitric oxide synthase, neuropeptide Y, and high levels of GABA(A) receptor alpha1 subunit; they discharge at a low frequency with wide spikes in vivo, yet are distinctively phase-locked to behaviorally relevant network rhythms including theta, gamma, and ripple oscillations. Paired recordings in vitro showed that Ivy cells receive depressing EPSPs from pyramidal cells, which in turn receive slowly rising and decaying inhibitory input from Ivy cells. In contrast to fast-spiking interneurons operating with millisecond precision, the highly abundant Ivy cells express presynaptically acting neuromodulators and regulate the excitability of pyramidal cell dendrites through slowly rising and decaying GABAergic inputs.  相似文献   

18.
Gao J  Sui JF  Zhu ZR  Chen PH  Wu YM 《生理学报》2005,57(2):181-187
实验采用细胞外玻璃微电极采集豚鼠海马神经元放电信号,并将信号转化为峰峰间期(interspike interval,ISI)以研究麻醉和清醒状态海马锥体细胞自发放电线性和非线性特点。实验建立了豚鼠海马锥体细胞与中间神经元电生理鉴别标准;麻醉和清醒状态下豚鼠海马CA1和CA3区锥体细胞自发放电频率、时程、复杂度等无显著区别;麻醉组豚鼠海马锥体细胞ISI序列的复杂度小于清醒组,锥体细胞分型和ISI变异度等表现不同。实验表明,麻醉和清醒状态下豚鼠海马锥体细胞自发放电呈不同线性和非线性特征。传统和非线性研究手段的结合,可能较全面地反映海马锥体细胞自发放电特性。  相似文献   

19.
Gamma frequency network oscillations are assumed to be important in cognitive processes, including hippocampal memory operations, but the precise functions of these oscillations remain unknown. Here, we examine the cellular and network mechanisms underlying carbachol-induced fast network oscillations in the hippocampus in vitro, which closely resemble hippocampal gamma oscillations in the behaving rat. Using a combination of planar multielectrode array recordings, imaging with voltage-sensitive dyes, and recordings from single hippocampal neurons within the CA3 gamma generator, active current sinks and sources were localized to the stratum pyramidale. These proximal currents were driven by phase-locked rhythmic inhibitory inputs to pyramidal cells from identified perisomatic-targeting interneurons. AMPA receptor-mediated recurrent excitation was necessary for the synchronization of interneuronal discharge, which strongly supports a synaptic feedback model for the generation of hippocampal gamma oscillations.  相似文献   

20.
Hippocampal sharp wave/ripple oscillations are a prominent pattern of collective activity, which consists of a strong overall increase of activity with superimposed (140 − 200 Hz) ripple oscillations. Despite its prominence and its experimentally demonstrated importance for memory consolidation, the mechanisms underlying its generation are to date not understood. Several models assume that recurrent networks of inhibitory cells alone can explain the generation and main characteristics of the ripple oscillations. Recent experiments, however, indicate that in addition to inhibitory basket cells, the pattern requires in vivo the activity of the local population of excitatory pyramidal cells. Here, we study a model for networks in the hippocampal region CA1 incorporating such a local excitatory population of pyramidal neurons. We start by investigating its ability to generate ripple oscillations using extensive simulations. Using biologically plausible parameters, we find that short pulses of external excitation triggering excitatory cell spiking are required for sharp/wave ripple generation with oscillation patterns similar to in vivo observations. Our model has plausible values for single neuron, synapse and connectivity parameters, random connectivity and no strong feedforward drive to the inhibitory population. Specifically, whereas temporally broad excitation can lead to high-frequency oscillations in the ripple range, sparse pyramidal cell activity is only obtained with pulse-like external CA3 excitation. Further simulations indicate that such short pulses could originate from dendritic spikes in the apical or basal dendrites of CA1 pyramidal cells, which are triggered by coincident spike arrivals from hippocampal region CA3. Finally we show that replay of sequences by pyramidal neurons and ripple oscillations can arise intrinsically in CA1 due to structured connectivity that gives rise to alternating excitatory pulse and inhibitory gap coding; the latter denotes phases of silence in specific basket cell groups, which induce selective disinhibition of groups of pyramidal neurons. This general mechanism for sequence generation leads to sparse pyramidal cell and dense basket cell spiking, does not rely on synfire chain-like feedforward excitation and may be relevant for other brain regions as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号