首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cao D  Li M  Xue R  Zheng W  Liu Z  Wang X 《Life sciences》2005,78(1):74-81
Dietary docosahexaenoic acid (DHA) intake can decrease the level of membrane arachidonic acid (AA), which is liberated during cerebral ischemia and implicated in the pathogenesis of brain damage. Therefore, in the present study, we investigated the effects of chronic ethyl docosahexaenoate (E-DHA) administration on mortality and cerebral edema induced by transient forebrain ischemia in gerbils. Male Mongolian gerbils were orally pretreated with either E-DHA (100, 150 mg/kg) or vehicle, once a day, for 4 weeks and were subjected to transient forebrain ischemia by bilateral common carotid occlusion for 30 min. The content of brain lipid AA at the termination of treatment, the survival ratio, change of regional cerebral blood flow (rCBF), brain free AA level, thromboxane B(2) (TXB(2)) production and cerebral edema formation following ischemia and reperfusion were evaluated. E-DHA (150 mg/kg) pretreatment significantly increased survival ratio, prevented post-ischemic hypoperfusion and attenuated cerebral edema after reperfusion compared with vehicle, which was well associated with the reduced levels of AA and TXB(2) in the E-DHA treated brain. These data suggest that the effects of E-DHA pretreatment on ischemic mortality and cerebral edema could be due to reduction of free AA liberation and accumulation, and its metabolite synthesis after ischemia and reperfusion by decreasing the content of membrane AA.  相似文献   

2.
The effect of naloxone upon neurologic deficit was evaluated in a model of transient forebrain ischemia in rats. Awake male Wistar rats were subjected to a 30 minute ischemia by occluding both common carotid arteries 8 days after cauterizing vertebral arteries. Administration of naloxone 1 or 5 mg/kg iv 10 minutes after carotid occlusion or 1 mg/kg iv one hour after clamp removal failed to reduce immediate and tardive neurologic postischemic deficits. On the other hand, in rats treated by a dose of 1 mg/kg naloxone 10 minutes after carotid occlusion and perfused with an additional dose of 2 mg/kg/h for 80 minutes, neurologic score was improved one hour after ischemia. However mortality was not decreased whatever was the modality of naloxone administration. This result confirms previous data showing that naloxone exerts a protective effect when given at sufficiently high dosage.  相似文献   

3.
In five conscious dogs we studied the effect of proglumide, a cholecystokinin (CCK) antagonist, on caerulein-stimulated pancreatic secretion and release of pancreatic polypeptide (PP). Graded doses of caerulein (15-240 ng/kg per h) were infused intravenously. Experiments were repeated with a fixed infusion of proglumide (40 mg/kg per h). Release of PP following increasing doses of caerulein was significantly inhibited by proglumide (P less than 0.01). However, proglumide did not significantly affect caerulein-stimulated pancreatic protein secretion. Proglumide might be useful in defining the physiological role of CCK.  相似文献   

4.
目的:观察消栓通胶囊对双侧颈总动脉结扎的大鼠脑缺血的保护作用;对小鼠断头后存活时间的影响.方法:采用结扎大鼠双侧颈总动脉以造成脑缺血模型,观察消栓通胶囊的药理作用.结果:①a.消栓通胶囊对双侧颈总动脉结扎大鼠脑含水量及脑指数有显著影响,消栓通胶囊三个剂量组(0.20 g/kg、0.40 g/kg、0.80 g/kg),脑含水量明显减少,与模型组有显著差异(P<0.05或P<0.01).b.组织病理学检查表明消栓通胶囊组的脑组织神经细胞浓缩及深染较脑缺血模型组明显减轻;神经胶质细胞肿胀及间质疏松程度均明显轻于模型组.②消栓通胶囊三个剂量组(0.20 g/kg、0.40 g/kg、0.80 g/kg)均能明显降低全血粘度值,与模型组比较有明显差异(P<0.05或P<0.01);③消栓通胶囊三个剂量组(025g/kg、0.50g/kg、1.00 g/kg)给药14d,与正常组比较可延长小鼠断头喘气的时间(P<0.05或P<0.01).结论:消栓通胶囊对大鼠结扎双侧颈总动脉所致脑缺血损伤具有明显的保护作用.  相似文献   

5.
The neuroprotective potential of mGluR1 and mGluR5 antagonists (group I), EMQMCM and MTEP, respectively was studied using the 3 min forebrain ischemia model in Mongolian gerbils and the hypoxia-ischemia model in 7-day-old rats. Hypoxia-ischemia was induced by unilateral carotid occlusion followed by 75 min exposure to hypoxia (7.3% O(2) in N(2)), forebrain ischemia in gerbils was evoked by bilateral common carotid artery occlusion. The postischemic rectal body temperature in rat pups or brain temperature of gerbils was measured. The drugs were administered i.p. three times every 2 h after the insult, each time in equal doses of 1.25, 2.5 or 5.0 mg/kg. After 2 weeks brain damage was evaluated as weight decrease of the ipsilateral hemisphere in the rat pups or damage to CA1 pyramids in the gerbil hippocampus. The results demonstrated a dose dependent neuroprotection in both ischemic models by EMQMCM, while MTEP was neuroprotective only in the gerbil model of forebrain ischemia. EMQMCM reduced postischemic hyperthermia in gerbils. Thus, the antagonists of mGluR1 and mGluR5 show differential neuroprotective ability in two models of brain ischemia. Postischemic hypothermia may be partially involved in the mechanism of neuroprotection following EMQMCM in gerbils.  相似文献   

6.
By analyzing histological damages and the regional N-acetylaspartate (NAA) level simultaneously, we evaluated the effect of an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor antagonist, YM90K [6-(1H-imidazol-1-yl)-7-nitro-2,3-(1H,4H)-quinoxalinedione monohydrochloride], in unilateral forebrain ischemia in gerbils. The right common carotid artery was clipped for 5 min under ether anesthesia, and reperfused for 7 days. The frozen brain sections were lyophilized and the hippocampal CA1 area was dissected out for HPLC assay of NAA. An adjacent section was stained with hematoxylin-eosin for counting survived neurons per 1 mm pyramidal layer of the hippocampal CA1 area. Postischemic administration of YM90K at 20 mg/kg and 25 mg/kg attenuated the decrease of both the number of survived neurons and the NAA level on the ischemic side in a dose-dependent manner. A significant linear correlation was observed between the NAA level and the number of intact neurons. These results indicated that the NAA level could be used as an index of neuroprotective effects of pharmacological agents in global cerebral ischemia.  相似文献   

7.
The purpose of this study was to investigate neuroprotective efficiency of N-methyl D-aspartate (NMDA) receptor (NMDAR) blockade on the neuronal damage in the less studied and allegedly less affected CA3 hippocampus and striatum in the Mongolian gerbil model of global cerebral ischemia. The common carotid arteries of gerbils were occluded for 5, 10 or 15 minutes. Gerbils were given a low dose of non-competitive NMDA antagonist (MK-801, 3 mg/kg i.p.) or saline immediately after the occlusion in normothermic conditions. Neuronal damage was examined on 4th, 14th and 28th day after reperfusion. The effect of NMDAR blockade was followed in vivo by monitoring the neurological status of whole animals or at the cellular level by standard light- and confocal microscopy on brain slices. Increased duration of cerebral ischemia resulted in a progressive loss of striatal and CA3 hippocampal neurons. The most beneficial NMDAR blockade effect was observed when the neuronal damage was most severe - on the 28th day after 15-min ischemia. As judged by morphological and neurological data, the effect of ischemia is also apparent in the presumed less vulnerable regions (CA3 and striatum) which are functionally important in stroke plasticity. So, NMDAR blockade in normothermic conditions showed neuroprotective efficiency.  相似文献   

8.
Eicosapentaenoic acid is converted by cyclo-oxygenase to the prostacyclin, PGI3. Consequently eicosapentaenoic acid might protect the brain from the impairment in cerebral blood flow that follows temporary cerebral arterial occlusion. We studied the effect of 90% pure eicosapentaenoic acid, given intravenously, on cerebral blood flow, brain water and prostaglandins after ischemia in gerbils. Ischemia was produced by bilateral carotid occlusion for 15 min followed by reperfusion for 2 h. In experimental gerbils, 0.833 mg or 0.167 mg of eicosapentaenoic acid (Na salt) was given intravenously followed by a continuous infusion of 1 mg h-1. Control gerbils were given 0.167 mg of linoleic acid (Na salt) intravenously followed by a continuous infusion of 1 mg h-1 or a saline infusion. Regional cerebral blood flow was measured by the hydrogen clearance method and brain water by the specific gravity technique. Brain diene prostaglandins were measured by radioimmunoassay. In control gerbils cerebral blood flow decreased significantly during reperfusion and remained depressed after 2 h of reperfusion. In eicosapentaenoic acid treated gerbils blood flow decreased initially but after 2 h of reperfusion blood flow was significantly higher than in control gerbils. Brain edema and brain diene prostaglandins were not significantly different between control and experimental groups. Our study indicates that eicosapentaenoic acid, given intravenously, improves cerebral blood flow after ischemia and reperfusion. We speculate that this effect may be due to the formation of the prostacyclin, PGI3.  相似文献   

9.
The effects of naloxone or thyrotropin releasing hormone (TRH) upon neurologic outcome were evaluated in gerbil models of cerebral ischemia. Following temporary bilateral carotid occlusion, hypotension was transiently reversed by these endorphin antagonists. However, neither drug altered time to awaken, time to death, or the severity of neurologic signs (ptosis, movement, retracted paws, circling, righting reflexes, seizures, or opisthotonus) when evaluated by a blinded rater. Hot plate escape and roto-rod performance were also unaltered by naloxone or TRH; TRH, but not naloxone, increased respiratory rates. Thus, the transient improvement of cardiorespiratory function produced by these drugs is unrelated to the morbidity and mortality associated with temporary cerebral ischemia in the gerbil. Additional studies evaluating the effects of naloxone or TRH upon neurologic outcome following permanent unilateral carotid occlusion also failed to show any therapeutic effects of these drugs. Both morphine and TRH exacerbated the effects of ischemia. Of gerbils which developed neurologic impairment, the deficit was usually ipsilateral to the occluded carotid. Collectively, these results indicate that neither naloxone nor TRH prevents ischemic deficits in the gerbil. Further studies with different cerebral ischemia models in other species are required to clarify the possible therapeutic effects of these drugs in experimental stroke.  相似文献   

10.
Eicosapentaenoic acid is converted by cyclo-oxygenase to the prostacyclin, PGI3. Consequently eicosapentaenoic acid might protect the brain from the impairment in cerebral blood flow that follows temporary cerebral artirial occlusion. We studied the effect of 90% pure eicosapentaenoic acid, given intravenously, on cerebral blood flow, brain water and prostaglandins after ischemia in gerbils. Ischemia was produced by bilateral carotid occlusion for 15 min followed by reperfusion for 2 h. In experimental gerbils, 0.833 mg or 0.167 mg of eicosapentaenoic acid (Na salt) was given intravenously followed by a continuous infusion of 1 mg h−1. Control gerbils were given 0.167 mg of linoleic acid (Na salt) intravenously followed by a continuous infusion of 1 mg h−1 or a saline infusion. Regional cerebral blood flow was measured by the hydrogen clearance method and brain water by the specific gravity technique. Brain diene prostaglandins were measured by radioimmunoassay. In control gerbils cerebral blood flow decreased significantly during reperfusion and remained depressed after 2 h of reperfusion. In eicosapentaenoic acid treated gerbils blood flow decreased initially but after 2 h of reperfusion blood flow was significantly higher than in control gerbils. Brain edema and brain diene prostaglandins were not significantly different between control and experimental groups.Our study indicates that eicosapentaenoic acid, given intravenously, improves cerebral blood flow after ischemia and reperfusion. We speculate that this effect may be due to the formation of the prostacyclin, PGI3.  相似文献   

11.
Platelet-activating factor (PAF) is a potent mediator of anaphylaxis and shock. In addition, evidence for PAF participation in gastric, intestinal and heart post-ischemic phase has been recently demonstrated. Ginkgo biloba extracts improve cerebral metabolism and protect brain against hypoxic damage in various models of cerebral ischemia. Potent and specific antagonists of PAF have been found in Ginkgo biloba and termed Ginkgolides: BN 52020, BN 52021, BN 52022, BN 52024. We therefore undertook the investigation of the role of Ginkgolides in cerebral ischemia obtained by bilateral ligature of the common carotid for 10 min and 6 h of recirculation in male Mongolian adult gerbils. Given preventively (one week treatment 10 mg/kg/day orally) or at the time of clamping, BN 52021 and related Ginkgolides dose-dependently antagonize morbidity assessed by the stroke-index. Similarly the mitochondrial respiration evaluated by the respiratory control ratio is significantly improved. In both determinations, the range of activity: BN 52021 greater than, BN 52020 greater than BN 52022 greater than BN 52024 shows that the effect of Ginkgolides in cerebral ischemia are correlated with their PAF antagonistic properties. Given curatively, 1 h after declamping, BN 52021 is able to reverse the cerebral impairment trend. Kadsurenone and brotizolam, two other chemically unrelated PAF antagonists led to similar recovery. Therefore PAF appears to play an important role in the post-ischemic phase after bilateral carotid ligation in Mongolian gerbils.  相似文献   

12.
Arachidonic acid (AA) and its vasoactive metabolites have been implicated in the pathogenesis of brain damage induced by cerebral ischemia. The membrane AA concentrations can be reduced by changes in dietary fatty acid intake. The purpose of the present study was to investigate the effects of chronic ethyl docosahexaenoate (E-DHA) administration on the generation of eicosanoids of AA metabolism during the period of reperfusion after ischemia in gerbils. Weanling male gerbils were orally pretreated with either E-DHA (100, 200 mg/kg) or vehicle, once a day, for 10 weeks, and subjected to transient forebrain ischemia by bilateral common carotid occlusion for 10 min. E-DHA (200 mg/kg) pretreatment significantly decreased the content of brain lipid AA at the termination of treatment, prevented postischemic impaired regional cerebral blood flow (rCBF) and reduced the levels of brain prostaglandin (PG) PGF(2alpha) and 6-keto-PGF(1alpha), and thromboxane B(2) (TXB(2)), as well as leukotriene (LT) LTB(4) and LTC(4) at 30 and 60 min of reperfusion compared with the vehicle, which was well associated with the attenuated cerebral edema in the E-DHA-treated brain after 48 h of reperfusion. These data suggest that the E-DHA (200 mg/kg) pretreatment reduces the postischemic eicosanoid productions, which may be due to its reduction of the brain lipid AA content.  相似文献   

13.
A new simple mouse assay for the in vivo evaluation of CCK antagonists which is based upon visual determination of the gastric emptying of a charcoal meal is described. CCK-8 (24 micrograms/kg s.c.) but not various other peptide and nonpeptide agents effectively inhibited gastric emptying in this test system. The effect of CCK-8 was antagonized by established peripheral CCK antagonists but not representative agents of various other pharmacological classes. The rank order of potency of the CCK antagonists were: L-364,718 (ED50 = 0.01 mg/kg, i.v.; 0.04 mg/kg, p.o.) greater than Compound 16 (ED50 = 1.5 mg/kg, i.v.; 2.0 mg/kg p.o.) greater than asperlicin (ED50 = 14.8 mg/kg i.v.) greater than proglumide (ED50 = 184 mg/kg i.v.; 890 mg/kg, p.o.). Duration of action studies based upon ED50 values determined at various time intervals after oral administration showed that L-364,718 and proglumide are considerably longer acting than Compound 16. Asperlicin (ED50 greater than 300 mg/kg, p.o.) was ineffective as a CCK antagonist when administered orally. These data provide the first direct comparisons of the in vivo potencies of current CCK antagonists and demonstrate the utility of a new simple mouse assay for the in vivo characterization of peripheral CCK antagonists.  相似文献   

14.
The changes in acetylcholine (ACh), monoamine and monoamine metabolite levels following cerebral ischemia in Mongolian gerbils were examined. In addition, the effects of Sho-saiko-to-go-keishi-ka-shakuyaku-to (TJ-960), which is a spray-dried mixture of 9 herbal drugs, on these changes were also examined. The dramatic decrement of ACh levels in ischemic gerbils was significantly inhibited by p.o. administration of TJ-960 at a daily dose of 3.5 g/kg or 700 mg/kg for one month. Norepinephrine (NE) was also reduced in all ischemic brain regions, and TJ-960 also recovered the level of NE. In ischemic gerbil brains, the dopamine (DA) levels decreased and its metabolites increased in the striatum, but DA and its metabolites in the thalamus+midbrain region increased. The serotonin (5HT) level was reduced in the cerebral cortex and hippocampus. TJ-960 inhibited these monoaminergic changes in ischemic gerbils. This suggests that TJ-960 may provide anti-ischemic action and beneficial effects on various symptoms induced by ischemia.  相似文献   

15.
Although much is known about the protective effect of acute estrogen therapy in cerebral ischemia, relatively little is known about the importance of apoptosis and cerebral plasticity in this mechanism. In this work 10 min global cerebral ischemia was produced by transient bilateral carotid occlusion in 4-month-old ovariectomized female gerbils. In every of our experimental group (sham for ischemia group, ischemia group and ischemia + a high, single dose 17β-estradiol pre-treatment group) apoptotic (bcl-Xl, bax) and cerebral plasticity (GAP-43, synapsin-I, nestin) hippocampal genes' expression was measured four days after surgery. Expression of the anti-apoptotic bcl-Xl (p<0.01) and the cerebral plasticity marker synapsin-I and nestin (p<0.01) increased with acute estrogen pretreatment in ischemic animals. No change, however, in bax or GAP-43 expression was detected in estrogen treated animals compared to ischemic gerbils. These results suggest that acute estrogen therapy has anti-apoptotic effect and increases cerebral plasticity, which play an important role in cytoprotection or cerebroprotection.  相似文献   

16.
A dual-probe microdialysis technique coupled with liquid chromatographic assays was developed for the simultaneous monitoring of neurochemicals in gerbil striata during cerebral ischemia. Isocratic separation of lactate and pyruvate was achieved within 5 min whereas the separation of biogenic amines was completed within 30 min. An unilateral ligation was produced by occlusion of the right common carotid artery for 30 mins in anethetized gerbils to perform a typical focal cerebral ischemia. Microdialysis probes were inserted in both sides of the striata to simultaneously monitor biogenic amines, lactate and pyruvate during cerebral ischemia. Dynamic and comparative changes of these analytes in ipsilateral and contralateral sides of the brain can be simultaneously measured by the assay. The present assay can be used as a research tool to explore neurochemical substances and their relationships during cerebral ischemia.  相似文献   

17.
-Lipoic acid (thioctic acid) was tested for its neuroprotective activity in a Mongolian gerbil model of forebrain ischemia/reperfusion. Adult gerbils were treated for 7 days with two intraperitoneal injections per day of -lipoic acid (20 mg/kg), vehicle or saline and on the 7th day the animals were subjected to 5 min of forebrain ischemia. Ischemic injury was assessed by monitoring the increases in locomotor activity and from the extent of damage to the CA1 hippocampal pyramidal cell layer after 5 days of recovery. By both criteria, -lipoic acid was neuroprotective against ischemia/reperfusion evoked cerebral injury.  相似文献   

18.
The cerebral ischemia in rats was induced by occluding bilateral common carotid arteries (BCCAO) for 30 min., followed by 45 min reperfusion. BCCAO caused significant depletion in superoxide dismutase, catalase, glutathione, glutathione peroxidase, glutathione-S-transferase, glutathione reductase and significant increase in lipid peroxidation along with severe neuronal damage in the brain. All the alterations except depletion in glutathione peroxidase and glutathione-S-transferase levels induced by cerebral ischemia were significantly attenuated by 15 days pretreatment with methanolic extract of P. dactylifera fruits (100, 300 mg/kg), whereas 30 mg/kg dose was insignificant in this regard. These results suggest the possible use P. dactylifera against bilateral common carotid artery occlusion induced oxidative stress and neuronal damage.  相似文献   

19.
Peripheral (50 mg/ml) or central (50 micrograms/microliter) injections of proglumide were made into Sprague-Dawley rats which displayed satiety-like responses after the peripheral (100 micrograms/kg) or central (50 ng in 1 microliter) administration of cholecystokinin (CCK). The satiety produced by CCK injection into the lateral hypothalamus, area postraema and ventromedial hypothalamus was significantly reversed by proglumide injections into these areas during a 4 h food intake test. Peripheral injection of proglumide after central or peripheral CCK injection did not modify this type of CCK-induced satiety. Central proglumide injection produced a reliable decrease in water intake and this is compatible with previous findings which describe the stimulation of water intake after central gastrin administration. These results suggest that various central and peripheral mechanisms which are involved in the regulation of appetite may function independently as a 'failsafe' system.  相似文献   

20.
We previously reported that a bioactive tripeptide Arg-Ile-Tyr (RIY), which has been isolated as an inhibitor for angiotensin I-converting enzyme from the subtilisin digest of rapeseed protein, decreased blood pressure. In this study, we also found that RIY dose-dependently decreased food intake at a dose of 150 mg/kg after oral administration in fasted ddY male mice. The anorexigenic action of RIY was blocked by a cholecystokinin-1 CCK1 receptor antagonist, lorglumide. RIY also decreased the gastric emptying rate at a dose of 150 mg/kg and the RIY-induced delay of gastric emptying was blocked by lorglumide. However, RIY had no affinity for CCK1 receptor. Taken together, RIY decreased food intake and gastric emptying by stimulating CCK release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号