共查询到20条相似文献,搜索用时 15 毫秒
1.
Sengupta J Nilsson J Gursky R Spahn CM Nissen P Frank J 《Nature structural & molecular biology》2004,11(10):957-962
RACK1 serves as a scaffold protein for a wide range of kinases and membrane-bound receptors. It is a WD-repeat family protein and is predicted to have a beta-propeller architecture with seven blades like a Gbeta protein. Mass spectrometry studies have identified its association with the small subunit of eukaryotic ribosomes and, most recently, it has been shown to regulate initiation by recruiting protein kinase C to the 40S subunit. Here we present the results of a cryo-EM study of the 80S ribosome that positively locate RACK1 on the head region of the 40S subunit, in the immediate vicinity of the mRNA exit channel. One face of RACK1 exposes the WD-repeats as a platform for interactions with kinases and receptors. Using this platform, RACK1 can recruit other proteins to the ribosome. 相似文献
2.
3.
Thorslund SE Edgren T Pettersson J Nordfelth R Sellin ME Ivanova E Francis MS Isaksson EL Wolf-Watz H Fällman M 《PloS one》2011,6(2):e16784
Many gram-negative bacteria use type III secretion systems to translocate effector proteins into host cells. These effectors interfere with cellular functions in a highly regulated manner resulting in effects that are beneficial for the bacteria. The pathogen Yersinia can resist phagocytosis by eukaryotic cells by translocating Yop effectors into the target cell cytoplasm. This is called antiphagocytosis, and constitutes an important virulence feature of this pathogen since it allows survival in immune cell rich lymphoid organs. We show here that the virulence protein YopK has a role in orchestrating effector translocation necessary for productive antiphagocytosis. We present data showing that YopK influences Yop effector translocation by modulating the ratio of the pore-forming proteins YopB and YopD in the target cell membrane. Further, we show that YopK that can interact with the translocators, is exposed inside target cells and binds to the eukaryotic signaling protein RACK1. This protein is engaged upon Y. pseudotuberculosis-mediated β1-integrin activation and localizes to phagocytic cups. Cells with downregulated RACK1 levels are protected from antiphagocytosis. This resistance is not due to altered levels of translocated antiphagocytic effectors, and cells with reduced levels of RACK1 are still sensitive to the later occurring cytotoxic effect caused by the Yop effectors. Further, a yopK mutant unable to bind RACK1 shows an avirulent phenotype during mouse infection, suggesting that RACK1 targeting by YopK is a requirement for virulence. Together, our data imply that the local event of Yersinia-mediated antiphagocytosis involves a step where YopK, by binding RACK1, ensures an immediate specific spatial delivery of antiphagocytic effectors leading to productive inhibition of phagocytosis. 相似文献
4.
Giral H Lanzano L Caldas Y Blaine J Verlander JW Lei T Gratton E Levi M 《The Journal of biological chemistry》2011,286(17):15032-15042
The sodium-dependent phosphate (Na/P(i)) transporters NaPi-2a and NaPi-2c play a major role in the renal reabsorption of P(i). The functional need for several transporters accomplishing the same role is still not clear. However, the fact that these transporters show differential regulation under dietary and hormonal stimuli suggests different roles in P(i) reabsorption. The pathways controlling this differential regulation are still unknown, but one of the candidates involved is the NHERF family of scaffolding PDZ proteins. We propose that differences in the molecular interaction with PDZ proteins are related with the differential adaptation of Na/P(i) transporters. Pdzk1(-/-) mice adapted to chronic low P(i) diets showed an increased expression of NaPi-2a protein in the apical membrane of proximal tubules but impaired up-regulation of NaPi-2c. These results suggest an important role for PDZK1 in the stabilization of NaPi-2c in the apical membrane. We studied the specific protein-protein interactions of Na/P(i) transporters with NHERF-1 and PDZK1 by FRET. FRET measurements showed a much stronger interaction of NHERF-1 with NaPi-2a than with NaPi-2c. However, both Na/P(i) transporters showed similar FRET efficiencies with PDZK1. Interestingly, in cells adapted to low P(i) concentrations, there were increases in NaPi-2c/PDZK1 and NaPi-2a/NHERF-1 interactions. The differential affinity of the Na/P(i) transporters for NHERF-1 and PDZK1 proteins could partially explain their differential regulation and/or stability in the apical membrane. In this regard, direct interaction between NaPi-2c and PDZK1 seems to play an important role in the physiological regulation of NaPi-2c. 相似文献
5.
7.
S J Yarwood M R Steele G Scotland M D Houslay G B Bolger 《The Journal of biological chemistry》1999,274(21):14909-14917
The WD-repeat protein receptor for activated C-kinase (RACK1) was identified by its interaction with the cyclic AMP-specific phosphodiesterase (PDE4) isoform PDE4D5 in a yeast two-hybrid screen. The interaction was confirmed by co-immunoprecipitation of native RACK1 and PDE4D5 from COS7, HEK293, 3T3-F442A, and SK-N-SH cell lines. The interaction was unaffected by stimulation of the cells with the phorbol ester phorbol 2-myristate 3-acetate. PDE4D5 did not interact with two other WD-repeat proteins, beta'-coatomer protein and Gsbeta, in two-hybrid tests. RACK1 did not interact with other PDE4D isoforms or with known PDE4A, PDE4B, and PDE4C isoforms. PDE4D5 and RACK1 interacted with high affinity (Ka approximately 7 nM) [corrected] when they were expressed and purified from Escherichia coli, demonstrating that the interaction does not require intermediate proteins. The binding of the E. coli-expressed proteins did not alter the kinetics of cAMP hydrolysis by PDE4D5 but caused a 3-4-fold change in its sensitivity to inhibition by the PDE4 selective inhibitor rolipram. The subcellular distributions of RACK1 and PDE4D5 were extremely similar, with the major amount of both proteins (70%) in the high speed supernatant (S2) fraction. Analysis of constructs with specific deletions or single amino acid mutations in PDE4D5 demonstrated that a small cluster of amino acids in the unique amino-terminal region of PDE4D5 was necessary for its interaction with RACK1. We suggest that RACK1 may act as a scaffold protein to recruit PDE4D5 and other proteins into a signaling complex. 相似文献
8.
Kaliandra A Gonçalves Julio C Borges Julio C Silva Priscila F Papa Gustavo C Bressan Iris L Torriani Jörg Kobarg 《BMC structural biology》2010,10(1):15
Background
The adaptor protein RACK1 (receptor of activated kinase 1) was originally identified as an anchoring protein for protein kinase C. RACK1 is a 36 kDa protein, and is composed of seven WD repeats which mediate its protein-protein interactions. RACK1 is ubiquitously expressed and has been implicated in diverse cellular processes involving: protein translation regulation, neuropathological processes, cellular stress, and tissue development. 相似文献9.
10.
Isacson CK Lu Q Karas RH Cox DH 《American journal of physiology. Cell physiology》2007,292(4):C1459-C1466
The large conductance calcium-activated potassium channel, or BKCa channel, plays an important feedback role in a variety of physiological processes, including neurotransmitter release and smooth muscle contraction. Some reports have suggested that this channel forms a stable complex with regulators of its function, including several kinases and phosphatases. To further define such signaling complexes, we used the yeast two-hybrid system to screen a human aorta cDNA library for proteins that bind to the BKCa channel's intracellular, COOH-terminal "tail". One of the interactors we identified is the protein receptor for activated C kinase 1 (RACK1). RACK1 is a member of the WD40 protein family, which also includes the G protein -subunits. Consistent with an important role in BKCa-channel regulation, RACK1 has been shown to be a scaffolding protein that interacts with a wide variety of signaling molecules, including cSRC and PKC. We have confirmed the interaction between RACK1 and the BKCa channel biochemically with GST pull-down and coimmunoprecipitation experiments. We have observed some co-localization of RACK1 with the BKCa channel in vascular smooth muscle cells with immunocytochemical experiments, and we have found that RACK1 has effects on the BKCa channel's biophysical properties. Thus RACK1 binds to the BKCa channel and it may form part of a BKCa-channel regulatory complex in vascular smooth muscle. calcium-activated potassium channel; protein kinase C; smooth muscle 相似文献
11.
Alternate stimulation of apical CFTR by genistein in epithelia 总被引:1,自引:0,他引:1
Illek B.; Fischer H.; Machen T. E. 《American journal of physiology. Cell physiology》1996,270(1):C265
12.
13.
The c-Jun NH2-terminal kinase (JNK)-interacting protein (JIP) group of scaffold proteins (JIP1, JIP2, and JIP3) can interact with components of the JNK signaling pathway and potently activate JNK. Here we describe the identification of a fourth member of the JIP family. The primary sequence of JIP4 is most closely related to that of JIP3. Like other members of the JIP family of scaffold proteins, JIP4 binds JNK and also the light chain of the microtubule motor protein kinesin-1. However, the function of JIP4 appears to be markedly different from other JIP proteins. Specifically, JIP4 does not activate JNK signaling. In contrast, JIP4 serves as an activator of the p38 mitogen-activated protein (MAP) kinase pathway by a mechanism that requires the MAP kinase kinases MKK3 and MKK6. The JIP4 scaffold protein therefore appears to be a new component of the p38 MAP kinase signaling pathway. 相似文献
14.
Liedtke CM Raghuram V Yun CC Wang X 《American journal of physiology. Cell physiology》2004,286(5):C1037-C1044
In past studies, we demonstrated regulation of CFTR Cl channel function by protein kinase C (PKC)- through the binding of PKC- to RACK1 (a receptor for activated C-kinase) and of RACK1 to human Na+/H+ exchanger regulatory factor (NHERF1). In this study, we investigated the site of RACK1 binding on NHERF1 using solid-phase and solution binding assays and pulldown, immunoprecipitation, and 36Cl efflux experiments. Recombinant RACK1 binding to glutathione S-transferase (GST)-tagged PDZ1 domain of NHERF1 was 10-fold higher than its binding to GST-tagged PDZ2 domain of NHERF1. PDZ1 binds to RACK1 in a dose-dependent manner and vice versa, with similar binding constants of 1.67 and 1.26 µg, respectively. Interaction of the PDZ1 domain with RACK1 was not blocked by binding of activated PKC- to RACK1. A GST-tagged PDZ1 domain pulled down endogenous RACK1 from Calu-3 cell lysate. An internal 11-amino acid motif embedding the GYGF carboxylate binding loop of PDZ1 binds to RACK1, inhibits binding of recombinant NHERF1 and RACK1, pulls down endogenous RACK1 from Calu-3 cell lysate, and blocks coimmunoprecipitation of endogenous RACK1 with endogenous NHERF1 but does not affect cAMP-dependent activation of CFTR. A similar amino acid sequence in the PDZ2 domain did not bind RACK1. Our results indicate binding of Calu-3 RACK1 predominantly to the PDZ1 domain of NHERF1 at a site encompassing the GYGF loop of the PDZ1 domain and a site on RACK1 distinct from a PKC- binding site. CFTR activation by cAMP-generating agent is not affected by loss of RACK1-NHERF1 interaction. cystic fibrosis; cystic fibrosis transmembrane conductance regulator; protein-protein interaction; slot blot assay; pulldown; PDZ domain; chloride efflux; immunoprecipitation 相似文献
15.
16.
RACK1 is an intracellular receptor for the serine/ threonine protein kinase C. Previously, we demonstrated that RACK1 also interacts with the Src protein-tyrosine kinase. RACK1, via its association with these protein kinases, may play a key role in signal transduction. To further characterize the Src-RACK1 interaction and to analyze mechanisms by which cross-talk occurs between the two RACK1-linked signaling kinases, we identified sites on Src and RACK1 that mediate their binding, and factors that regulate their interaction. We found that the interaction of Src and RACK1 is mediated, in part, by the SH2 domain of Src and by phosphotyrosines in the sixth WD repeat of RACK1, and is enhanced by serum or platelet-derived growth factor stimulation, protein kinase C activation, and tyrosine phosphorylation of RACK1. To the best of our knowledge, this is the first report of tyrosine phosphorylation of a member of the WD repeat family of proteins. We think that tyrosine phosphorylation of these proteins is an important mechanism of signal transduction in cells. 相似文献
17.
18.
19.
Jin-Gui Chen 《Plant signaling & behavior》2015,10(8)
Receptor for Activated C Kinase 1 (RACK1) is a versatile scaffold protein that interacts with a large, diverse group of proteins to regulate various signaling cascades. RACK1 has been shown to regulate hormonal signaling, stress responses and multiple processes of growth and development in plants. However, little is known about the molecular mechanism underlying these regulations. Recently, it has been demonstrated that Arabidopsis RACK1 is phosphorylated by an atypical serine/threonine protein kinase, WITH NO LYSINE 8 (WNK8). Furthermore, RACK1 phosphorylation by WNK8 negatively regulates RACK1 function by influencing its protein stability. These findings promote a new regulatory system in which the action of RACK1 is controlled by phosphorylation and subsequent protein degradation. 相似文献
20.
The Receptor for Activated C Kinase 1 (RACK1) is a member of the tryptophan-aspartate repeat (WD-repeat) family of proteins and shares significant homology to the β subunit of G-proteins (Gβ). RACK1 adopts a seven-bladed β-propeller structure which facilitates protein binding. RACK1 has a significant role to play in shuttling proteins around the cell, anchoring proteins at particular locations and in stabilising protein activity. It interacts with the ribosomal machinery, with several cell surface receptors and with proteins in the nucleus. As a result, RACK1 is a key mediator of various pathways and contributes to numerous aspects of cellular function. Here, we discuss RACK1 gene and structure and its role in specific signaling pathways, and address how posttranslational modifications facilitate subcellular location and translocation of RACK1. This review condenses several recent studies suggesting a role for RACK1 in physiological processes such as development, cell migration, central nervous system (CN) function and circadian rhythm as well as reviewing the role of RACK1 in disease. 相似文献