首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: BACKGROUND: Pompe disease (Glycogen storage disease type II, GSD II, acid alpha-glucosidase deficiency, acid maltase deficiency, OMIM # 232300) is an autosomal-recessive lysosomal storage disorder due to a deficiency of acid alpha-glucosidase (GAA, acid maltase, EC 3.2.1.20, Swiss-Prot P10253). Clinical manifestations are dominated by progressive weakness of skeletal muscle throughout the clinical spectrum. In addition, the classic infantile form is characterised by hypertrophic cardiomyopathy. Methods: In a cross-sectional single-centre study we clinically assessed 3 patients with classic infantile Pompe disease and 39 patients with non-classic presentations, measured their acid alpha-glucosidase activities and analysed their GAA genes. Results: Classic infantile patients had nearly absent residual enzyme activities and a typical clinical course with hypertrophic cardiomyopathy until the beginning of therapy. The disease manifestations in non-classic patients were heterogeneous. There was a broad variability in the decline of locomotive and respiratory function. The age of onset ranged from birth to late adulthood and correlated with enzyme activities. Molecular analysis revealed as many as 33 different mutations, 14 of which are novel. All classic infantile patients had two severe mutations. The most common mutation in the non-classic group was c.-32-13T>G. It was associated with a milder course in this subgroup. Conclusion: Disease manifestation strongly correlates with the nature of the GAA mutations, while the variable progression in non-classic Pompe disease is likely to be explained by yet unknown modifying factors. This study provides the first comprehensive dataset on the clinical course and the mutational spectrum of Pompe disease in Germany.  相似文献   

2.

Background

Pompe disease (Glycogen storage disease type II, GSD II, acid alpha-glucosidase deficiency, acid maltase deficiency, OMIM # 232300) is an autosomal-recessive lysosomal storage disorder due to a deficiency of acid alpha-glucosidase (GAA, acid maltase, EC 3.2.1.20, Swiss-Prot P10253). Clinical manifestations are dominated by progressive weakness of skeletal muscle throughout the clinical spectrum. In addition, the classic infantile form is characterised by hypertrophic cardiomyopathy.

Methods

In a cross-sectional single-centre study we clinically assessed 3 patients with classic infantile Pompe disease and 39 patients with non-classic presentations, measured their acid alpha-glucosidase activities and analysed their GAA genes.

Results

Classic infantile patients had nearly absent residual enzyme activities and a typical clinical course with hypertrophic cardiomyopathy until the beginning of therapy. The disease manifestations in non-classic patients were heterogeneous. There was a broad variability in the decline of locomotive and respiratory function. The age of onset ranged from birth to late adulthood and correlated with enzyme activities. Molecular analysis revealed as many as 33 different mutations, 14 of which are novel. All classic infantile patients had two severe mutations. The most common mutation in the non-classic group was c.-32-13?T?>?G. It was associated with a milder course in this subgroup.

Conclusions

Disease manifestation strongly correlates with the nature of the GAA mutations, while the variable progression in non-classic Pompe disease is likely to be explained by yet unknown modifying factors. This study provides the first comprehensive dataset on the clinical course and the mutational spectrum of Pompe disease in Germany.  相似文献   

3.
Pompe disease is a lysosomal storage disorder caused by deficiency in the enzyme acid α-glucosidase (GAA). Pompe disease is characterized by the accumulation of glycogen, predominantly in muscle tissue, leading to progressive muscle weakness, loss of motor, respiratory, and, in the infantile-onset form, cardiac function. Disease progression is highly variable depending on phenotype, but premature death due to respiratory complications occurs in most patients. Beginning in 2006, approved alglucosidase alfa enzyme replacement therapies [recombinant human (rh) GAA] have been available to treat Pompe patients. Treatment of classic infantile-onset patients, who manifest the severest form of the disease, with alglucosidase alfa (Myozyme?) has led to extended survival and an evolving understanding of the pathophysiology and course of the disease. Moreover, such treatment has brought to light the role of the immune response in abrogating the efficacy of rhGAA in classic infantile-onset patients with severe genetic mutations. Thus, optimization of treatment for such patients includes development and utilization of strategies to prevent or eliminate immune responses, including modulating the immune system (prophylactic and therapeutic immune tolerance induction regimens) and engineering the enzyme to be less immunogenic and more effective. Future research is also critical for evaluating and mitigating novel disease-associated pathologies uncovered by prolonged survival of infantile-onset patients including development of novel therapeutics, and for protein design strategies to increase delivery of enzyme replacement therapy to critical target tissues. Such efforts would be greatly bolstered by further development of predictive animal models and biomarkers to facilitate clinical trials and patient management. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

4.
Enzyme replacement therapy (ERT) for Pompe disease using recombinant acid alpha-glucosidase (rhGAA) has resulted in increased survival although the clinical response is variable. Cross-reactive immunological material (CRIM)-negative status has been recognized as a poor prognostic factor. CRIM-negative patients make no GAA protein and develop sustained high antibody titers to ERT that render the treatment ineffective. Antibody titers are generally low for the majority of CRIM-positive patients and there is typically a better clinical outcome. Because immunomodulation has been found to be most effective in CRIM-negative patients prior to, or shortly after, initiation of ERT, knowledge of CRIM status is important before ERT is begun. We have analyzed 243 patients with infantile Pompe disease using a Western blot method for determining CRIM status and using cultured skin fibroblasts. Sixty-one out of 243 (25.1%) patients tested from various ethnic backgrounds were found to be CRIM-negative. We then correlated the CRIM results with GAA gene mutations where available (52 CRIM-negative and 88 CRIM-positive patients). We found that, in most cases, CRIM status can be predicted from GAA mutations, potentially circumventing the need for invasive skin biopsy and time wasted in culturing cells in the future. Continued studies in this area will help to increase the power of GAA gene mutations in predicting CRIM status as well as possibly identifying CRIM-positive patients who are at risk for developing high antibody titers.  相似文献   

5.

Background

Pompe disease has a broad clinical spectrum, in which the phenotype is partially explained by the genotype. The aim of this study was to describe phenotypical variation among siblings with non-classic Pompe disease. We hypothesized that siblings and families with the same genotype share more similar phenotypes than the total population of non-classic Pompe patients, and that this might reveal genotype-phenotype correlations.

Methods

We identified all Dutch families in which two or three siblings were diagnosed with Pompe disease and described genotype, acid α-glucosidase activity, age at symptom onset, presenting symptoms, specific clinical features, mobility and ventilator dependency.

Results

We identified 22 families comprising two or three siblings. All carried the most common mutation c.-32-13 T?>?G in combination with another pathogenic mutation. The median age at symptom onset was 33 years (range 1–62 years). Within sibships symptom onset was either in childhood or in adulthood. The median variation in symptom onset between siblings was nine years (range 0–31 years). Presenting symptoms were similar across siblings in 14 out of 22 families. Limb girdle weakness was most frequently reported. In some families ptosis or bulbar weakness were present in all siblings. A large variation in disease severity (based on wheelchair/ventilator dependency) was observed in 11 families. This variation did not always result from a difference in duration of the disease since a third of the less affected siblings had a longer course of the disease. Enzyme activity could not explain this variation either. In most families male patients were more severely affected. Finally, symptom onset varied substantially in twelve families despite the same GAA genotype.

Conclusion

In most families with non-classic Pompe disease siblings share a similar phenotype regarding symptom onset, presenting symptoms and specific clinical features. However, in some families the course and severity of disease varied substantially. This phenotypical variation was also observed in families with identical GAA genotypes. The commonalities and differences indicate that besides genotype, other factors such as epigenetic and environmental effects influence the clinical presentation and disease course.
  相似文献   

6.
Glycogen storage disease type II or Pompe disease (GSD II, MIM 232300) is a rare inherited metabolic myopathy caused by a deficiency of lysosomal acid α-glucosidase or acid maltase (GAA; EC 3.2.1.20), resulting in a massive lysosomal glycogen accumulation in cardiac and skeletal muscles. Affected individuals exhibit either severe hypotonia associated with hypertrophic cardiomyopathy (infantile forms) or progressive muscle weakness (late-onset forms). Even if enzyme replacement therapy has recently become a standard treatment, it suffers from several limitations. This review will present the main results of enzyme replacement therapy and the recent findings concerning alternative treatments for Pompe disease, such as gene therapy, enzyme enhancement therapy, and substrate reduction therapy.  相似文献   

7.
Pompe disease is an uncommon autosomal recessive glycogen storage disorder caused by deficiency of acid α-glucosidase. Classic infantile form triggers severe cardiomyopathy, hypotonia, and respiratory failure, leading to death within the first two years of life. The majority of patients with Pompe disease have been reported to have point mutations in the GAA gene. We report the first complex deletion–insertion encompassing the complete structure of GAA gene and a large fragment of the gene CCDC40 in a patient with very severe form of Pompe disease. Sequencing analysis of breakpoints allowed us to determine the potential implication of an Alu repeat in the pathogenic mechanism. We suggest that molecular strategy of Pompe disease should include systematic analysis of large rearrangements.  相似文献   

8.
Pompe disease is an autosomal recessive neuromuscular disorder marked by progressive muscle weakness due to lysosomal buildup of glycogen. Presentation is described as a spectrum, varying by age of onset, organ involvement, and degree of myopathy. Given the phenotypic variability, Pompe disease is broadly classified into an infantile form and a late onset (juvenile, childhood, adult onset) form. Prior to the advent of enzyme replacement therapy (ERT) with alglucosidase alfa and approval for human use in 2006, the natural history was limited due to death before age 2 years for infantile onset cases and significant morbidity and early mortality for late onset Pompe disease (LOPD). ERT with alglucosidase alfa redefined the once fatal outcome in infantile Pompe, establishing an emergent phenotype. Treatment in late onset patients resulted in improved outcomes, enhancing understanding of the phenotype, presentation, and extent of organ involvement. This Issue of the Seminars seeks to enumerate the recent advancements in the field of Pompe disease, including newborn screening, novel therapeutic targets, new insights in the pathophysiology including role of autophagy, and impacts of long-term disease burden and CNS glycogen accumulation on cognition in infantile survivors. It also addresses immunological challenges and the critical role of immunomodulation in ERT treatment outcome. Other topics discussed include the role of biomarkers in monitoring disease progression and treatment responses, the role of genotype in defining phenotype and treatment response, better insights into the clinical presentations in LOPD and finally the importance of a multidisciplinary approach to care with the role of physical therapy as an example. Many gaps in our scientific understanding of this disease still remain; however, we hope the next decade will bring new knowledge and therapies to the horizon.  相似文献   

9.
Pompe disease is an inherited lysosomal storage disease that results from a deficiency in the enzyme acid α-glucosidase (GAA), and is characterized by progressive accumulation of lysosomal glycogen primarily in heart and skeletal muscles. Recombinant human GAA (rhGAA) is the only approved enzyme replacement therapy (ERT) available for the treatment of Pompe disease. Although rhGAA has been shown to slow disease progression and improve some of the pathophysiogical manifestations, the infused enzyme tends to be unstable at neutral pH and body temperature, shows low uptake into some key target tissues, and may elicit immune responses that adversely affect tolerability and efficacy. We hypothesized that co-administration of the orally-available, small molecule pharmacological chaperone AT2220 (1-deoxynojirimycin hydrochloride, duvoglustat hydrochloride) may improve the pharmacological properties of rhGAA via binding and stabilization. AT2220 co-incubation prevented rhGAA denaturation and loss of activity in vitro at neutral pH and 37°C in both buffer and blood. In addition, oral pre-administration of AT2220 to rats led to a greater than two-fold increase in the circulating half-life of intravenous rhGAA. Importantly, co-administration of AT2220 and rhGAA to GAA knock-out (KO) mice resulted in significantly greater rhGAA levels in plasma, and greater uptake and glycogen reduction in heart and skeletal muscles, compared to administration of rhGAA alone. Collectively, these preclinical data highlight the potentially beneficial effects of AT2220 on rhGAA in vitro and in vivo. As such, a Phase 2 clinical study has been initiated to investigate the effects of co-administered AT2220 on rhGAA in Pompe patients.  相似文献   

10.
This report documents the long-term cognitive and adaptive outcome of children with infantile Pompe disease. Specifically, we describe the cognitive and adaptive functioning of seven children with classic infantile Pompe disease and two children with atypical infantile Pompe disease who have received enzyme replacement therapy (Myozyme?) for an average of 6 years, 8 months and 4 years, 1. 5 months, respectively. Multiple assessments of cognitive functioning were completed over time by means of individualized intelligence (IQ) testing. Adaptive functioning was measured by means of the Vineland Adaptive Behavior Scales-Second Edition (VABS-II). Consistent with our earlier findings regarding infants treated with ERT, children with classic infantile Pompe disease (ages 4 years, 11 months to 8 years, 11 months) were functioning at the lower end of the average range in comparison to their typical peers on their most recent IQ test. There was no evidence of a decline in their cognitive abilities over time. In contrast, the two children with atypical infantile Pompe disease (ages 5 years, 4 months and 5 years, 11 months) obtained above average IQ scores and demonstrated significant gains in IQ over time. For all children where adaptive functioning was assessed, their overall level of adaptive functioning on the VABS-II was lower than their Full Scale IQ scores on cognitive testing. Motor function appears to be an important factor impacting on reduced adaptive behavior. The implication of these findings on our understanding of a possible relationship between CNS status in children with Pompe and their adaptive and cognitive function is discussed.  相似文献   

11.
We have used a peptide-based targeting system to improve lysosomal delivery of acid α-glucosidase (GAA), the enzyme deficient in patients with Pompe disease. Human GAA was fused to the glycosylation-independent lysosomal targeting (GILT) tag, which contains a portion of insulin-like growth factor II, to create an active, chimeric enzyme with high affinity for the cation-independent mannose 6-phosphate receptor. GILT-tagged GAA was taken up by L6 myoblasts about 25-fold more efficiently than was recombinant human GAA (rhGAA). Once delivered to the lysosome, the mature form of GILT-tagged GAA was indistinguishable from rhGAA and persisted with a half-life indistinguishable from rhGAA. GILT-tagged GAA was significantly more effective than rhGAA in clearing glycogen from numerous skeletal muscle tissues in the Pompe mouse model. The GILT-tagged GAA enzyme may provide an improved enzyme replacement therapy for Pompe disease patients.  相似文献   

12.
Pompe disease is an inherited lysosomal storage disorder that results from a deficiency in acid α-glucosidase (GAA) activity due to mutations in the GAA gene. Pompe disease is characterized by accumulation of lysosomal glycogen primarily in heart and skeletal muscles, which leads to progressive muscle weakness. We have shown previously that the small molecule pharmacological chaperone AT2220 (1-deoxynojirimycin hydrochloride, duvoglustat hydrochloride) binds and stabilizes wild-type as well as multiple mutant forms of GAA, and can lead to higher cellular levels of GAA. In this study, we examined the effect of AT2220 on mutant GAA, in vitro and in vivo, with a primary focus on the endoplasmic reticulum (ER)-retained P545L mutant form of human GAA (P545L GAA). AT2220 increased the specific activity of P545L GAA toward both natural (glycogen) and artificial substrates in vitro. Incubation with AT2220 also increased the ER export, lysosomal delivery, proteolytic processing, and stability of P545L GAA. In a new transgenic mouse model of Pompe disease that expresses human P545L on a Gaa knockout background (Tg/KO) and is characterized by reduced GAA activity and elevated glycogen levels in disease-relevant tissues, daily oral administration of AT2220 for 4 weeks resulted in significant and dose-dependent increases in mature lysosomal GAA isoforms and GAA activity in heart and skeletal muscles. Importantly, oral administration of AT2220 also resulted in significant glycogen reduction in disease-relevant tissues. Compared to daily administration, less-frequent AT2220 administration, including repeated cycles of 4 or 5 days with AT2220 followed by 3 or 2 days without drug, respectively, resulted in even greater glycogen reductions. Collectively, these data indicate that AT2220 increases the specific activity, trafficking, and lysosomal stability of P545L GAA, leads to increased levels of mature GAA in lysosomes, and promotes glycogen reduction in situ. As such, AT2220 may warrant further evaluation as a treatment for Pompe disease.  相似文献   

13.
Pompe disease, which results from mutations in the gene encoding the glycogen-degrading lysosomal enzyme acid alpha -glucosidase (GAA) (also called "acid maltase"), causes death in early childhood related to glycogen accumulation in striated muscle and an accompanying infantile-onset cardiomyopathy. The efficacy of enzyme replacement therapy (ERT) with recombinant human GAA was demonstrated during clinical trials that prolonged subjects' overall survival, prolonged ventilator-free survival, and also improved cardiomyopathy, which led to broad-label approval by the U.S. Food and Drug Administration. Patients who lack any residual GAA expression and are deemed negative for cross-reacting immunologic material (CRIM) have a poor response to ERT. We previously showed that gene therapy with an adeno-associated virus (AAV) vector containing a liver-specific promoter elevated the GAA activity in plasma and prevented anti-GAA antibody formation in immunocompetent GAA-knockout mice for 18 wk, predicting that liver-specific expression of human GAA with the AAV vector would induce immune tolerance and enhance the efficacy of ERT. In this study, a very low number of AAV vector particles was administered before initiation of ERT, to prevent the antibody response in GAA-knockout mice. A robust antibody response was provoked in naive GAA-knockout mice by 6 wk after a challenge with human GAA and Freund's adjuvant; in contrast, administration of the AAV vector before the GAA challenge prevented the antibody response. Most compellingly, the antibody response was prevented by AAV vector administration during the 12 wk of ERT, and the efficacy of ERT was thereby enhanced. Thus, AAV vector-mediated gene therapy induced a tolerance to introduced GAA, and this strategy could enhance the efficacy of ERT in CRIM-negative patients with Pompe disease and in patients with other lysosomal storage diseases.  相似文献   

14.
Regulated removal of proteins and organelles by autophagy-lysosome system is critical for muscle homeostasis. Excessive activation of autophagy-dependent degradation contributes to muscle atrophy and cachexia. Conversely, inhibition of autophagy causes accumulation of protein aggregates and abnormal organelles, leading to myofiber degeneration and myopathy. Defects in lysosomal function result in severe muscle disorders such as Pompe (glycogen storage disease type II (GSDII)) disease, characterized by an accumulation of autophagosomes. However, whether autophagy is detrimental or not in muscle function of Pompe patients is unclear. We studied infantile and late-onset GSDII patients and correlated impairment of autophagy with muscle wasting. We also monitored autophagy in patients who received recombinant α-glucosidase. Our data show that infantile and late-onset patients have different levels of autophagic flux, accumulation of p62-positive protein aggregates and expression of atrophy-related genes. Although the infantile patients show impaired autophagic function, the late-onset patients display an interesting correlation among autophagy impairment, atrophy and disease progression. Moreover, reactivation of autophagy in vitro contributes to acid α-glucosidase maturation in both healthy and diseased myotubes. Together, our data suggest that autophagy protects myofibers from disease progression and atrophy in late-onset patients.  相似文献   

15.
Enzyme replacement therapy (ERT) with alglucosidase alpha, approved by the FDA in 2006, has expanded possibilities for individuals with Pompe disease (glycogen storage disease type II, GSDII, or acid maltase deficiency). Children with infantile Pompe disease are surviving beyond infancy, some achieving independent walking and functional levels never before possible. Individuals with late-onset Pompe disease are experiencing motor and respiratory improvement and/or stabilization with slower progression of impairments. A new phenotype is emerging for those with infantile Pompe disease treated with ERT. This new phenotype appears to be distinct from the late-onset phenotype rather than a shift from infantile to late-onset phenotype that might be expected from a simple diminution of symptoms with ERT. Questions arise regarding the etiology of the distinct distribution of weakness in this new phenotype, with increasing questions regarding exercise and musculoskeletal management. Answers require an increased understanding of the muscle pathology in Pompe disease, how that muscle pathology may be impacted by ERT, and the potential impact of, and need for, other clinical interventions. This article reviews the current state of knowledge regarding the pathology of muscle involvement in Pompe disease and the potential change in muscle pathology with ERT; the newly emerging musculoskeletal and gross motor phenotype of infantile Pompe disease treated with ERT; updated recommendations regarding musculoskeletal management in Pompe disease, particularly in children now surviving longer with residual weakness impacting development and integrity of the musculoskeletal system; and the potential impact and role of exercise in infantile Pompe survivors treated with ERT.  相似文献   

16.
Acid α-glucosidase (GAA) is a lysosomal enzyme that hydrolyzes glycogen to glucose. Deficiency of GAA causes Pompe disease. Mammalian GAA is synthesized as a precursor of ~ 110,000 Da that is N-glycosylated and targeted to the lysosome via the M6P receptors. In the lysosome, human GAA is sequentially processed by proteases to polypeptides of 76-, 19.4-, and 3.9-kDa that remain associated. Further cleavage between R200 and A204 inefficiently converts the 76-kDa polypeptide to the mature 70-kDa form with an additional 10.4-kDa polypeptide. GAA maturation increases its affinity for glycogen by 7-10 fold. In contrast to human GAA, processing of bovine and hamster GAA to the 70-kDa form is more rapid. A comparison of sequences surrounding the cleavage site revealed human GAA contains histidine at 201 while other species contain hydrophobic amino acids at position 201 in the otherwise conserved sequence. Recombinant human GAA (rhGAA) containing the H201L substitution was expressed in 293 T cells by transfection. Pulse chase experiments in 293 T cells expressing rhGAA with or without the H201L substitution revealed rapid processing of rhGAAH201L but not rhGAAWT to the 70-kDa form. Similarly, when GAA precursor was endocytosed by human Pompe fibroblasts rhGAAH201L but not rhGAAWT was rapidly converted to the 70-kDa mature GAA. These studies indicate that the amino acid at position 201 influences the rate of conversion of 76-kDa GAA to 70-kDa GAA. The GAA sequence rather than the lysosomal protease environment explains the predominance of the 76-kDa form in human tissues.  相似文献   

17.
Autosomal recessive deficiency of lysosomal acid maltase (GAA) or glycogen storage disease type II (GSDII) results in a spectrum of phenotypes including a rapidly fatal infantile disorder (Pompe's), juvenile, and a late-onset adult myopathy. The infantile onset form presents as hypotonia with massive accumulation of glycogen in skeletal and heart muscle, with death due to cardiorespiratory failure. Adult patients with the slowly progressive form develop severe skeletal muscle weakness and respiratory failure. Particle bombardment is a safe, efficient physical method in which high-density, subcellular-sized particles are accelerated to high velocity to carry DNA into cells. Because it does not depend on a specific ligand, receptor, or biochemical features on cell surfaces, particle-mediated gene transfer can be readily applied to a variety of systems. We evaluated particle bombardment as a delivery system for therapy of GSDII. We utilized a vector carrying the CMV promoter linked to the human GAA cDNA. Human GSDII cell lines (fibroblasts and lymphoid) as well as ex vivo with adult-onset peripheral blood cells (lymphocytes and monocytes) were transiently transfected by bombardment with a Helios gene gun delivering gold particles coated with the GAA expression plasmid. All cell types showed an increase in human GAA activity greater than 50% of normal activity. Subsequently, GAA -/- mice were treated every 2 weeks for 4 months by particle bombardment to the epidermis of the lower back and hind limbs. Muscle weakness in the hind and forelimbs was reversed. These data suggest that particle delivery of the GAA cDNA by the Helios gene gun may be a safe, effective treatment for GSDII.  相似文献   

18.
In Pompe disease, a deficiency of lysosomal acid alpha-glucosidase, intralysosomal glycogen accumulates in multiple tissues, with skeletal and cardiac muscle most severely affected.(1) Complete enzyme deficiency results in rapidly progressive infantile cardiomyopathy and skeletal muscle myopathy that is fatal within the first two years of life. Patients with partial enzyme deficiency suffer from skeletal muscle myopathy and experience shortened lifespan due to respiratory failure. The major advance has been the development of enzyme replacement therapy, which recently became available for Pompe patients. However, the effective clearance of skeletal muscle glycogen, as shown by both clinical and preclinical studies, has proven more difficult than anticipated.(2-4) Our recent work published in Annals of Neurology(5) was designed to cast light on the problem, and was an attempt to look beyond the lysosomes by analyzing the downstream events affected by the accumulation of undigested substrate in lysosomes. We have found that the cellular pathology in Pompe disease spreads to affect both endocytic (the route of the therapeutic enzyme) and autophagic (the route of glycogen) pathways, leading to excessive autophagic buildup in therapy-resistant skeletal muscle fibers of the knockout mice.  相似文献   

19.
Pompe disease (glycogen storage disease type II) is a glycogen storage disease caused by a deficiency of the lysosomal enzyme, acid maltase/acid alpha-1,4 glucosidase (GAA). Deficiency of the enzyme leads primarily to intra-lysosomal glycogen accumulation, primarily in cardiac and skeletal muscles, due to the inability of converting glycogen into glucose. Enzyme replacement therapy (ERT) has been applied to replace the deficient enzyme and to restore the lost function. However, enhancing the enzyme activity to the muscle following ERT is relatively insufficient. In order to enhance GAA activity into the muscle in Pompe disease, efficacy of hyaluronidase (hyase) was examined in the heart, quadriceps, diaphragm, kidney, and brain of mouse model of Pompe disease. Administration of hyase 3000 U/mouse (intravenous) i.v. or i.p. (intraperitoneal) and 10 min later recombinant human GAA (rhGAA) 20 mg/kg i.v. showed more GAA activity in hyase i.p. injected mice compared to those mice injected with hyase via i.v. Injection of low dose of hyase (3000 U/mouse) or high dose of hyase (10,000 U/mouse) i.p. and 20 min or 60 min later 20 mg/kg rhGAA i.v. increased GAA activity into the heart, diaphragm, kidney, and quadriceps compared to hyase untreated mice. These studies suggest that hyase enhances penetration of enzyme into the tissues including muscle during ERT and therefore hyase pretreatment may be important in treating Pompe disease.  相似文献   

20.
Glycogen storage disease type II (GSDII) or Pompe disease is an inherited disease of glycogen metabolism caused by a lack of functional lysosomal acid α-glucosidase (GAA). Affected individuals store glycogen in lysosomes resulting in fatal hypertrophic cardiomyopathy and respiratory failure in the most severe form. We investigated for the first time the use of lentiviral vectors to correct the GSDII phenotype in human and murine GAA-deficient cells. Fibroblasts from infantile and adult GSDII patients were efficiently transduced by a GAA-expressing lentiviral vector placed under the control of the strong MND promoter, leading to a complete restoration of enzymatic activity. We also developed a muscle-specific lentiviral vector based on the synthetic C5–12 promoter and tested it on deficient myogenic satellite cells derived from a GSDII mouse model. GAA was expressed as a correctly processed protein allowing a complete enzymatic and metabolic correction in myoblasts and differentiated myotubes, as well as a significant mannose-6-phosphate (M6P)-dependent secretion reuptake by naive cells. Transduced cells showed lysosomal glycogen clearance, as demonstrated by electron microscopy. These results form the basis for a therapeutic approach of GSDII using lentiviral vector-mediated gene transfer into muscle stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号