首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
One of the most fascinating features of amyloid fibrils is their generic cross-beta architecture that can be formed from many different and completely unrelated proteins. Nonetheless, amyloid fibrils with diverse structural and phenotypic properties can form, both in vivo and in vitro, from the same protein sequence. Here, we have exploited the power of RNA selection techniques to isolate small, structured, single-stranded RNA molecules known as aptamers that were targeted specifically to amyloid-like fibrils formed in vitro from beta(2)-microglobulin (beta(2)m), the amyloid fibril protein associated with dialysis-related amyloidosis. The aptamers bind with high affinity (apparent K(D) approximately nm) to beta(2)m fibrils with diverse morphologies generated under different conditions in vitro, as well as to amyloid fibrils isolated from tissues of dialysis-related amyloidosis patients, demonstrating that they can detect conserved epitopes between different fibrillar species of beta(2)m. Interestingly, the aptamers also recognize some other, but not all, amyloid fibrils generated in vitro or isolated from ex vivo sources. Based on these observations, we have shown that although amyloid fibrils share many common structural properties, they also have features that are unique to individual fibril types.  相似文献   

3.
A counter-SELEX procedure with recombinant purified active prostate specific antigen (PSA) was used to identify specific RNA aptamers against the active PSA. We developed two different kinds of counter-SELEX methods; one includes pre-clearance step with inactive proPSA protein, and the other with tagged GST protein. After 9 iterative selection cycles, several identical RNA aptamers can be identified from both counter-SELEX methods. Real-time PCR analysis and gel retardation experiment showed that the aptamers have a specific binding activity against the active PSA, but not for GST or proPSA. These aptamers could be of potential use as specific diagnostic, imaging and/or therapeutic agents against prostate cancer.  相似文献   

4.
Tan W  Wang H  Chen Y  Zhang X  Zhu H  Yang C  Yang R  Liu C 《Trends in biotechnology》2011,29(12):634-640
The active targeting of drugs in a cell-, tissue- or disease-specific manner represents a potentially powerful technology with widespread applications in medicine, including the treatment of cancers. Aptamers have properties such as high affinity and specificity for targets, easy chemical synthesis and modification, and rapid tissue penetration. They have become attractive molecules in diagnostics and therapeutics rivaling and, in some cases, surpassing other molecular probes, such as antibodies. In this review, we highlight the recent progress in aptamer-mediated delivery for therapeutics and disease-targeting based on aptamer integration with a variety of nanomaterials, such as gold nanorods, DNA micelles, DNA hydrogels and carbon nanotubes.  相似文献   

5.
The envelope glycoprotein of human immunodeficiency virus (HIV) consists of an exterior glycoprotein (gp120) and a trans-membrane domain (gp41) and has an important role in viral entry into cells. HIV-1 entry has been validated as a clinically relevant anti-viral strategy for drug discovery. In the present work, several 2′-F substituted RNA aptamers that bind to the HIV-1BaL gp120 protein with nanomole affinity were isolated from a RNA library by the SELEX (Systematic Evolution of Ligands by EXponential enrichment) procedure. From two of these aptamers we created a series of new dual inhibitory function anti-gp120 aptamer–siRNA chimeras. The aptamers and aptamer–siRNA chimeras specifically bind to and are internalized into cells expressing HIV gp160. The Dicer-substrate siRNA delivered by the aptamers is functionally processed by Dicer, resulting in specific inhibition of HIV-1 replication and infectivity in cultured CEM T-cells and primary blood mononuclear cells (PBMCs). Moreover, we have introduced a ‘sticky’ sequence onto a chemically synthesized aptamer which facilitates attachment of the Dicer substrate siRNAs for potential multiplexing. Our results provide a set of novel inhibitory agents for blocking HIV replication and further validate the use of aptamers for delivery of Dicer substrate siRNAs.  相似文献   

6.
RNA sequestered by negatively charged liposomes becomes cell-associated following interaction between eucaryotic cells and the liposomes. This paper provides evidence that cell-associated RNA is internalized by the cells. In fact, (a) when Escherichia coli and mammalian RNA are entrapped within the same liposome population and delivered into cultured cells, one can observe degradation of the procaryotic but not the eucaryotic RNA. Such an event cannot happen extracellularly. (b) Scanning electron microscopy reveals no more than 10 liposomes adhering to each cell upon liposome-cell interaction under conditions in which the RNA entrapped by 140 liposomes becomes associated with each cell. The ability of liposomes prepared by (a) the cochleate process, (b) the reverse-phase evaporation technique, and (c) the ether infusion technique, to sequester and deliver RNA into cells was investigated. Reverse-phase evaporated liposomes were most efficient in sequestering RNA (20–40%), however, all types of liposomes delivered RNA with comparable efficiency. The rate of liposome-mediated RNA delivery into mammalian cells could be substantially improved when: (a) liposome-cell interaction was carried out at pH 6.5 (twofold increase over pH 7.5), (b) a basic protein (methylated albumin) was present (two- to threefold increase), (c) liposome-cell cultures were treated with polyethylene glycol 6000 (four- to eight-fold increase), and (d) DEAE-dextran was added during interaction of liposomes with cell monolayers (four- to eight-fold increase).  相似文献   

7.
Enterotoxigenic Escherichia coli (ETEC) is a prevalent cause of traveler's diarrhea and infant mortality in third-world countries. Heat-labile enterotoxin (LT) is secreted from ETEC via vesicles composed of outer membrane and periplasm. We investigated the role of ETEC vesicles in pathogenesis by analyzing vesicle association and entry into eukaryotic cells. Fluorescently labeled vesicles from LT-producing and LT-nonproducing strains were compared in their ability to bind adrenal and intestinal epithelial cells. ETEC-derived vesicles, but not control nonpathogen-derived vesicles, associated with cells in a time-, temperature-, and receptor-dependent manner. Vesicles were visualized on the cell surface at 4 degrees C and detected intracellularly at 37 degrees C. ETEC vesicle endocytosis depended on cholesterol-rich lipid rafts. Entering vesicles partially colocalized with caveolin, and the internalized vesicles accumulated in a nonacidified compartment. We conclude that ETEC vesicles serve as specifically targeted transport vehicles that mediate entry of active enterotoxin and other bacterial envelope components into host cells. These data demonstrate a role in virulence for ETEC vesicles.  相似文献   

8.
The therapeutic success of biological agents, especially the tumour necrosis factor (TNF) inhibitors, has opened a new chapter in the book of therapies for rheumatoid arthritis. Nevertheless, more than 50% of patients may not respond by > 50% improvement. New compounds have recently entered the treatment arena. One of these is rituximab, which depletes B cells, and another, abatacept, interferes with T-cell co-stimulation. However, although these agents may be effective in a number of patients who fail to respond to TNF blockade, they only rarely induce remission and overall 50% response rates do not exceed those with the TNF inhibitors. Among the major proinflammatory cytokines, IL-6 plays a pleiotropic role both in terms of activating the inflammatory response and osteoclastogenesis. Here, we review recent phase II trials of tocilizumab, a humanized anti-IL-6 receptor antibody that achieves a significant therapeutic response rate.  相似文献   

9.
10.
A simple and rapid procedure for the intracellular delivery of macromolecules into adherent cultured cells is described. Cells are incubated with cold glycerol, then transiently made permeable with L-alpha-lysophosphatidylcholine (LPC) in the presence of test compound to be loaded into cells. LPC induces temporary permeability of the plasma membrane, as evidenced by the loss and recovery of the cells' ability to exclude trypan blue. Molecules at least as large as antibodies are internalized during this transient permeability. Antibodies delivered intracellularly in this manner are able to complex with their specific antigen and exert functional consequences on normal cell metabolism, suggesting that this procedure is useful for determining protein function. As one example of this, we present data on the ability of specific antibodies, delivered intracellularly in this manner, to inhibit morphological differentiation (i.e., neurite outgrowth) in a neuroblastoma cell line.  相似文献   

11.
The serine proteinase urokinase-type plasminogen activator (uPA) is widely recognized as a potential target for anticancer therapy. Its association with cell surfaces through the uPA receptor (uPAR) is central to its function and plays an important role in cancer invasion and metastasis. In the current study, we used systematic evolution of ligands by exponential enrichment (SELEX) to select serum-stable 2'-fluoro-pyrimidine-modified RNA aptamers specifically targeting human uPA and blocking the interaction to its receptor at low nanomolar concentrations. In agreement with the inhibitory function of the aptamers, binding was found to be dependent on the presence of the growth factor domain of uPA, which mediates uPAR binding. One of the most potent uPA aptamers, upanap-12, was analyzed in more detail and could be reduced significantly in size without severe loss of its inhibitory activity. Finally, we show that the uPA-scavenging effect of the aptamers can reduce uPAR-dependent endocytosis of the uPA-PAI-1 complex and cell-surface associated plasminogen activation in cell culture experiments. uPA-scavenging 2'-fluoro-pyrimidine-modified RNA aptamers represent a novel promising principle for interfering with the pathological functions of the uPA system.  相似文献   

12.
RNA aptamers selected against the GluR2 glutamate receptor channel   总被引:1,自引:0,他引:1  
Huang Z  Pei W  Jayaseelan S  Shi H  Niu L 《Biochemistry》2007,46(44):12648-12655
The excessive activation of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors, a subtype of glutamate ion channels, has been implicated in various neurological diseases such as cerebral ischemeia and amyotrophic lateral sclerosis. Inhibitors of AMPA receptors are drug candidates for potential treatment of these diseases. Using the systematic evolution of ligands by exponential enrichment (SELEX), we have selected a group of RNA aptamers against the recombinant GluR2Qflip AMPA receptor transiently expressed in HEK-293 (human embryonic kidney) cells. One of the aptamers, AN58, is shown to competitively inhibit the receptor. The nanomolar affinity of AN58 rivals that of NBQX (6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione), one of the best competitive inhibitors. Like NBQX, AN58 has the highest affinity for GluR2, the selection target, among all AMPA receptor subunits. However, AN58 has a higher selectivity for the GluR4 AMPA receptor subunit and remains potent even at pH = 6.8 (i.e., a clinically relevant acidic pH), as compared with NBQX. Furthermore, this RNA molecule possesses stable physical properties. Therefore, AN58 serves as a unique lead compound for developing water-soluble inhibitors with a nanomolar affinity for GluR2 AMPA receptors.  相似文献   

13.
G-protein-coupled receptors (GPCRs) are integral membrane proteins involved in signal transduction and constitute major drug targets for disease therapy. Aptamers, which are globular RNA or DNA molecules evolved to specifically bind a target, could represent a valuable tool with which to probe the role of such receptors in normal tissue and disease pathology and for cocrystallization with receptors for structure determination by X-ray crystallography. Using the bacterially expressed rat neurotensin receptor NTS-1 as an example, we describe a strategy for the generation of GPCR-specific RNA aptamers. Seven rounds of a subtractive, paramagnetic bead-based selection protocol were used to enrich for neurotensin receptor-specific aptamers, while circumventing the evolution of aptamers reactive to minor protein contaminants. Representatives of each aptamer family were analyzed in Escherichia coli membrane nitrocellulose filter binding assays. Eight aptamers demonstrated specificity for the neurotensin receptor. One aptamer, P19, was characterized in detail and shown to bind to both the rat receptor and the human receptor with nanomolar affinity. P19 was also shown to interact with rat neurotensin receptor expressed in CHO cells, in both membrane preparations and intact cells. P19 represents the first example of a GPCR-specific RNA aptamer.  相似文献   

14.
Single-stranded DNA aptamers specific for antibiotics tetracyclines   总被引:1,自引:0,他引:1  
Tetracyclines (TCs) are a group of antibiotics comprising of a common tetracycline (TET) nucleus with variable X(1) and X(2) positions on 5 and 6 carbon atoms, such as oxytetracycline (OTC) and doxycycline (DOX). In this study, the tetracycline group specific (TGS) ssDNA aptamers were identified by modified SELEX method by employing tosylactivated magnetic beads (TMB) coated with OTC, TET, and DOX, respectively, as targets and counter targets. Twenty TGS-aptamers were selected, of which seven aptamers, designated as T7, T15, T19, T20, T22, T23, and T24, showed high affinity to the basic TET backbone (K(d)=63-483 nM). The specificity of these TGS-aptamers to structural analogues followed the order in which the TCs was employed during SELEX process (OTC>TET>DOX) except aptamer T22, which was highly specific to TET than OTC or DOX. Aptamers that were specific to one target molecule but fail to bind the other structurally related TCs were eliminated during counter selection steps. Three aptamers, T7, T19, and T23 contained palindromic consensus sequence motif GGTGTGG. The remaining TGS-aptamers showed many consensus sequences that are truncated forms of this palindrome forming mirror image or inverted sequences. For example, GTGG or its inverted form, GGTG motif was found in all TGS-aptamers. A consensus sequence motif TGTGCT or its truncated terminal T-residue was found in most TGS-aptamers, which is predicted to be essential for high affinity and group specificity. These TGS-aptamers have potential applications such as target drug delivery, and detection of TCs in pharmaceutical preparations and contaminated food products.  相似文献   

15.
Delivery of therapeutics and imaging agents to target tissues requires localization and activation strategies with molecular specificity. Cell-associated proteases can be used for these purposes in a number of pathologic conditions, and their enzymatic activities can be exploited for activation strategies. Here, molecules based on the d-arginine octamer (r8) protein-transduction domain (PTD, also referred to as molecular transporters) have been adapted for selective uptake into cells only after proteolytic cleavage of a PTD-attenuating sequence by the prostate-specific antigen (PSA), an extracellular protease associated with the surface and microenvironment of certain prostate cancer cells. Convergent syntheses of these activatable PTDs (APTDs) are described, and the most effective r8 PTD-attenuating sequence is identified. The conjugates are shown to be stable in serum, cleaved by PSA, and taken up into Jurkat (human T cells) and PC3M prostate cancer cell lines only after cleavage by PSA. These APTD peptide-based molecules may facilitate targeted delivery of therapeutics or imaging agents to PSA-expressing prostate cancers.  相似文献   

16.
17.
Embryonic stem cells (ESCs) are capable of unlimited self-renewal and differentiation into multiple cell types. Recent large-scale analyses have identified various cell surface molecules on ESCs. Some of them are considered to be beneficial markers for characterization of cellular phenotypes and/or play an essential role for regulating the differentiation state. Thus, it is desired to efficiently produce affinity reagents specific to these molecules. In this study, to develop such reagents for mouse ESCs (mESCs), we selected RNA aptamers against intact, live mESCs using several selection strategies. The initial selection provided us with several anti-mESC aptamers of distinct sequences, which unexpectedly react with the same molecule on mESCs. Then, to isolate aptamers against different surface markers on mESCs, one of the selected aptamers was used as a competitor in the subsequent selections. In addition, one of the selections further employed negative selection against differentiated mouse cells. Consequently, we successfully isolated three classes of anti-mESC aptamers that do not compete with one another. The isolated aptamers were shown to distinguish mESCs from differentiated mouse cell lines and trace the differentiation process of mESCs. These aptamers could prove useful for developing molecular probes and manipulation tools for mESCs.  相似文献   

18.
The use of proteins or nucleic acids as therapeutic agents has been severely hampered by their intrinsic inability to cross the cell membrane. Moreover, common techniques for driving the delivery of macromolecules lack the ability to distinguish between healthy and diseased tissue, precluding their clinical use. Recently, receptor-mediated delivery (RMD) has emerged as a technology with the potential to circumvent the obstacles associated with the delivery of drug targets by utilizing the natural endocytosis of a ligand upon binding to its receptor. Here, we describe the synthesis of variants of substance P (SP), an eleven amino acid neuropeptide ligand of the neurokinin type 1 receptor (NK1R), for the delivery of various types of cargo. The variants of SP were synthesized with an N-terminal maleimide moiety that allows conjugation to surface thiols, resulting in a nonreducible thioether. Cargos lacking an available thiol are conjugated to SP using commercially available cross-linkers. In addition to the delivery of proteins, we expand the use of SP to include nuclear delivery of DNA fragments that are actively expressed in the target cells. We also show that SP can be used to deliver whole bacteriophage particles as well as polystyrene beads up to 1 μm in diameter. The results show the ability of SP to deliver cargo of various sizes and chemical properties that retain their function within the cell. Furthermore, the overexpression of the NK1R in many tumors provides the potential for developing targeted delivery reagents that are specific toward diseased tissue.  相似文献   

19.
Muratovska A  Eccles MR 《FEBS letters》2004,570(1-3):63-68
Cholesterol enrichment of rat liver mitochondria (CHM) impairs atractyloside-induced mitochondrial permeability transition (MPT) due to decreased membrane fluidity. In this study we addressed the effect of cholesterol enrichment on MPT induced by reactive oxygen species (ROS). Superoxide anion generated by xanthine plus xanthine oxidase triggered mitochondrial swelling and cytochrome c release in CHM, which was prevented by butylated hydroxytoluene, an anti-voltage-dependent anion channel antibody, or cyclosporin A. Furthermore, hydrogen peroxide generated by the combination of ganglioside GD3 and mitochondrial GSH depletion elicited mitochondrial swelling and release of cytochrome c, Smac/Diablo and apoptosis-inducing factor in control mitochondria and CHM. Thus, ROS induce MPT and apoptosome activation regardless of decreased mitochondrial membrane dynamics due to cholesterol enrichment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号