首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 :探讨磁场对大鼠肝组织、肾组织中一氧化氮 (NO)含量的影响。方法 :将大鼠置于不同磁场 ( 1 0mT、2 0mT、30mT)中曝磁 30min ,观察磁场对大鼠肝组织和肾组织NO含量的影响。NO含量的测定采用改良的Griess法。结果 :在 30mT磁场中曝磁 30min ,大鼠肝组织、肾组织中NO含量都显著高于对照组(p <0 .0 1 ) ;其它场强NO含量与对照组相比无统计学意义。结论 :30mT磁场对大鼠肝组织、肾组织NO含量有一定影响。  相似文献   

2.
Measuring internal induced electric fields in animals with a miniaturized probe involves a potential error related to the difference between the hole conductivity (σh) and the surrounding tissue conductivity (σt). Theory was developed to describe this phenomenon and checked by probe measurements in agar-filled petri dishes. The value measured in the hole is 2σt/(σh + σt) times the actual field in the tissue. For example, a probe hole in muscle, which is filled with blood, could yield a measurement only about 22% of the true value in the muscle. This potential source of error can be mitigated to some extent by not actually cutting a hole, by using a low-conductivity (e.g., 0.2 S/m) coupling medium in the hole, or by ensuring contact between the probe's electrodes and the tissue. © 1994 Wiley-Liss, Inc.  相似文献   

3.
    
Daily preexposure and postexposure mass measurements of 65 rats (young males and females, old males) a proprietary pulsed wound healing field, pulsed electromagnetic field, (PEMF), or their control fields for 4 h/day for 21 days. Statistical analysis of mass changes over time showed that young rats exposed to PEMF lost more mass and recovered it more slowly compared to controls (2-4% more loss) than did older PEMF exposed rats or any 60 Hz exposed rats. We conclude that daily preexposure and postexposure mass measurements are needed to adequately assess the effects of electromagnetic fields on body mass.  相似文献   

4.
    
In our previous work we have shown that the age‐dependent decrease in the magnetosensitivity of heart muscle hydration is accompanied by a dysfunction of the Na+/K+ pump. The reciprocal relation between the Na+/K+ pump and Na+/Ca2+ exchange in development was suggested as a possible pathway for the age‐dependent decrease in the magnetosensitivity of heart muscle hydration (water content). Because high and low affinity ouabain receptors in cell membranes are involved in Na+/Ca2+ exchange and Na+/K+ pump functions, respectively, the effect of a 0.2 T static magnetic field (SMF) on dose‐dependent, ouabain‐induced hydration and [3H]‐ouabain binding with heart muscle tissues in young, adult and older rats was studied. Three populations of receptors in membranes with high (10?11–10?9 M), middle (10?9–10?7 M) and low (10?7–10?4 M) affinity to [3H]‐ouabain were distinguished, which had specific dose‐dependent [3H]‐ouabain binding kinetics and effects on muscle hydration. The magnetosensitivity of [3H]‐ouabain binding kinetics with high affinity receptors was prominent in all the three age groups of animals, while with low affinity receptors it was more expressed only in the young group of animals. All three types of receptors that caused modulations of muscle hydration were age dependent and magnetosensitive. Based on the obtained data we came to the conclusion that heart muscle hydration in young animals is more magnetosensitive due to the intense expression of high affinity ouabain receptors, which declines with aging. Bioelectromagnetics 34:312–322, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The purpose of these experiments was to determine whether the exposure of rats at night to pulsed DC magnetic fields (MF) would influence the nocturnal production and secretion of melatonin, as indicated by pineal N-acetyltransferase (NAT) activity (the rate limiting enzyme in melatonin production) and pineal and serum melatonin levels. By using a computer-driven exposure system, 15 experiments were conducted. MF exposure onset was always during the night, with the duration of exposure varying from 15 to 120 min. A variety of field strengths, ranging from 50 to 500 μT (0.5 to 5.0 G) were used with the bulk of the studies being conducted using a 100 μT (1.0 G) field. During the interval of DC MF exposure, the field was turned on and off at 1-s intervals with a rise/fall time constant of 5 ms. Because the studies were performed during the night, all procedures were carried out under weak red light (intensity of <5 μW/cm2). At the conclusion of each study, a blood sample and the pineal gland were collected for analysis of serum melatonin titers and pineal NAT and melatonin levels. The outcome of individual studies varied. Of the 23 cases in which pineal NAT activity, pineal melatonin, and serum melatonin levels were measured, the following results were obtained; in 5 cases (21.7%) pineal NAT activity was depressed, in 2 cases (8.7%) studies pineal melatonin levels were lowered, and in 10 cases (43.5%) serum melatonin concentrations were reduced. Never was there a measured rise in any of the end points that were considered in this study. The magnitudes of the reductions were not correlated with field strength (i.e., no dose-response relationships were apparent), and likewise the reductions could not be correlated with the season of the year (experiments conducted at 12-month intervals under identical exposure conditions yielded different results). Duration of exposure also seemed not to be a factor in the degree of melatonin suppression. The inconsistency of the results does not permit the conclusion that pineal melatonin production or release are routinely influenced by pulsed DC MF exposure. In the current series of studies, a suppression of serum melatonin sometimes occurred in the absence of any apparent change in the synthesis of this indoleamine within the pineal gland (no alteration in either pineal NAT activity or pineal melatonin levels). Because melatonin is a direct free radical scavenger, the drop in serum melatonin could theoretically be explained by an increased uptake of melatonin by tissues that were experiencing augmented levels of free radicals as a consequence of MF exposure. This hypothetical possibly requires additional experimental documentation. Bioelectromagnetics 19:318–329, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Age-dependent effect of Static Magnetic Field (SMF) on rats in a condition of active and inactive Na+/K+ pump was studied for comparison of brain tissues hydration state changes and magnetic sensitivity. Influence of 15?min 0, 2 Tesla (T) SMF on brain tissue hydration of three aged groups of male albino rats was studied. Tyrode’s physiological solution and 10?4?M ouabain was used for intraperitoneal injections. For animal immobilization, the liquid nitrogen was used and the definition of tissue water content was performed by tissue drying method. Initial water content in brain tissues of young animals is significantly higher than in those of adult and aged ones. SMF exposure leads to decrease of water content in brain tissues of young animals and increase in brain tissues of adult and aged ones. In case of ouabain-poisoned animals, SMF gives reversal effects on brain tissue’s hydration both in young and aged animals, while no significant effect on adults is observed. It is suggested that initial state of tissue hydration could play a crucial role in animal age-dependent magnetic sensitivity and the main reason for this could be age-dependent dysfunction of Na+/K+ pump.  相似文献   

7.
Isolated rat hearts and excised canine cardiac tissues were subjected to pulsed magnetic fields. The fields excited in coils by tandem pairings of sinusoidal pulses were presented at various inter-pair delays and repetition rates. The waveform of the magnetic field was a single or multiple sinusoid followed after a variable delay by another single or multiple sinusoid. Small but reliable increases in the beating rate of rat heart were observed. Similar increases occurred in contraction rates of canine tissues. Both preparations exhibited a contraction-rate dependency on the repetition rate of the paired magnetic pulses: 4.5-6 rep/s for canine tissue, and 20-25 and 40-55 reps/s for rat heart. Flux-density thresholds for both preparations approximated 10 mT (100 gauss) rms.  相似文献   

8.
Using rats previously anesthetized with pentobarbital and with subtle modifications to existing procedures, rat brown adipocytes of good yield, viability, and stability were consistently obtained. The metabolic integrity of the cells, indicated by an 8–11 fold norepinephrine-dependent stimulation of respiration, was reproducible between cell preparations and maintained even after 3–5 hours of cell storage at room temperature. The ATP content of freshly isolated and stored cells per mg DNA (using a modified DNA assay) closely reflected the in vivo content determined from freeze clamped tissue.  相似文献   

9.
Generator of spatial magnetic field is one of most recent achievements among the magnetostimulators. This apparatus allows to obtain the rotating magnetic field. This new method may be more effective than other widely used techniques of magnetostimulation and magnetotherapy. We investigated the influence of alternating, spatial magnetic field on the regeneration of the crushed rat sciatic nerves. Functional and morphological evaluations were used. After crush injury of the right sciatic nerve, Wistar C rats (n?=?80) were randomly divided into four groups (control and three experimental). The experimental groups (A, B, C) were exposed (20?min/day, 5?d/week, 4 weeks) to alternating spatial magnetic field of three different intensities. Sciatic Functional Index (SFI) and tensometric assessments were performed every week after nerve crush. Forty-eight hours before the sacrificing of animals, DiI (1,1’-di-octadecyl-3,3,3’,3’-tetramethyloindocarbocyanine perchlorate) was applied 5?mm distally to the crush site. Collected nerves and dorsal root ganglia (DRG) were subjected to histological and immunohistochemical staining. The survival rate of DRG neurons was estimated. Regrowth and myelination of the nerves was examined. The results of SFI and tensometric assessment showed improvement in all experimental groups as compared to control, with best outcome observed in group C, exposed to the strongest magnetic field. In addition, DRG survival rate and nerve regeneration intensity were significantly higher in the C group. Above results indicate that strong spatial alternating magnetic field exerts positive effect on peripheral nerve regeneration and its application could be taken under consideration in the therapy of injured peripheral nerves.  相似文献   

10.
    
Male and female F344 rats, 48 per exposure group, were sham exposed (Group A) or exposed to 0.5 (Group B) and 5 mT (Group C) magnetic fields for two years. Animals were exposed from 5–109 weeks of age in SPF conditions according to the OECD test guideline No. 451. Average exposure was 22.6 hr/day. No significant differences in body weight and food consumption were observed between the sham and exposed groups. At the end of the exposure period, survival rates of the male rats were 73, 83, and 79%, and those of the females, 77, 79, and 75% for Groups A, B, and C, respectively, with no significant differences between groups. Differential counts of leukocytes were measured at the 52nd, 78th, and 104th weeks of exposure and no significant differences were observed between the exposure groups. All survivors were euthanized on schedule, and all the organs and tissues suspected of tumoral lesions were examined histopathologically. Incidences of mononuclear cell leukemia in the male and the female rats were 5, 4, 4 and 8, 6, 7 for Groups A, B and C, respectively; incidences of malignant lymphoma in the female rats were 0, 1 and 1. Neither significant increases nor acceleration of incidence of leukemia were observed. Incidences of brain and intracranial tumors did not increase in the exposed groups. Incidences of both benign and malignant neoplasms showed no significant difference between the exposed and sham exposed groups with one exception: fibroma of the subcutis in the male rats, which was considered not to be a statistically significant when evaluated with respect to the historical control data in our laboratory. Bioelectromagnetics 18:531–540, 1997. © Wiley-Liss, Inc.  相似文献   

11.
A magnetic field generator constructed of rare earth-cobalt magnets is proposed for examining the biological effects of static magnetic fields (less than 1 T) on tissue cultures. Important quantities of a magnetic field from a biological-effects viewpoint, ie, its strength and the product of strength and gradient, are analysed. A practical procedure for designing the generator with optimum parameters is given. Also, parameters are determined which will yield a sinusoidal spatial field distribution.  相似文献   

12.
Introduction. Human disturbance has recently led to increasingly serious destruction of Sphagnum L. wetlands in subtropical high mountains, resulting in an urgent need for wetland restoration.

Methods. Through a field experiment conducted in western Hubei Province, China, the effects of four different microtopographic types [concave surface, convex surface, concave and convex surface (CC surface), and flat surface] and water table depth (0 to ?30?cm) on three growth indicators (number of capitula, coverage and biomass) of Sphagnum palustre L. were examined. The objective was to identify the optimal hydrological conditions for S. palustre growth and thus facilitate its rapid recolonisation and restoration of these wetlands.

Key results. The results showed that different microtopographic conditions significantly influenced S. palustre growth. Among them, S. palustre in the CC surface showed the worst growth, while no significant differences existed among the other three microtopographic types. Additionally, as the water table increased, the growth of S. palustre increased, but long-term flooding impeded growth. The water table affected S. palustre growth via effects on its tissue water content.

Conclusions. Microtopographic reshaping was not essential for the success of S. palustre recolonisation, and microtopography that maintained the water table to within ?10?cm of the surface without flooding were best, independent of the microtopographic types. In addition, the growth patterns of S. palustre changed with changes in the environment, which may be related to its long-term adaptation to conditions of a lower water table.  相似文献   


13.
新垦红壤坡地土壤水分有效性研究   总被引:6,自引:5,他引:6  
针对南方红壤地区降雨时空分布不均的特点,以未开垦的自然植被为对照,对桂西北环境移民示范区不同季节(早季和雨季)一次性降雨前1d及降雨后4h、2d、4d、6d及8d新垦蔗地(中坡、下坡、谷地)0-20cm,20-40cm、40-60cm3个土层的土壤水分含量进行了测定.结果表明,雨后谷地蔗地的土壤有效水分增量几乎与降雨量相同,而中坡蔗地与未开垦的自然植被土壤有效水分增量仅相当于降雨量于80%.雨季雨后0-60cm土壤层次中土壤有效水分分布均匀,早季主要集中在表层.雨季一次性降雨后各哩理及各土层土壤有效水分饱和度均有显著差异;而早季3个新垦蔗地间无明显差异,3个土层以表层土壤有效水分饱和度最高,亚表层与心土层差异不明显.无论雨季还是旱季,0-60cm土层土壤有效水分的消耗速率都以自然植被处理为最低,由于雨季正是作物生长旺季,其0-60cm土层土壤有效水分的消耗速率比旱季快,按照早季雨后8d土壤有效水分的平均消耗速率,15d内0-60cm土层的有效水分将消耗殆尽。  相似文献   

14.
    
The aim of this study was to investigate the effect of static magnetic fields (SMF) on reactive oxygen species induced by X‐ray radiation. The experiments were performed on lymphocytes from male albino Wistar rats. After exposure to 3 Gy X‐ray radiation (with a dose rate of 560 mGy/min) the measurement of intracellular reactive oxygen species in lymphocytes, using a fluorescent probe, was done before exposure to the SMF, and after 15 min, 1 and 2 h of exposure to the SMF or a corresponding incubation time. For SMF exposure, 0 mT (50 µT magnetic field induction opposite to the geomagnetic field) and 5 mT fields were chosen. The trend of SMF effects for 0 mT was always opposite that of 5 mT. The first one decreased the rate of fluorescence change, while the latter one increased it. Bioelectromagnetics 34:333–336, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
    
《Journal of morphology》2017,278(7):948-959
Mature male Pacific salmon (Genus Oncorhynchus ) demonstrate prominent morphological changes, such as the development of a dorsal hump. The degree of dorsal hump formation depends on the species in Pacific salmon. It is generally accepted that mature males of sockeye (O. nerka ) and pink (O. gorbuscha ) salmon develop most pronounced dorsal humps. The internal structure of the dorsal hump in pink salmon has been confirmed in detail. In this study, the dorsal hump morphologies were analyzed in four Pacific salmon species inhabiting Japan, masu (O. masou ), sockeye, chum (O. keta ), and pink salmon. The internal structure of the dorsal humps also depended on the species; sockeye and pink salmon showed conspicuous development of connective tissue and growth of bone tissues in the dorsal tissues. Masu and chum salmon exhibited less‐pronounced increases in connective tissues and bone growth. Hyaluronic acid was clearly detected in dorsal hump connective tissue by histochemistry, except for in masu salmon. The lipid content in dorsal hump connective tissue was richer in masu and chum salmon than in sockeye and pink salmon. These results revealed that the patterns of dorsal hump formation differed among species, and especially sockeye and pink salmon develop pronounced dorsal humps through both increases in the amount of connective tissue and the growth of bone tissues. In contrast, masu and chum salmon develop their dorsal humps by the growth of bone tissues, rather than the development of connective tissue.  相似文献   

16.
    
Pulsed magnetic fields (PMFs) have well‐known beneficial effects on nerve regeneration. However, little research has examined the nerve conduction characteristics of regenerating peripheral nerves under PMF. The main goal of this study was to examine the conduction characteristics of regenerating peripheral nerves under PMFs. The sucrose‐gap recording technique was used to examine the conduction properties of injured sciatic nerves of rats exposed to PMF. Following the injury, peripheral nerves were very sensitive to repetitive stimulation. When the stimulation frequency was increased, the amplitude of the compound action potential (CAP) decreased more at 15 days post‐crush injury (dpc) than at 38 dpc. PMF treatment for 38 days after injury caused significant differences in the conduction of CAPs. Moreover, application of PMF ameliorated the abnormal electrophysiological activities of nerves such as hyperpolarizing afterpotentials and delayed depolarizations that were revealed by 4‐aminopyridine (4‐AP). Consequently, characteristic findings in impulse conduction of recovered nerves under PMF indicate that the observed abnormalities in signaling or aberrant ion channel functions following injury may be restored by PMF application. Bioelectromagnetics 32:200–208, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Two independent laboratories have demonstrated that electromagnetic radiation at specific frequencies can cause a change in the efflux of calcium ions from brain tissue in vitro. In a local geomagnetic field (LGF) at a density of 38 microTesla (microT), 15- and 45-Hz electromagnetic signals (40 Vp-p/m in air) have been shown to induce a change in the efflux of calcium ions from the exposed tissues, whereas 1- and 30-Hz signals do not. We now show that the effective 15-Hz signal can be rendered ineffective when the LGF is reduced to 19 microT with Helmholtz coils. In addition, the ineffective 30-Hz signal becomes effective when the LGF is changed to +/- 25.3 microT or to +/- 76 microT. These results demonstrate that the net intensity of the LGF is an important variable. The results appear to describe a resonance-like relationship in which the frequency of the electromagnetic field that can induce a change in efflux is proportional to a product of LGF density and an index, 2n + 1, where n = 0,1. These phenomenological findings may provide a basis for evaluating the apparent lack of reproducibility of biological effects caused by low-intensity extremely-low-frequency (ELF) electromagnetic signals. In future investigations of this phenomenon, the LGF vector should be explicitly described. If the underlying mechanism involves a general property of tissue, then research conducted in the ambient electromagnetic environment (50/60 Hz) may be subjected to unnoticed and uncontrolled influences, depending on the density of the LGF.  相似文献   

18.
    
Objective: Fat cell size is a fundamental parameter in the study of adipose tissue metabolism, because it markedly influences the cellular rates of metabolism. Previous techniques for the sizing of adipocytes are often complicated or time‐consuming. The aim of this study was to develop a new, computerized method for rapid and accurate determination of adipocyte size in a cell suspension obtained by incubating human or rat adipose tissue biopsies with collagenase. Research Methods and Procedures: The cell suspension was placed between a siliconized glass slide and a cover slip. Using the reference method [designated as (R)], the cell diameters were determined manually using a microscope with a calibrated ocular. The new method presented here [designated as (C)] was based on computerized image analysis. Results: After two well‐defined corrective adjustments, measurements with (R) and (C) agreed very well. The small remaining differences seemed, in fact, to depend on inconsistencies in (R). Discussion: We propose that (C) constitutes a valuable tool to study fat cell size, because this method is fast and allows the assessment of a sufficient number of cells to get reliable data on size distribution. Furthermore, images of cell preparations may be stored for future reference.  相似文献   

19.
目的:探讨不同照射时间的恒定磁场作用对小鼠空间记忆形成的影响.方法:应用水迷宫学习模型测定并对比4小时恒定磁场照射组、3小时恒定磁场照射组、2小时恒定磁场照射组和无磁场照射的正常对照组动物的空间记忆能力.结果:水迷宫学习训练的实验表明:第一个训练日中,4小时磁场处理组动物与正常对照组比较,动物到达水下平台所需时间延长,且具有显著性差异(P〈0.05);3小时磁场处理组与正常对照组比较,动物到达水下平台所需时间缩短,且具有显著性差异(P〈0.05);第二个训练日中,2小时或3小时磁场处理组与正常对照组比较,动物到达水下平台所需时间延长,且均具有显著性差异(P〈0.05).第三、四、五连续3个训练日中,3组磁场处理组动物到达水下平台所需的时间与正常对照组相比较均不具有显著性差异(P〉0.05).结论:一定时间的磁场处理对小鼠空间记忆的形成有促进或损伤作用,究竟是促进还是损伤有可能取决于一个作用“窗口”问题.  相似文献   

20.
目的 :探讨磁场作用对小鼠学习记忆能力的影响。方法 :应用水迷宫学习模型测定并对比 30分钟磁场处理组、1 5分钟磁场处理组和非磁场处理的正常对照组动物的空间学习记忆能力。结果 :水迷宫学习训练的实验表明 30分钟磁场处理组与正常对照组比较 ,动物到达水下平台的时间延长 ;游程增加 ;平均游速减慢 ,且均具有显著性差异 (p <0 .0 5)。 1 5分钟磁场处理组与正常对照组比较 ,动物到达水下平台的时间延长 ,且具有显著性差异 (p <0 .0 5) ;游程和平均速度与正常对照组相比无显著性差异 (p >0 .0 5)。结论 :磁场处理 30分钟或 1 5分钟损伤小鼠的空间学习记忆能力 ,且以 30分钟的磁场处理作用较强  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号