首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA is an important drug target, but it is difficult to design or discover small molecules that modulate RNA function. In the present study, we report that rationally designed, modularly assembled small molecules that bind the RNA that causes myotonic dystrophy type 1 (DM1) are potently bioactive in cell culture models. DM1 is caused when an expansion of r(CUG) repeats, or r(CUG)(exp), is present in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) mRNA. r(CUG)(exp) folds into a hairpin with regularly repeating 5'CUG/3'GUC motifs and sequesters muscleblind-like 1 protein (MBNL1). A variety of defects are associated with DM1, including (i) formation of nuclear foci, (ii) decreased translation of DMPK mRNA due to its nuclear retention, and (iii) pre-mRNA splicing defects due to inactivation of MBNL1, which controls the alternative splicing of various pre-mRNAs. Previously, modularly assembled ligands targeting r(CUG)(exp) were designed using information in an RNA motif-ligand database. These studies showed that a bis-benzimidazole (H) binds the 5'CUG/3'GUC motif in r(CUG)(exp.) Therefore, we designed multivalent ligands to bind simultaneously multiple copies of this motif in r(CUG)(exp). Herein, we report that the designed compounds improve DM1-associated defects including improvement of translational and pre-mRNA splicing defects and the disruption of nuclear foci. These studies may establish a foundation to exploit other RNA targets in genomic sequence.  相似文献   

2.
Myotonic dystrophy (DM) is a genetic disorder with multisystemic symptoms that is caused by expression (as RNA) of expanded repeats of CTG or CCTG in the genome. It is hypothesized that the RNA splicing factor muscleblind-like (MBNL) is sequestered to the expanded CUG or CCUG RNAs. Mislocalization of MBNL results in missplicing of a subset of pre-mRNAs that are linked to the symptoms found in DM patients. We demonstrate that MBNL can bind short structured CUG and CCUG repeats with high affinity and specificity. Only 6 base pairs are necessary for MBNL binding: two pyrimidine mismatches and four guanosine-cytosine base pairs in a stem. MBNL also has a preference for pyrimidine mismatches, but many other mismatches are tolerated with decreased affinity. We also demonstrate that MBNL binds the helical region of a stem-loop in the endogenous pre-mRNA target, the cardiac troponin T (cTNT) pre-mRNA. The stem-loop contains two mismatches and resembles both CUG and CCUG repeats. In vivo splicing results indicate that MBNL-regulated splicing is dependent upon the formation of stem-loops recognized by MBNL. These results suggest that MBNL may bind all of its RNA substrates, both normal and pathogenic, as structured stem-loops containing pyrimidine mismatches.  相似文献   

3.
4.
Muscleblind-like (MBNL) proteins are critical RNA processing factors in development. MBNL activity is disrupted in the neuromuscular disease myotonic dystrophy type 1 (DM1), due to the instability of a non-coding microsatellite in the DMPK gene and the expression of CUG expansion (CUGexp) RNAs. Pathogenic interactions between MBNL and CUGexp RNA lead to the formation of nuclear complexes termed foci and prevent MBNL function in pre-mRNA processing. The existence of multiple MBNL genes, as well as multiple protein isoforms, raises the question of whether different MBNL proteins possess unique or redundant functions. To address this question, we coexpressed three MBNL paralogs in cells at equivalent levels and characterized both specific and redundant roles of these proteins in alternative splicing and RNA foci dynamics. When coexpressed in the same cells, MBNL1, MBNL2 and MBNL3 bind the same RNA motifs with different affinities. While MBNL1 demonstrated the highest splicing activity, MBNL3 showed the lowest. When forming RNA foci, MBNL1 is the most mobile paralog, while MBNL3 is rather static and the most densely packed on CUGexp RNA. Therefore, our results demonstrate that MBNL paralogs and gene-specific isoforms possess inherent functional differences, an outcome that could be enlisted to improve therapeutic strategies for DM1.  相似文献   

5.
The TLS/FUS gene is involved in a recurrent chromosomal translocation in human myxoid liposarcomas. We previously reported that TLS is a potential splicing regulator able to modulate the 5'-splice site selection in an E1A pre-mRNA. Using an in vitro selection procedure, we investigated whether TLS exhibits a specificity with regard to RNA recognition. The RNAs selected by TLS share a common GGUG motif. Mutation of a G or U residue within this motif abolishes the interaction of TLS with the selected RNAs. We showed that TLS can bind GGUG-containing RNAs with a 250 nm affinity. By UV cross-linking/competition and immunoprecipitation experiments, we demonstrated that TLS recognizes a GGUG-containing RNA in nuclear extracts. Each one of the RNA binding domains (the three RGG boxes and the RNA recognition motif) contributes to the specificity of the TLS.RNA interaction, whereas only RRM and RGG2-3 participate to the E1A alternative splicing in vivo. The specificity of the TLS.RNA interaction was also observed using as natural pre-mRNA, the G-rich IVSB7 intron of the beta-tropomyosin pre-mRNA. Moreover, we determined that RNA binding specificities of TLS and high nuclear ribonucleoprotein A1 were different. Hence, our results help define the role of the specific interaction of TLS with RNA during the splicing process of a pre-mRNA.  相似文献   

6.
A series of V- and Y-shaped nucleic acids, related to the splicing intermediates derived from S. cerevisiae actin pre-mRNA, were prepared. The effects of such branched nucleic acids (bNAs) on the efficiency of in vitro pre-mRNA splicing in yeast were studied. The exogenous bNAs each effect the efficiency of splicing, yet to different degrees, depending on the sugar composition and topology of the molecules. Y-shaped RNAs inhibited the formation of mRNA (i.e. RNA splicing) to the greatest extent.  相似文献   

7.
The MBNL and CELF proteins act antagonistically to control the alternative splicing of specific exons during mammalian postnatal development. This process is dysregulated in myotonic dystrophy because MBNL proteins are sequestered by (CUG)n and (CCUG)n RNAs expressed from mutant DMPK and ZNF9 genes, respectively. While these observations predict that MBNL proteins have a higher affinity for these pathogenic RNAs versus their normal splicing targets, we demonstrate that MBNL1 possesses comparably high affinities for (CUG)n and (CAG)n RNAs as well as a splicing target, Tnnt3. Mapping of a MBNL1-binding site upstream of the Tnnt3 fetal exon indicates that a preferred binding site for this protein is a GC-rich RNA hairpin containing a pyrimidine mismatch. To investigate how pathogenic RNAs sequester MBNL1 in DM1 cells, we used a combination of chemical/enzymatic structure probing and electron microscopy to determine that MBNL1 forms a ring-like structure which binds to the dsCUG helix. While the MBNL1 N-terminal region is required for RNA binding, the C-terminal region mediates homotypic interactions which may stabilize intra- and/or inter-ring interactions. Our results provide a mechanistic basis for dsCUG-induced MBNL1 sequestration and highlight a striking similarity in the binding sites for MBNL proteins on splicing precursor and pathogenic RNAs.  相似文献   

8.
9.
A series of V- and Y-shaped nucleic acids, related to the splicing intermediates derived from S. cerevisiae actin pre-mRNA, were prepared. The effects of such branched nucleic acids (bNAs) on the efficiency of in vitro pre-mRNA splicing in yeast were studied. The exogenous bNAs each effect the efficiency of splicing, yet to different degrees, depending on the sugar composition and topology of the molecules. Y-shaped RNAs inhibited the formation of mRNA (i.e. RNA splicing) to the greatest extent.  相似文献   

10.
11.
Fluorescent intercalator displacement (FID) is a convenient and practical tool for identifying new nucleic acid-binding ligands. The success of FID is based on the fact that it can be fashioned into a versatile screening assay for assessing the relative binding affinities of compounds to nucleic acids. FID is a tagless approach; the target RNAs and the ligands or small molecules under investigation do not need to be modified in order to be examined. In this study, a modified FID assay for screening RNA-binding ligands was established using 3-methyl-2-((1-(3-(trimethylammonio)propyl)-4-quinolinylidene)methyl)benzothiazolium (TO-PRO) as the fluorescent indicator. Electrospray ionization mass spectrometry (ESI-MS) results provide direct evidence that correlates the reduction in fluorescence intensity observed in the FID assay with displacement of the dye molecule from RNA. The assay was successfully applied to screen a variety of RNA-binding ligands with a set of small hairpin RNAs. Ligands that bind with moderate affinity to the chosen RNA constructs (A-site, TAR [transactivation response element], h31 [helix 31], and H69 [helix 69] were identified.  相似文献   

12.
Myotonic dystrophy type 1 (DM1) is a multi-systemic disorder caused by a CTG trinucleotide repeat expansion (CTG(exp)) in the DMPK gene. In skeletal muscle, nuclear sequestration of the alternative splicing factor muscleblind-like 1 (MBNL1) explains the majority of the alternative splicing defects observed in the HSA(LR) transgenic mouse model which expresses a pathogenic range CTG(exp). In the present study, we addressed the possibility that MBNL1 sequestration by CUG(exp) RNA also contributes to splicing defects in the mammalian brain. We examined RNA from the brains of homozygous Mbnl1(ΔE3/ΔE3) knockout mice using splicing-sensitive microarrays. We used RT-PCR to validate a subset of alternative cassette exons identified by microarray analysis with brain tissues from Mbnl1(ΔE3/ΔE3) knockout mice and post-mortem DM1 patients. Surprisingly, splicing-sensitive microarray analysis of Mbnl1(ΔE3/ΔE3) brains yielded only 14 candidates for mis-spliced exons. While we confirmed that several of these splicing events are perturbed in both Mbnl1 knockout and DM1 brains, the extent of splicing mis-regulation in the mouse model was significantly less than observed in DM1. Additionally, several alternative exons, including Grin1 exon 4, App exon 7 and Mapt exons 3 and 9, which have previously been reported to be aberrantly spliced in human DM1 brain, were spliced normally in the Mbnl1 knockout brain. The sequestration of MBNL1 by CUG(exp) RNA results in some of the aberrant splicing events in the DM1 brain. However, we conclude that other factors, possibly other MBNL proteins, likely contribute to splicing mis-regulation in the DM1 brain.  相似文献   

13.
The objective of the experiments described in this paper was to determine the feasibility of inhibition of pre-mRNA splicing by antisense RNA in vitro. Three different types of antisense RNA were utilized: antisense RNA complementary to the spliced RNA molecule; antisense RNA complementary to the unprocessed mRNA precursor molecule; and antisense RNA complementary to the 5' and 3' splice junctions. Whereas antisense RNA complementary to mRNA had little effect on splicing, antisense RNAs complementary to mRNA precursor or to splice junctions strongly inhibited splicing of pre-mRNA molecule. The results obtained indicate that the inhibitory effect is most likely due to hybrid formation between pre-mRNA and antisense RNA molecules and that antisense RNA complementary to the exon portion but not to the intron portion of splice junction exhibit an inhibitory effect. This inhibition can be overcome by bringing together 5' and 3' splice junctions via hybrid formation with antisense RNA complementary to the spliced RNA molecule.  相似文献   

14.
The cellular transformation of a precursor mRNA (pre-mRNA) into its mature or functional form proceeds by way of a splicing reaction, in which the exons are ligated to form the mature linear RNA and the introns are excised as branched or lariat RNAs. We have prepared a series of branched compounds (bRNA and bDNA), and studied the effects of such molecules on the efficiency of mammalian pre-mRNA splicing in vitro. Y-shaped RNAs containing an unnatural L-2'-deoxycytidine unit (L-dC) at the 3' termini are highly stabilized against exonuclease hydrolysis in HeLa nuclear extracts, and are potent inhibitors of the splicing pathway. A bRNA containing internal 2'-O-methyl ribopyrimidine units and L-dC at the 3' ends was at least twice as potent as the most potent of the bRNAs containing no 2' modifications, with an IC50 of approximately 5 micro M. Inhibitory activity was maintained in a branched molecule containing an arabino-adenosine branchpoint which, unlike the native bRNAs, resisted cleavage by the lariat- debranching enzyme. The data obtained suggest that binding and sequestering of a branch recognition factor by the branched nucleic acids is an early event, which occurs prior to the first chemical step of splicing. Probably, an early recognition element preferentially binds to the synthetic branched molecules over the native pre-mRNA. As such, synthetic bRNAs may prove to be invaluable tools for the purification and identification of the putative branchpoint recognition factor.  相似文献   

15.
The splicing of the microtubule-associated protein Tau is regulated during development and is found to be deregulated in a growing number of pathological conditions such as myotonic dystrophy type I (DM1), in which a reduced number of isoforms is expressed in the adult brain. DM1 is caused by a dynamic and unstable CTG repeat expansion in the DMPK gene, resulting in an RNA bearing long CUG repeats (n > 50) that accumulates in nuclear foci and sequesters CUG-binding splicing factors of the muscleblind-like (MBNL) family, involved in the splicing of Tau pre-mRNA among others. However, the precise mechanism leading to Tau mis-splicing and the role of MBNL splicing factors in this process are poorly understood. We therefore used new Tau minigenes that we developed for this purpose to determine how MBNL1 and MBNL2 interact to regulate Tau exon 2 splicing. We demonstrate that an intronic region 250 nucleotides downstream of Tau exon 2 contains cis-regulatory splicing enhancers that are sensitive to MBNL and that bind directly to MBNL1. Both MBNL1 and MBNL2 act as enhancers of Tau exon 2 inclusion. Intriguingly, the interaction of MBNL1 and MBNL2 is required to fully reverse the mis-splicing of Tau exon 2 induced by the trans-dominant effect of long CUG repeats, similar to the DM1 condition. In conclusion, both MBNL1 and MBNL2 are involved in the regulation of Tau exon 2 splicing and the mis-splicing of Tau in DM1 is due to the combined inactivation of both.  相似文献   

16.
Originally the novel protein Blom7α was identified as novel pre-mRNA splicing factor that interacts with SNEVPrp19/Pso4, an essential protein involved in extension of human endothelial cell life span, DNA damage repair, the ubiquitin-proteasome system, and pre-mRNA splicing. Blom7α belongs to the heteronuclear ribonucleoprotein K homology (KH) protein family, displaying 2 KH domains, a well conserved and widespread RNA-binding motif. In order to identify specific sequence binding motifs, we here used Systematic Evolution of Ligands by Exponential Enrichment (SELEX) with a synthetic RNA library. Besides sequence motifs like (U/A)1–4 C2–6 (U/A)1–5, we identified an AC-rich RNA-aptamer that we termed AK48 (Aptamer KH-binding 48), binding to Blom7α with high affinity. Addition of AK48 to pre-mRNA splicing reactions in vitro inhibited the formation of mature spliced mRNA and led to a slight accumulation of the H complex of the spliceosome. These results suggest that the RNA binding activity of Blom7α might be required for pre-mRNA splicing catalysis. The inhibition of in-vitro splicing by the small RNA AK48 indicates the potential use of small RNA molecules in targeting the spliceosome complex as a novel target for drug development.  相似文献   

17.
18.
Every mRNA in trypanosomes consists of two exons, a common 5' capped mini-exon or spliced leader and a coding-exon. All evidence suggests that the exons are joined by trans-splicing of two individual precursor RNAs, the mini-exon donor RNA or spliced leader precursor RNA (medRNA) and the pre-mRNA. We studied intermediates of the splicing reaction using denaturing two-dimensional PAGE and structurally identified a group of small (approximately 180-300 nt) non-polyadenylated, Y-shaped branched RNAs. The branched Y-shaped RNAs contain the 105 nt medRNA derived intron, joined in a 2'-5' phosphodiester bond to small heterogeneously sized RNAs. These non-polyadenylated branched Y-shaped RNA molecules are analogous to the lariat shaped introns of higher eukaryotes and presumably represent the released intron-like by-products of a trans-splicing reaction which joins the mini-exon and the major coding-exon.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号