首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
Two classes of pyridine nucleotide uptake mutants isolated previously in a strain of Salmonella typhimurium defective in both de novo NAD biosynthesis (nad) and pyridine nucleotide recycling (pncA) were analysed in terms of their genetic relationship to each other and their roles in the transport of nicotinamide mononucleotide as a precursor to NAD. The first class of uptake mutants, pnuA (99 units), failed to grow on nicotinamide mononucleotide (NMN) as a precursor for NAD. The second class, pnuB, grew on lower than normal levels of NMN and suppressed pnuA mutations. A third class of uptake mutant, pnuC, isolated in a nadB pncA pnuB background, also failed to grow on NMN. Transport studies and enzyme analyses confirmed these strains as defective in NMN uptake. A fourth locus, designated pnuD, was found to diminish NMN utilization in a nad pncA+ background. Tn10 insertions near pnuA, pnuC and pnuD were isolated and utilized in mapping studies. pnuA was found to map between thr and serB near trpR. The pnuC locus was cotransducible with nadA at 17 units while pnuD mapped at approximately 60 units. The biochemical and genetic data suggest that the pnuA and pnuC gene products cooperate in the utilization of NMN under normal conditions. A pnuB mutant, however, does not require the pnuA gene product for NMN uptake but does rely on the pnuC product. Fusion studies indicate that pnuC is regulated by internal NAD concentrations.  相似文献   

4.
5.
6.
The nadB locus encodes the first enzyme of NAD synthesis. It has been reported that this gene and nadA are regulated by a positive regulatory protein encoded in the nadB region. In pursuing this regulatory mechanism, we constructed a fine-structure genetic map of the nadB gene. The region appears to include a single complementation group; no evidence for a positive regulatory element was found. Several mutations causing resistance to the analog 6-aminonicotinamide mapped within the structural gene and probably cause resistance to feedback inhibition. Regulatory mutations for nadB were isolated. These mutants mapped far from nadB near the pnuA gene, which encodes a function required for nicotinamide mononucleotide transport. The regulatory mutations appear to affect a distinct function encoded in the same operon as pnuA.  相似文献   

7.
Mutations affecting the biosynthesis of quinolinic acid, a precursor of nicotinamide adenine dinucleotide (NAD) in Escherichia coli K-12, are either near min 17 (nadA mutants) or near min 49 on the chromosome. These nad mutants all exhibit a phenotypic requirement for NAD or one of its immediate precursors. The mutants with lesions near min 49 can be separated into two groups based on in vitro complementation analysis. One group (nadB) exhibits complementation with nadA mutants, whereas the other group fails to do so. The latter group is tentatively designated nadR based on its regulation of the unlinked nadA gene. The nadR gene maps adjacent to nadB between purI and tyrA.  相似文献   

8.
Mutations at the nadI locus affect expression of the first two genes of NAD synthesis, nadA and nadB, which are unlinked. Genetic data imply that the regulatory effects of nadI mutations are not due to indirect consequences of physiological alterations. Two types of mutations map in the nadI region. Common null mutations (nadI) show constitutive high-level expression of the nadB and nadA genes. Rare nadIs mutations cause constitutive low-level expression of nadB and nadA. Some nadIs mutations shut off the expression of the biosynthetic genes sufficiently to cause a nicotinic acid auxotrophy. Spontaneous revertants of auxotrophic nadIs mutants have a NadI- phenotype, including some with deletions of the nadI locus. The nadI locus encodes a repressor protein acting on the unlinked nadA and nadB genes.  相似文献   

9.
NadR is a 45-kDa bifunctional regulator protein. In vivo genetic studies indicate that NadR represses three genes involved in the biosynthesis of NAD. It also participates with an integral membrane protein (PnuC) in the import of nicotinamide mononucleotide, an NAD precursor. NadR was overexpressed and purified as a His-tagged fusion in order to study its DNA-binding properties. The protein bound to DNA fragments containing NAD box consensus sequences. NAD proved to be the relevant in vivo corepressor, but full NAD dependence of repressor activity required nucleotide triphosphates. DNA footprint analysis and gel shift assays suggest that NadR binds as a multimer to adjacent NAD boxes. The DNA-repressor complex would sequester a potential RNA polymerase binding site and thereby decrease expression of the nad regulon.  相似文献   

10.
N Zhu  B M Olivera    J R Roth 《Journal of bacteriology》1989,171(8):4402-4409
The pnuC gene, which encodes a component of the nicotinamide mononucleotide transport system, has been mapped and oriented. The gene order of the pnuC region, which is at min 17 of the Salmonella chromosome, is nadA-pnuC-aroG-gal. Polarity tests, with pnuC::Mu d-lac operon fusions, reveal that the pnuC gene is the promoter distal gene in an operon with the nadA gene, which encodes the second enzyme of the pyridine biosynthetic pathway. The nadA pnuC operon is regulated by the NadI repressor. The pnuC gene also has its own promoter, since strains with a nadA::Tn10d(Tc) insertion still express the pnuC gene at a low, unregulated level.  相似文献   

11.
The nadA and pnuC loci of S. typhimurium were cloned and found to reside within a 2.2-kilobase region. Two-dimensional O'Farrell gel electrophoresis of the proteins produced after chloramphenicol amplification and subsequent release from chloramphenicol inhibition revealed NadA and PnuC to be 43,000- and 25,000-molecular-weight proteins, respectively. The data indicated that nadA and pnuC represent two distinct genes.  相似文献   

12.
The pncB gene of Salmonella typhimurium, encoding nicotinate phosphoribosyltransferase (NAPRTase), was cloned on a 4.7-kb Sau3A fragment. The gene contains a 1,200-bp open reading frame coding for a 400-residue protein. Amino acid sequencing of the amino-terminal and two interior peptides of the purified protein confirmed the deduced sequence and revealed that the amino-terminal methionine residue was removed, giving a 399-residue mature protein of Mr 45,512. No signal sequence was observed in the predicted NAPRTase primary structure, suggesting that the enzyme is not periplasmic. The protein does not demonstrate clear sequence similarity to the other seven phosphoribosyltransferases of known primary structure and frustrates attempts to define a consensus 5-phosphoribosyl-1-pyrophosphate-binding region. The NAPRTase reaction is ATP stimulated, and the protein contains a carboxy-terminal sequence diagnostic of an ATP-binding site. An inverted repeat of the sequence TAAACAA observed in the proposed promoter region of pncB is also present in the promoter of nadA, which, like pncB, is also regulated by the NadR (NadI) repressor. The sequence may thus define an NadR repressor-binding site.  相似文献   

13.
14.
Mutants of Escherichia coli defective in the biosynthesis of nicotinamide adenine dinucleotide (NAD) are able to grow in a Casamino Acids medium lacking NAD and its immediate precursors, nicotinic acid and nicotinamide. This property has allowed the development of a system to measure cross-feeding between a nadA and a nadB mutant. This system provides a means of isolating the intermediate, prequinolinic acid, as well as a biological assay for the compound. The nadB mutant feeds the nadA mutant, indicating that the nadA enzyme occurs first in the pathway and the nadB enzyme second. No cross-feeding was detected between nadA and nadC or between nadB and nadC.  相似文献   

15.
Salmonella enterica can obtain pyridine from exogenous nicotinamide mononucleotide (NMN) by three routes. In route 1, nicotinamide is removed from NMN in the periplasm and enters the cell as the free base. In route 2, described here, phosphate is removed from NMN in the periplasm by acid phosphatase (AphA), and the produced nicotinamide ribonucleoside (NmR) enters the cell via the PnuC transporter. Internal NmR is then converted back to NMN by the NmR kinase activity of NadR. Route 3 is seen only in pnuC* transporter mutants, which import NMN intact and can therefore grow on lower levels of NMN. Internal NMN produced by either route 2 or route 3 is deamidated to nicotinic acid mononucleotide and converted to NAD by the biosynthetic enzymes NadD and NadE.  相似文献   

16.
The two genes, nadA and nadB, responsible for quinolinate biosynthesis from aspartate and dihydroxyacetone phosphate in Escherichia coli were cloned and characterized. Quinolinate (pyridine-2,3-dicarboxylate) is the biosynthetic precursor of the pyridine ring of NAD. Gene nadA was identified by complementation in three different nadA mutant strains. Sequence analysis provided an 840-bp open reading frame coding for a 31,555-Da protein. Gene nadB was identified by complementation in a nadB mutant strain and by the L-aspartate oxidase activity of its gene product. Sequence analysis showed a 1620-bp open reading frame coding for a 60,306-Da protein. For both genes, promoter regions and ribosomal binding sites were assigned by comparison to consensus sequences. The nadB gene product, L-aspartate oxidase, was purified to homogeneity and the N-terminal sequence of 19 amino acids was determined. The enzyme was shown to be specific for L-aspartate. High-copy-number vectors, carrying either gene nadA, nadB or nadA + nadB, increased quinolinate production 1.5-fold, 2.0-fold and 15-fold respectively. Both gene products seem to be equally rate-limiting in quinolinate synthesis.  相似文献   

17.
The first identification and characterization of a catalytic activity associated with NadR protein is reported. A computer-aided search for sequence similarity revealed the presence in NadR of a 29-residue region highly conserved among known nicotinamide mononucleotide adenylyltransferases. The Escherichia coli nadR gene was cloned into a T7-based vector and overexpressed. In addition to functionally specific DNA binding properties, the homogeneous recombinant protein catalyzes NAD synthesis from nicotinamide mononucleotide and ATP.  相似文献   

18.
Mutants of Salmonella typhimurium LT-2 deficient in nicotinamidase activity (pncA) or nicotinic acid phosphoribosyltransferase activity (pncB) were isolated as resistant to analogs of nicotinic acid and nicotinamide. Information obtained from interrupted mating experiments placed the pncA gene at 27 units and the pncB gene at 25 units on the S. typhimurium LT-2 linkage map. A major difference in the location of the pncA gene was found between the S. typhimurium and Escherichia coli linkage maps. The pncA gene is located in a region in which there is a major inversion of the gene order in S. typhimurium as compared to that in E. coli. Growth experiments using double mutants blocked in the de novo pathway to nicotinamide adenine dinucleotide (NAD) (nad) and in the pyridine nucleotide cycle (pnc) at either the pncA or pncB locus, or both, have provided evidence for the existence of an alternate recycling pathway in this organism. Mutants lacking this alternate cycle, pncC, have been isolated and mapped via cotransduction at 0 units. Utilization of exogenous NAD was examined through the use of [14C]carbonyl-labeled NAD and [14C]adenine-labeled NAD. The results of these experiments suggest that NAD is degraded to nicotinamide mononucleotide at the cell surface. A portion of this extracellular nicotinamide mononucleotide is then transported across the cell membrane by nicotinamide mononucleotide glycohydrolase and degraded to nicotinamide in the process. The remaining nicotinamide mononucleotide accumulates extracellularly and will support the growth of nadA pncB mutants which cannot utilize the nicotinamide resulting from the major pathway of NAD degradation. A model is presented for the utilization of exogenous NAD by S. typhimurium LT-2.  相似文献   

19.
20.
An ampicillin enrichment technique was used to isolate 39 nicotinic acid-requiring mutants of Salmonella typhimurium LT-2. Using interrupted-mating and transductional mapping procedures, three loci, designated nadA, nadB, and nadC, were identified. These loci mapped at 33, 82, and 6 min, respectively, on the S. typhimurium linkage map. The arrangement of the loci on the Salmonella linkage map corresponded closely to the nadA, nadB, and nadC loci on the Escherichia coli K-12 linkage map, indicating that the de novo pathway to nicotinamide adenine dinucleotide and the genes governing the enzymes involved in this pathway in S. typhimurium are very similar to those in E. coli. Evidence is also presented which indicates that the product of the nadC locus in S. typhimurium LT-2 is the enzyme quinolinic acid phosphoribosyltransferase. All nadC mutants of S. typhimurium secreted between 2 and 8 mumol of quinolinic acid per 100 ml of secretion medium. In addition, none of the nadC mutants isolated were able to grow in 10(-3) M quinolinic acid, whereas all nadA and nadB mutants of S. typhimurium grew well in the presence of quinolinic acid. Transductional crosses between nadB mutants provided evidence suggestive of more than one locus in the nadB region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号