首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloroform mineralization by toluene-oxidizing bacteria.   总被引:6,自引:4,他引:2       下载免费PDF全文
K McClay  B G Fox    R J Steffan 《Applied microbiology》1996,62(8):2716-2722
Seven toluene-oxidizing bacterial strains (Pseudomonas mendocina KR1, Burkholderia cepacia G4, Pseudomonas putida F1, Pseudomonas pickettii PKO1, and Pseudomonas sp. strains ENVPC5, ENVBF1, and ENV113) were tested for their ability to degrade chloroform (CF). The greatest rate of CF oxidation was achieved with strain ENVBF1 (1.9 nmol/min/mg of cell protein). CF also was oxidized by P. mendocina KR1 (0.48 nmol/min/mg of cell protein), strain ENVPC5 (0.49 nmol/min/mg of cell protein), and Escherichia coli DH510B(pRS202), which contained cloned toluene 4-monooxygenase genes from P. mendocina KR1 (0.16 nmol/min/mg of cell protein). Degradation of [14C]CF and ion analysis of culture extracts revealed that CF was mineralized to CO2 (approximately 30 to 57% of the total products), soluble metabolites (approximately 15%), a total carbon fraction irreversibly bound to particulate cellular constituents (approximately 30%), and chloride ions (approximately 75% of the expected yield). CF oxidation by each strain was inhibited in the presence of trichloroethylene, and acetylene significantly inhibited trichloroethylene oxidation by P. mendocina KR1. Differences in the abilities of the CF-oxidizing strains to degrade other halogenated compounds were also identified. CF was not degraded by B. cepacia G4, P. putida F1, P. pickettii PKO1, Pseudomonas sp. strain ENV113, or P. mendocina KRMT, which contains a tmo mutation.  相似文献   

2.
Toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 was induced by trichloroethylene (TCE), and induction was followed by the degradation of TCE. Higher levels of toluene oxidation activity were achieved in the presence of a supplemental growth substrate such as glutamate, with levels of activity of up to 86% of that observed with toluene-induced cells. Activity in P. mendocina KR1 was also induced by cis-1,2-dichloroethylene, perchloroethylene, chloroethane, hexane, pentane, and octane, but not by trans-1,2-dichloroethylene. Toluene oxidation was not induced by TCE in Burkholderia (Pseudomonas) cepacia G4, P. putida F1, Pseudomonas sp. strain ENV110, or Pseudomonas sp. strain ENV113.  相似文献   

3.
The bioremediation of polluted groundwater and toxic waste sites requires that bacteria come into close physical contact with pollutants. This can be accomplished by chemotaxis. Five motile strains of bacteria that use five different pathways to degrade toluene were tested for their ability to detect and swim towards this pollutant. Three of the five strains (Pseudomonas putida F1, Ralstonia pickettii PKO1, and Burkholderia cepacia G4) were attracted to toluene. In each case, the response was dependent on induction by growth with toluene. Pseudomonas mendocina KR1 and P. putida PaW15 did not show a convincing response. The chemotactic responses of P. putida F1 to a variety of toxic aromatic hydrocarbons and chlorinated aliphatic compounds were examined. Compounds that are growth substrates for P. putida F1, including benzene and ethylbenzene, were chemoattractants. P. putida F1 was also attracted to trichloroethylene (TCE), which is not a growth substrate but is dechlorinated and detoxified by P. putida F1. Mutant strains of P. putida F1 that do not oxidize toluene were attracted to toluene, indicating that toluene itself and not a metabolite was the compound detected. The two-component response regulator pair TodS and TodT, which control expression of the toluene degradation genes in P. putida F1, were required for the response. This demonstration that soil bacteria can sense and swim towards the toxic compounds toluene, benzene, TCE, and related chemicals suggests that the introduction of chemotactic bacteria into selected polluted sites may accelerate bioremediation processes.  相似文献   

4.
Pseudomonas putida mt-2, P. cepacia G4, P. mendocina KR1, and P. putida F1 degrade toluene through different pathways. In this study, we compared the competition behaviors of these strains in chemostat culture at a low growth rate (D = 0.05 h-1), with toluene as the sole source of carbon and energy. Either toluene or oxygen was growth limiting. Under toluene-limiting conditions, P. mendocina KR1, in which initial attack is by monooxygenation of the aromatic nucleus at the para position, outcompeted the other three strains. Under oxygen limitation, P. cepacia G4, which hydroxylates toluene in the ortho position, was the most competitive strain. P. putida mt-2, which metabolizes toluene via oxidation of the methyl group, was the least competitive strain under both growth conditions. The apparent superiority of strains carrying toluene degradation pathways that start degradation by hydroxylation of the aromatic nucleus was also found during competition experiments with pairs of strains of P. cepacia, P. fluorescence, and P. putida that were freshly isolated from contaminated soil.  相似文献   

5.
The influence of trichloroethylene (TCE) on a mixed culture of four different toluene-degrading bacterial strains (Pseudomonas putida mt-2, P. putida F1, P. putida GJ31, and Burkholderia cepacia G4) was studied with a fed-batch culture. The strains were competing for toluene, which was added at a very low rate (31 nmol mg of cells [dry weight] h). All four strains were maintained in the mixed culture at comparable numbers when TCE was absent. After the start of the addition of TCE, the viabilities of B. cepacia G4 and P. putida F1 and GJ31 decreased 50- to 1,000-fold in 1 month. These bacteria can degrade TCE, although at considerably different rates. P. putida mt-2, which did not degrade TCE, became the dominant organism. Kinetic analysis showed that the presence of TCE caused up to a ninefold reduction in the affinity for toluene of the three disappearing strains, indicating that inhibition of toluene degradation by TCE occurred. While P. putida mt-2 took over the culture, mutants of this strain which could no longer grow on p-xylene arose. Most of them had less or no meta-cleavage activity and were able to grow on toluene with a higher growth rate. The results indicate that cometabolic degradation of TCE has a negative effect on the maintenance and competitive behavior of toluene-utilizing organisms that transform TCE.  相似文献   

6.
The water contaminant N-nitrosodimethylamine (NDMA) is a probable human carcinogen whose appearance in the environment is related to the release of rocket fuel and to chlorine-based disinfection of water and wastewater. Although this compound has been shown to be biodegradable, there is minimal information about the organisms capable of this degradation, and little is understood of the mechanisms or biochemistry involved. This study shows that bacteria expressing monooxygenase enzymes functionally similar to those demonstrated to degrade NDMA in eukaryotes have the capability to degrade NDMA. Specifically, induction of the soluble methane monooxygenase (sMMO) expressed by Methylosinus trichosporium OB3b, the propane monooxygenase (PMO) enzyme of Mycobacterium vaccae JOB-5, and the toluene 4-monooxygenases found in Ralstonia pickettii PKO1 and Pseudomonas mendocina KR1 resulted in NDMA degradation by these strains. In each of these cases, brief exposure to acetylene gas, a suicide substrate for certain monooxygenases, inhibited the degradation of NDMA. Further, Escherichia coli TG1/pBS(Kan) containing recombinant plasmids derived from the toluene monooxygenases found in strains PKO1 and KR1 mimicked the behavior of the parent strains. In contrast, M. trichosporium OB3b expressing the particulate form of MMO, Burkholderia cepacia G4 expressing the toluene 2-monooxygenase, and Pseudomonas putida mt-2 expressing the toluene sidechain monooxygenase were not capable of NDMA degradation. In addition, bacteria expressing aromatic dioxygenases were not capable of NDMA degradation. Finally, Rhodococcus sp. RR1 exhibited the ability to degrade NDMA by an unidentified, constitutively expressed enzyme that, unlike the confirmed monooxygenases, was not inhibited by acetylene exposure.  相似文献   

7.
The activities of the TOL plasmid-coded xylene oxygenase, benzylalcohol dehydrogenase, benzaldehyde dehydrogenase of Pseudomonas putida strain PaW1 were tested with substituted toluenes, benzylalcohols and benzaldehydes, respectively, as substrates. Several chlorinated toluenes were shown to induce enzymes of the xylene degradation sequence. Conjugative transfer of the TOL plasmid from Pseudomonas putida strain PaW1 to Pseudomonas sp. strain B13 and Pseudomonas cepacia strain JH230 allowed the isolation of hybrid strains capable of growing in the presence of 3-chloro-, 4-chloro- and 3,5-dichlorotoluene. Hybrid strains revealed new ways to prevent the dead-end meta-pathway for cholorocatechols.  相似文献   

8.
We present an evaluation of the qualitative and quantitative effects that high concentrations of benzene and toluene have on the growth rate of several pure cultures that use these compounds as their sole carbon and energy source. The cultures employed were five widely studied environmental isolates: Pseudomonas putida F1, P. putida mt2, P. mendocina KR, Ralstonia pickettii PKO1, and Burkholderia cepacia G4. Three cultures degraded toluene following a pattern consistent with the kinetic model of Wayman and Tseng (1976) while the other two followed a modification of this model introduced by Alagappan and Cowan (2001). The pattern followed for benzene degradation was different than that for toluene degradation for all four capable pure cultures and consistent with that described by the model of Luong (1987). Mechanisms of substrate inhibition and solvent toxicity are discussed, used to conceptually evaluate the reasons for the differences in inhibition behavior, and used to support a call for more widespread use of the empirical, terminal substrate concentration inhibition models employed here. We also present the methodology developed to overcome a limitation commonly encountered when attempting to collect oxygen uptake data for use in quantifying substrate inhibition kinetics. The experimental method was effective for use in the collection of high quality data and the substrate inhibition models most useful in representing the growth of bacteria on these solvents are those that show a complete loss of activity at high concentration rather than the more popular asymptotic inhibition models.  相似文献   

9.
The effects of trichloroethylene (TCE) oxidation on toluene 2-monooxygenase activity, general respiratory activity, and cell culturability were examined in the toluene-oxidizing bacterium Burkholderia cepacia G4. Nonspecific damage outpaced inactivation of toluene 2-monooxygenase in B. cepacia G4 cells. Cells that had degraded approximately 0.5 micromol of TCE (mg of cells(-1)) lost 95% of their acetate-dependent O(2) uptake activity (a measure of general respiratory activity), yet toluene-dependent O(2) uptake activity decreased only 35%. Cell culturability also decreased upon TCE oxidation; however, the extent of loss varied greatly (up to 3 orders of magnitude) with the method of assessment. Addition of catalase or sodium pyruvate to the surfaces of agar plates increased enumeration of TCE-injured cells by as much as 100-fold, indicating that the TCE-injured cells were ultrasensitive to oxidative stress. Cell suspensions that had oxidized TCE recovered the ability to grow in liquid minimal medium containing lactate or phenol, but recovery was delayed substantially when TCE degradation approached 0.5 micromol (mg of cells(-1)) or 66% of the cells' transformation capacity for TCE at the cell density utilized. Furthermore, among B. cepacia G4 cells isolated on Luria-Bertani agar plates from cultures that had degraded approximately 0.5 micromol of TCE (mg of cells(-1)), up to 90% were Tol(-) variants, no longer capable of TCE degradation. These results indicate that a toxicity threshold for TCE oxidation exists in B. cepacia G4 and that once a cell suspension has exceeded this toxicity threshold, the likelihood of reestablishing an active, TCE-degrading biomass from the cells will decrease significantly.  相似文献   

10.
The bioremediation of polluted groundwater and toxic waste sites requires that bacteria come into close physical contact with pollutants. This can be accomplished by chemotaxis. Five motile strains of bacteria that use five different pathways to degrade toluene were tested for their ability to detect and swim towards this pollutant. Three of the five strains (Pseudomonas putida F1, Ralstonia pickettii PKO1, and Burkholderia cepacia G4) were attracted to toluene. In each case, the response was dependent on induction by growth with toluene. Pseudomonas mendocina KR1 and P. putida PaW15 did not show a convincing response. The chemotactic responses of P. putida F1 to a variety of toxic aromatic hydrocarbons and chlorinated aliphatic compounds were examined. Compounds that are growth substrates for P. putida F1, including benzene and ethylbenzene, were chemoattractants. P. putida F1 was also attracted to trichloroethylene (TCE), which is not a growth substrate but is dechlorinated and detoxified by P. putida F1. Mutant strains of P. putida F1 that do not oxidize toluene were attracted to toluene, indicating that toluene itself and not a metabolite was the compound detected. The two-component response regulator pair TodS and TodT, which control expression of the toluene degradation genes in P. putida F1, were required for the response. This demonstration that soil bacteria can sense and swim towards the toxic compounds toluene, benzene, TCE, and related chemicals suggests that the introduction of chemotactic bacteria into selected polluted sites may accelerate bioremediation processes.  相似文献   

11.
林峰  赵博光 《应用生态学报》2005,16(12):2476-2478
1.引言松材线虫病(Bursaphelenchus xylophilus)是松树的一种毁灭性病害,在日本、中国、韩国和北美、尼日利亚和葡萄牙等国家蔓延,造成了巨大经济损失,其中以日本和中国受害最重.一直认为松材线虫是引起该病的唯一病原,但近十几年来的研究发现,细菌在致病过程中可能起着重要作用,相继从病木和松材线虫体上分离到能对黑松苗有致萎活性的细菌.赵博光等首次根据实验提出松材线虫病是线虫和细菌共同侵染引起的复合侵染病害的假说,并在以后的试验中得到了验证.关于松材线虫对其细菌繁殖的影响研究鲜有报道.本试验采用从感病松树上分离并鉴定了的细菌菌株中选取假单胞属7株、其它属的细菌菌株3株,  相似文献   

12.
Nonpolar nitroaromatic compounds have been considered resistant to attack by oxygenases because of the electron withdrawing properties of the nitro group. We have investigated the ability of seven bacterial strains containing toluene degradative pathways to oxidize nitrobenzene. Cultures were induced with toluene vapor prior to incubation with nitrobenzene, and products were identified by high-performance liquid chromatography and gas chromatography-mass spectrometry. Pseudomonas cepacia G4 and a strain of Pseudomonas harboring the TOL plasmid (pTN2) did not transform nitrobenzene. Cells of Pseudomonas putida F1 and Pseudomonas sp. strain JS150 converted nitrobenzene to 3-nitrocatechol. Transformation of nitrobenzene in the presence of 18O2 indicated that the reaction in JS150 involved the incorporation of both atoms of oxygen in the 3-nitrocatechol, which suggests a dioxygenase mechanism. P. putida 39/D, a mutant strain of P. putida F1, converted nitrobenzene to a compound tentatively identified as cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene. This compound was rapidly converted to 3-nitrocatechol by cells of strain JS150. Cultures of Pseudomonas mendocina KR-1 converted nitrobenzene to a mixture of 3- and 4-nitrophenol (10 and 63%, respectively). Pseudomonas pickettii PKO1 converted nitrobenzene to 3- and 4-nitrocatechol via 3- and 4-nitrophenol. The nitrocatechols were slowly degraded to unidentified metabolites. Nitrobenzene did not serve as an inducer for the enzymes that catalyzed its oxidation. These results indicate that the nitrobenzene ring is subject to initial attack by both mono- and dioxygenase enzymes.  相似文献   

13.
Nonpolar nitroaromatic compounds have been considered resistant to attack by oxygenases because of the electron withdrawing properties of the nitro group. We have investigated the ability of seven bacterial strains containing toluene degradative pathways to oxidize nitrobenzene. Cultures were induced with toluene vapor prior to incubation with nitrobenzene, and products were identified by high-performance liquid chromatography and gas chromatography-mass spectrometry. Pseudomonas cepacia G4 and a strain of Pseudomonas harboring the TOL plasmid (pTN2) did not transform nitrobenzene. Cells of Pseudomonas putida F1 and Pseudomonas sp. strain JS150 converted nitrobenzene to 3-nitrocatechol. Transformation of nitrobenzene in the presence of 18O2 indicated that the reaction in JS150 involved the incorporation of both atoms of oxygen in the 3-nitrocatechol, which suggests a dioxygenase mechanism. P. putida 39/D, a mutant strain of P. putida F1, converted nitrobenzene to a compound tentatively identified as cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene. This compound was rapidly converted to 3-nitrocatechol by cells of strain JS150. Cultures of Pseudomonas mendocina KR-1 converted nitrobenzene to a mixture of 3- and 4-nitrophenol (10 and 63%, respectively). Pseudomonas pickettii PKO1 converted nitrobenzene to 3- and 4-nitrocatechol via 3- and 4-nitrophenol. The nitrocatechols were slowly degraded to unidentified metabolites. Nitrobenzene did not serve as an inducer for the enzymes that catalyzed its oxidation. These results indicate that the nitrobenzene ring is subject to initial attack by both mono- and dioxygenase enzymes.  相似文献   

14.
Pseudomonas cepacia G4 degrades trichloroethylene (TCE) via a degradation pathway for aromatic compounds which is induced by substrates such as phenol and tryptophan. P. cepacia G4 5223 PR1 (PR1) is a Tn5 insertion mutant which constitutively expresses the toluene ortho-monooxygenase responsible for TCE degradation. In groundwater microcosms, phenol-induced strain G4 and noninduced strain PR1 degraded TCE (20 and 50 microM) to nondetectable levels (< 0.1 microM) within 24 h at densities of 10(8) cells per ml; at lower densities, degradation of TCE was not observed after 48 h. In aquifer sediment microcosms, TCE was reduced from 60 to < 0.1 microM within 24 h at 5 x 10(8) PR1 organisms per g (wet weight) of sediment and from 60 to 26 microM over a period of 10 weeks at 5 x 10(7) PR1 organisms per g. Viable G4 and PR1 cells decreased from approximately 10(7) to 10(4) per g over the 10-week period.  相似文献   

15.
Pseudomonas mendocina KR1 grows on toluene as a sole carbon and energy source. A multicomponent oxygenase was partially purified from toluene-grown cells and separated into three protein components. The reconstituted enzyme system, in the presence of NADH and Fe2+, oxidized toluene to p-cresol as the first detectable product. Experiments with p-deutero-toluene led to the isolation of p-cresol which retained 68% of the deuterium initially present in the parent molecule. When the reconstituted enzyme system was incubated with toluene in the presence of 18O2, the oxygen in p-cresol was shown to be derived from molecular oxygen. The results demonstrate that P. mendocina KR1 initiates degradation of toluene by a multicomponent enzyme system which has been designated toluene-4-monooxygenase.  相似文献   

16.
A spectrophotometric method for the quantitative determination of an enzyme activity resulting in the accumulation of 4-substituted phenols is described in this article. Toluene-4-monooxygenase (T4MO) activity in whole cells of Pseudomonas mendocina KR1 is used to demonstrate this method. This spectrophotometric assay is based on the coupling of T4MO activity with tyrosinase activity. The 4-substituted phenol, produced by the action of T4MO on the aromatic ring of a substituted arene, is a substrate for tyrosinase, which converts phenols to o-quinones. The latter react with the nucleophile 3-methyl-2-benzothiazolinone hydrazone (MBTH) to produce intensely colored products that absorb light maximally at different wavelengths, depending on the phenolic substrate used. The incubation of whole cells of P. mendocina KRI with fluorobenzene resulted in the accumulation of 4-fluorophenol. The coupling of T4MO activity with tyrosinase activity in the presence of fluorobenzene resulted in the formation of a colored product absorbing maximally at 480 nm. The molar absorptivity (epsilon) value for the o-quinone-MBTH adduct formed from 4-fluorophenol was determined experimentally to be 12,827 M(-1) cm(-1) with a linear range of quantification between 2.5 and 75 microM. The whole cell assay was run as a continuous indirect assay. The initial rates of T4MO activity toward fluorobenzene, as determined spectrophotometrically, were 61.8+/-4.4 nmol/min/mg P. mendocina KR1 protein (using mushroom tyrosinase), 64.9+/-4.6 nmol/min/mg P. mendocina KR1 protein (using cell extracts Pseudomonas putida F6), and, as determined by HPLC analysis, 62.6+/-1.4 nmol/min/mg P. mendocina KR1 protein.  相似文献   

17.
18.
Whole-cell proteins of 22 strain of Burkhoderia pseudomallei, including 13 B. mallei, 5 B. cepacia strains and 14 strains of opportunistically pathogenic Pseudomonas defined by 1D SDC-PAAG electrophoresis. Electrophoregrams contained 35 to 45 protein fractions sized 19 to 130 kDa, which were highly reproductive. On the basis of computer-aided comparative analysis of protein patterns the interspecies and intraspecies grouping of studied microorganisms was made. The cluster analysis of the similarity matrix of protein spectra made it possible to allocate two groups of strains at the level of similarity of 78%. Group I was formed by Burkholderia species that previously belonged to the II RNA-DNA homology group of Pseudomonas: B. pseudomallei, B. mallei, B. cepacia. All Pseudomonas species were added to the 2nd Group: P. aeruginosa, P. stutzeri, P. testosterone, P. fluorescens, P. putida, P. mendocina. Four phenons were isolated among the strains of B. pseudomallei and 2 phenons--among the strains of B. mallei at the threshold similarity level (89%). The authors conclude that the comparative analysis of electrophoregrams of whole-cell proteins can be useful in the identification and typing of pathogenic Burkholderia.  相似文献   

19.
Liu J  Amemiya T  Chang Q  Qian Y  Itoh K 《Biodegradation》2012,23(5):683-691
Trichloroethylene (TCE) is extensively used in commercial applications, despite its risk to human health via soil and groundwater contamination. The stability of TCE, which is a useful characteristic for commercial application, makes it difficult to remove it from the environment. Numerous studies have demonstrated that TCE can be effectively removed from the environment using bioremediation. Pseudomonas putida F1 is capable of degrading TCE into less hazardous byproducts via the toluene dioxygenase pathway (TOD). Unfortunately, these bioremediation systems are not self-sustaining, as the degradation capacity declines over time. Fortunately, the replacement of metabolic co-factors is sufficient in many cases to maintain effective TCE degradation. Thus, monitoring systems must be developed to predict when TCE degradation rates are likely to decline. Herein, we show evidence that tod expression levels correlate with the ability of P. putida F1 to metabolize TCE in the presence of toluene. Furthermore, the presence of toluene improves the replication of P. putida F1, even when TCE is present at high concentration. These findings may be applied to real world applications to decide when the bioremediation system requires supplementation with aromatic substrates, in order to maintain maximum TCE removal capacity.  相似文献   

20.
In 290 strains of bacteria belonging to the genus Pseudomonas, 120 morphological and physiologo-biochemical characters were studied and the results obtained thereby were analyzed by the methods of numerical taxonomy using computers. The majority of strains were subdivided into 11 clusters: Ps. aeruginosa (1), Ps. putida (2), Ps. rathonis (5), Ps. syringae (8), Ps. pseudoalcaligenes (9), Ps. maltophilia (10), Ps. acidovorans (11), Ps. testosteroni (12), Ps. mendocina (13), Ps. cepacia (14), Ps. fluorescens (3). The latter cluster included also the strains identified earlier as Ps. aurantiaca, Ps. lemonnieri, Ps. fluoro-violaceus, and Ps. aureofaciens. Three clusters contained strains which could not be identified and probably should be regarded as distinct species. The characteristics have been selected useful for diagnostics of the above Pseudomonas bacteria and the subgroups of Ps. fluorescens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号