首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A potential mucus precursor in Tetrahymena wild type and mutant cells.   总被引:1,自引:0,他引:1  
By using an antibody to a specific mucus polypeptide (34 kDa) to study whole cell extracts of both a secretory mutant (SB281) and wild type (wt) Tetrahymena, we demonstrate that a 57-kDa polypeptide is a probable precursor to the 34-kDa secretory polypeptide. We postulate that the precursor accumulates in the mutant cells because it cannot be cleaved. This mutant contains no recognizable mature secretory granules (mucocysts). By immunoelectron microscopy, the 34-kDa polypeptide was localized in wt cells specifically to the mature mucocysts and to their released products. Localization in mutant cells occurred in two different types of cytoplasmic vesicles: small electron dense vesicles (0.3-0.5 microns in diameter) and large electron lucent vacuoles (1.2-3.5 microns in diameter). Immunoblot analyses of homogenates of mutant and wt cells with the anti-34-kDa serum revealed a dominant band in the mutant at Mr 57 kDa whereas the wt showed a dominant band only at Mr 34 kDa. Furthermore, the 57-kDa polypeptide is immunoprecipitated with anti-34-kDa serum from the mutant cell. Further evidence for a precursor relation of the 57-kDa polypeptide in mutant cells to the 34-kDa mucus polypeptide of wt cells was obtained by the use of drugs (monensin, chloroquine, NH4Cl) that block secretory product processing in wt cells. Extracts of drug-treated wt cells showed the presence of a 57-kDa cross reacting band even after 18 h of incubation in growth medium whereas untreated control cells contained the 34-kDa mature protein almost exclusively. These results indicate that processing of the precursor to the 34-kDa polypeptide occurs in an acidic compartment(s) possibly in either the trans Golgi network, or condensing vacuoles or both.  相似文献   

2.
The biosynthesis of nonspecific lipid transfer protein (nsLTP) was investigated. Total RNA of rat liver was translated in a rabbit reticulocyte lysate cell-free protein-synthesizing system with [35S]methionine as label. The immunoprecipitation of translation products with affinity-purified anti-nsLTP antibody yielded 14.5- and 60-kDa [35S]polypeptides. The molecular mass of the former polypeptide was approximately 1.5 kDa larger than that of the purified mature nsLTP (13 kDa). The site of synthesis of nsLTP was studied by in vitro translation of free and membrane-bound polyribosomal RNAs followed by immunoprecipitation. mRNA for both the 14.5- and 60-kDa polypeptides were found predominantly in the free polyribosomal fraction in both normal and clofibrate-treated rats. Clofibrate, a hypolipidemic drug that proliferates peroxisomes, did not increase the relative amount of nsLTP mRNA in rat liver. Pulse-chase experiments in rat hepatoma H-35 cells suggested that nsLTP was synthesized as a larger precursor of 14.5 kDa and converted to a mature form of 13 kDa. We have recently shown that nsLTP is highly concentrated in peroxisomes in rat hepatocytes [Tsuneoka et al. (1988) J. Biochem. 104, 560-564]. Taken together, these results suggest that nsLTP is synthesized as a larger precursor of 14.5 kDa on cytoplasmic free polyribosomes, then post-translationally transported to peroxisomes, where the precursor is presumably proteolytically processed to its mature form of 13 kDa. The relationship between the 13-kDa nsLTP and the 60-kDa polypeptide is also discussed.  相似文献   

3.
The domain structures of the Escherichia coli Rep and Helicase II proteins and their ligand-dependent conformational changes have been examined by monitoring the sensitivity of these helicases to proteolysis by trypsin and chymotrypsin. Limited treatment of unliganded Rep protein (73 kDa) with trypsin results in cleavage at a single site in its carboxyl-terminal region, producing a 68-kDa polypeptide which is stabilized in the presence of ATP, ADP, or adenosine 5'-O-thiotriphosphate) (ATP gamma S). The purified 68-kDa Rep tryptic polypeptide retains single-stranded (ss) DNA binding, DNA unwinding (helicase), and full ATPase activities. When bound to ssDNA, the Rep protein can be cleaved by trypsin at an additional site in its carboxyl-terminal region, producing a 58-kDa polypeptide that also retains ssDNA binding and ATPase activities. This 58-kDa Rep tryptic polypeptide can also be produced by further tryptic treatment of the 68-kDa Rep tryptic polypeptide when the latter is bound to ssDNA. This 58-kDa polypeptide displays a lower affinity for ssDNA indicating that the 10-kDa carboxyl-terminal peptide facilitates Rep protein binding to ssDNA. The 58-kDa Rep tryptic polypeptide is also stabilized in the presence of nucleotides. Based on these and previous studies that showed that the 68-kDa Rep tryptic polypeptide cannot support DNA replication in a system that is dependent upon the phi X174 cis-A protein (Arai, N. & Kornberg, A. (1981) J. Biol. Chem. 256, 5294-5298), we conclude that the carboxyl-terminal end (approximately 5 kDa) of the Rep protein is not required for its helicase or ATPase activities. However, we suggest that this region of the Rep protein is important for its interactions with the phi X174 cis-A protein. Limited treatment of unliganded Helicase II protein (82 kDa) with chymotrypsin results in cleavage after Tyr254, producing a 29-kDa amino-terminal polypeptide and a 53-kDa carboxyl-terminal polypeptide, which remain associated under nondenaturing conditions. This chymotrypsin cleavage reduces the ssDNA binding activity and eliminates the ssDNA-dependent ATPase and helicase activities of the Helicase II protein. The binding of ATP, ADP, ATP gamma S, and/or DNA to Helicase II protein results in protection of this site (Tyr254) from cleavage by chymotrypsin. Limited treatment of Helicase II protein with trypsin results in cleavage near its carboxyl-terminal end producing two polypeptides with apparent Mr = 72,000, in a manner similar to that observed with the Rep protein; these polypeptides are also stabilized by binding ATP or single-stranded DNA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The heavy chains and the 19-kDa and 20-kDa light chains of bovine brain myosin can by phosphorylated. To localise the site of heavy-chain phosphorylation, the myosin was initially subjected to digestion with chymotrypsin and papain under a variety of conditions and the fragments thus produced were identified. Irrespective of the ionic strength, i.e. whether the myosin was monomeric or filamentous, chymotryptic digestion produced two major fragments of 68 kDa and 140 kDa; the 140-kDa fragment was further digested by papain to yield a 120-kDa and a 23-kDa fragment. These fragments were characterised by (a) a gel overlay technique using 125I-labelled light chains, which showed that the 140-kDa and 23-kDa polypeptides contain the light-chain-binding sites; (b) using myosin photoaffinity labelled at the active site with [3H]UTP, which showed that the 68-kDa fragment contained the catalytic site, and (c) electron microscopy, using rotary shadowing and negative-staining techniques, which demonstrated that after chymotryptic digestion the myosin head remains attached to the tail whereas on papain digestion isolated heads and tails were observed. Thus the 120-kDa polypeptide derived from the 140-kDa fragment is the tail of the myosin, and the 68-kDa fragment containing the catalytic site and the 23-kDa fragment, with the light-chain-binding sites, form the head (S1) portion of the myosin. When [32P]-phosphorylated brain myosin was digested with chymotrypsin and papain it was shown that the heavy-chain phosphorylation site is located in a 5-kDa peptide at the C-terminal end of the heavy chain, i.e. the end of the myosin tail. Using hydrodynamic and electron microscopic techniques, no significant effect of either light-chain or heavy-chain phosphorylation on the stability of brain myosin filaments was observed, even in the presence of MgATP. Brain myosin filaments appear to be more stable than those of other non-muscle myosins. Light-chain phosphorylation did, however, have an effect on the conformation of brain myosin, for example in the presence of MgATP non-phosphorylated myosin molecules were induced to fold into a very compact folded state.  相似文献   

5.
BALB/c mice were immunized with peroxisomal membranes prepared from rat liver. Spleen cells were fused with myeloma cells (P3/U1) and the hybridomas were selected using peroxisomal membranes. A monoclonal antibody (PXM1a/207B) which recognized peroxisomal membranes was selected. Using the antibody, a novel 57 kDa polypeptide was identified in the peroxisomal membrane fraction. Immunoblot analysis of the subcellular fractions demonstrated that the 57 kDa polypeptide was present exclusively in peroxisomal membranes. The 57 kDa polypeptide was partially digested by trypsin and chymotrypsin under conditions where peroxisomal particles remained intact, indicating that the polypeptide is exposed to the cytosolic face of the peroxisomal membrane. The amount of 57 kDa polypeptide increased in parallel with proliferation of peroxisomes by administration of clofibrate.  相似文献   

6.
Two glycoproteins were isolated from lysates of thioglycollate-stimulated, murine peritoneal macrophages by affinity chromatography on immobilized Griffonia simplicifolia I lectin and by preparative SDS/PAGE. The glycoproteins were readily labeled on the surface of intact macrophages with 3H and 125I. The labeled glycoproteins migrated as broad bands of molecular mass 92-109 kDa and 115-125 kDa. The mobility of the glycoproteins decreased only slightly after reduction with dithiothreitol, indicating the absence of intersubunit disulfide bridges. The 92-kDa and 115-kDa glycoproteins had pI 5.2-5.4 and pI less than or equal to 4, respectively. Digestion of both glycoproteins with alpha-galactosidase released 23% of their 3H content and abolished their ability to bind to the G. simplicifolia I lectin, showing that they contain terminal alpha-D-galactosyl groups. After reduction with 2-mercaptoethanol, each glycoprotein fraction was sensitive to N-glycanase; the 115-kDa glycoproteins produced a smear with the front at approximately 67 kDa, whereas the 92-kDa glycoprotein gave two bands of 61 kDa and 75 kDa. Unreduced glycoproteins were insensitive to N-glycanase, suggesting the presence of intramolecular disulfide bonds. Although each glycoprotein fraction was sensitive to endoglycosidase H, this enzyme produced only slight changes in molecular mass when compared with N-glycanase. From these results as well as from the specificity of the enzymes involved, it is concluded that each glycoprotein fraction contains complex-type oligosaccharides and a small amount of high-mannose and/or hybrid-type oligosaccharides. While each glycoprotein fraction was bound to Datura stramonium lectin, they failed to react with anti-[i-(Den)] serum and their digestion with endo-beta-galactosidase did not cause a band shift in SDS/PAGE. Taken together, these results suggest the presence of N-acetyllactosamine units which are not arrayed in linear form but occur as single units, bound either to C2 and C6, or to C2 and C4, or both, of outer mannosyl residues on complex-type oligosaccharides. The glycoprotein(s) fraction precipitated with anti-[I (Step)] serum, suggesting the presence of branched lactosaminoglycans. Digestion of both glycoprotein fractions with a mixture of sialidase and O-glycanase did not alter their mobility in SDS/PAGE, suggesting a lack or low content of O-linked trisaccharides and tetrasaccharides. Each glycoprotein fraction was bound specifically to Sambucus nigra and Maackia amurensis immobilized lectins, indicating the presence of sialic acid linked alpha 2,6 to subterminal D-galactose or N-acetylgalactosamine residues, and alpha 2,3 to N-acetyllactosamine residues, respectively.  相似文献   

7.
Tryptic cleavage of EF-2, molecular mass 93 kDa, produced an 82-kDa polypeptide and a 10-kDa fragment, which was further degraded. By a slower reaction the 82-kDa polypeptide was gradually split into a 48-kDa and a 34-kDa fragment. Similarly, treatment with chymotrypsin resulted in the formation of an 82-kDa polypeptide and a small fragment. In contrast to the tryptic 82-kDa polypeptide the corresponding chymotryptic cleavage product was relatively resistant to further attack. The degradation of the 82-kDa polypeptide with either trypsin or chymotrypsin was facilitated by the presence of guanosine nucleotides, indicating a conformational shift in native EF-2 upon nucleotide binding. No effect was observed in the presence of ATP, indicating that the effect was specific for guanosine nucleotides. After affinity labelling of native EF-2 with oxidized [3H]GTP and subsequent trypsin treatment the radioactivity was recovered in the 48-kDa polypeptide showing that the GTP-binding site was located within this part of the factor. Correspondingly, tryptic degradation of EF-2 labelled with [14C]NAD+ in the presence of diphtheria toxin showed that the site of ADP-ribosylation was within the 34-kDa polypeptide. By cleavage with the tryptophan-specific reagent N-chlorosuccinimide the site of ADP-ribosylation could be located at a distance of 40-60 kDa from the GTP-binding site and about 4-11 kDa from the nearest terminus.  相似文献   

8.
Proteolytic digestion and indirect immunostaining were used to compare the platelet and sarcoplasmic reticulum Ca2+-ATPase proteins. When the platelet and sarcoplasmic reticulum Ca2+-ATPase proteins were digested in the native state with trypsin, the platelet Ca2+-ATPase, which had an apparent undigested molecular mass of 103 kDa, yielded 78-kDa and 25-kDa fragments. Calcium transport activity depended on the integrity of the 103-kDa protein, while the digested protein had residual ATPase activity. Tryptic digestion of the sarcoplasmic reticulum pump protein, which also had an undigested molecular mass of 103 kDa, yielded products with apparent molecular masses of 55 kDa, 36 kDa, and 26 kDa. Distinct patterns were also observed when the platelet and sarcoplasmic reticulum calcium pump proteins were digested with chymotrypsin and Staphylococcus aureus protease in the presence of sodium dodecyl sulfate. Chymotrypsin digestion of the platelet protein resulted in the appearance of products with apparent molecular masses of 70 kDa, 39 kDa, and 31 kDa, while a similar digestion of the sarcoplasmic reticulum calcium pump protein yielded 54-kDa, 52.5-kDa, 46-kDa, 41-kDa, and 36-kDa fragments. Exposure of the sarcoplasmic reticulum and platelet Ca2+-ATPase proteins to S. aureus protease also yielded dissimilar fragmentation patterns. These results indicate that the Ca2+-ATPases from platelets and sarcoplasmic reticulum are distinct proteins.  相似文献   

9.
Previous work has shown that eukaryotic initiation factor (eIF)-4B from wheat germ is a complex containing two subunits, 80 and 28 kDa, and eIF-4F from wheat germ is a complex containing two subunits, 220 and 26 kDa (Lax, S., Fritz, W., Browning, K., and Ravel, J. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 330-333). Here we show that both the 28-kDa subunit of eIF-4B and the 26-kDa subunit of eIF-4F cross-link to the 5' terminus of capped and oxidized satellite tobacco necrosis virus RNA in the absence of ATP and that the cross-linking of both polypeptides is inhibited by m7GDP. Several lines of evidence indicate that the 28-kDa and the 26-kDa cap binding proteins of eIF-4B and eIF-4F are antigenically distinct polypeptides. Rabbit polyclonal antibodies raised to intact eIF-4B or to the isolated 28-kDa subunit of eIF-4B react strongly with the 28-kDa subunit of eIF-4B on immunoblots, but show only a very weak reaction with the 26-kDa subunit of eIF-4F under the same conditions. In addition, a mouse monoclonal antibody was obtained that reacts strongly with the 26-kDa subunit of eIF-4F but does not react with the 28-kDa subunit of eIF-4B. Evidence is presented also which indicates that the higher molecular weight subunits of eIF-4B and eIF-4F are antigenically distinct. Rabbit polyclonal antibodies raised to intact eIF-4B or the isolated 80-kDa subunit inhibit eIF-4B-dependent polypeptide synthesis but do not inhibit eIF-4F-dependent polypeptide synthesis. Rabbit polyclonal antibodies raised to eIF-4F inhibit eIF-4F-dependent polypeptide synthesis but do not inhibit eIF-4B-dependent polypeptide synthesis.  相似文献   

10.
Extracts of isolated microvascular endothelial cells (MEC) and cultured bovine aortic endothelial cells (BAEC) were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), electrotransfer and incubation with albumin either radioiodinated or adsorbed to 5-nm gold particles. Both ligands reacted exclusively with two peptides of 18 and 31 kDa. To the 18 kDa peptide (excised from preparative SDS-PAGE), an antibody was raised in rabbits and purified by affinity on 18 kDa obtained from two-dimensional gel electrophoresis and immobilized on nitrocellulose paper. The specificity of the anti-18 kDa was assessed by immunoblotting and immunoprecipitation of endothelial cell extracts. To check whether the 18 kDa peptide is exposed on the endothelial cell surface and/or its components (uncoated pits, open plasmalemmal vesicles), the apical membrane of BAEC was radioiodinated, the solubilized proteins incubated with the anti-18 kDa, and the immune complexes formed were precipitated with protein A-Sepharose CL-4B. The ensuing SDS-PAGE and autoradiography revealed that from all radioiodinatable surface proteins, the 18 kDa was the only polypeptide immunoprecipitated by the anti-18 kDa antibody. To localize the 18 kDa peptide, we applied indirect immunofluorescence technique on cultured MEC and BAEC and immunoelectron microscopy (EM) on ultrathin cryosections of mouse heart. Nonpermeabilized whole MEC and BAEC incubated with anti-18 kDa followed by rhodamine-conjugated second antibody showed a relatively intense surface fluorescence often appearing as small dots. At the EM level, heart ultrathin cryosections exposed anti-18 kDa followed by gold-conjugated second antibody revealed that 18 kDa was primarily associated with the membrane of plasmalemmal vesicles of capillary endothelia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The T3 complex has been defined by a group of monoclonal antibodies which react with all human peripheral blood T lymphocytes and a subpopulation of thymocytes. This membrane structure includes glycoproteins of 44 (alpha), 37 (beta), 25 (gamma), and 20 kDa (delta) as well as a nonglycosylated polypeptide of 20 kDa (epsilon). The characterization of the alpha and beta chains has been of particular interest because they may constitute the T cell receptor for antigen. Here we show that the T3 complex prepared by immunoprecipitation from T lymphocytes of a leukemic patient (Sezary syndrome) displays an unusually strong association of the alpha and beta chains with the 20/25-kDa T3 proteins. The alpha and beta chains (48 and 44 kDa) were co-precipitated by anti-20-kDa T3 monoclonal antibodies as a disulfide-linked 90-kDa heterodimer. A minor 220-kDa multimer composed of proteins similar to the alpha and beta chains was also present in these immunoprecipitates. This multimer could be independently precipitated with a new monoclonal antibody WT-31, which detects the larger polypeptide chains of the T3 complex on all human T lymphocytes. After removal of N-linked oligosaccharides, both the alpha and beta chain were found to have 33-kDa peptide backbones with distinct isoelectric points. Using a monoclonal reagent T40/25, a 90-kDa heterodimer, consisting of 40- and 49-kDa chains with peptide backbones of 34 kDa was found to be T3-associated on the T leukemic cell line HPB-ALL. When the alpha and beta chains from the Sezary patient were compared with the corresponding chains from HPB-ALL by peptide mapping, large differences were observed. Taken together, the data presented here provide strong evidence that the T cell receptor for antigen is part of the T3 complex on the surface of human T lymphocytes.  相似文献   

12.
Cultured chick embryo skin fibroblasts release a major component with a native molecular mass of about 1 MDa, which resolves into three polypeptide bands of about 300, 350 and 600 kDa upon reduction. We report here the purification of this oligomeric protein and show, by means of polyclonal and monoclonal antibodies, that its three polypeptide constituents are closely related. The 600-kDa polypeptide is likely to be a dimer of two smaller subunits which are cross-linked by non-reducible bonds. By electron microscopy, isolated oligomeric molecules exhibit a novel cruciform structure with a large central globular domain. One arm has the shape of a thin rod about 70 nm in length. The three other arms are thicker, longer (90 nm) and flexible, and carry a prominent double globule at their distal ends. Collagenase treatment of the oligomeric fibroblast protein yields two resistant fragments of about 270 kDa and 320 kDa. The intact 350-kDa and 600-kDa (but not the 300-kDa) polypeptides are chondroitinase sensitive and labeled by metabolic incorporation of [35S]sulfate; collagenase treatment does not remove any [35S] sulfate. Hence, the intact fibroblast protein has glycosaminoglycan chains attached to its non-collagenous domain. Three amino acid sequences obtained from chymotryptic fragments of the fibroblast protein correspond to sequences predicted for chick type-XII collagen from its full-length cDNA [Yamagata, M., Yamada, K. M., Yamada, S. S., Shinomura, T., Tanaka, H., Nishida, Y., Obara, M. & Kimata, K. (1991) J. Cell Biol. 115, 209-221]. However, the novel fibroblast protein described here differs significantly from previously isolated forms of type-XII collagen: its subunits are larger by one third, and it is a proteoglycan.  相似文献   

13.
The binding and assembly of clathrin triskelions on vesicle membranes seem to be mediated by certain assembly polypeptides (Keen, J.H., Willingham, M.C., and Pastau, I.H. (1979) Cell 16, 303-312). These assembly polypeptides were further purified into two distinct complexes using hydroxylapatite chromatography. Peak 1 consists of two major bands of 98 and 112 kDa, two minor bands of 103 and 118 kDa, and a polypeptide of 46 kDa. Peak 2 consists of one major band of 100 kDa, two minor bands of 103 and 115 kDa, and a polypeptide of 50 kDa. Both complexes have a native molecular mass of 290 kDa as determined by gel filtration. Each 290-kDa complex contains two polypeptides of 98-118/100-115 kDa and two polypeptides of 46/50 kDa. The 46-kDa polypeptide is not phosphorylated, whereas the 50-kDa polypeptide is. Both peaks contain 50-kDa kinase-like activity. Time courses of the 50-kDa phosphorylation show that the activity in peak 1 saturates much faster than the activity in peak 2; there may be two 50-kDa kinase activities in coated vesicles. A kinase that phosphorylates the polypeptides in 98-118-kDa group is present in peak 1 but not in peak 2. Both peaks assemble clathrin triskelions into cages under conditions in which the clathrin alone would not assemble. Both rotary shadowed and negatively stained preparations of these reassembled cages as well as the purified complexes were examined by electron microscopy. Thus, two complexes have been identified that differ in their polypeptide composition and kinase activities, but are similar in their ability to assemble clathrin triskelions into cages.  相似文献   

14.
Thirty-four human sera containing parietal cell autoantibodies (PCA) specifically immunoprecipitated two antigens, with apparent molecular masses of 60-90 kDa and 100-120 kDa under nonreducing conditions and 60-90 kDa and 120-150 kDa under reducing conditions, from porcine gastric membrane extracts. A third antigen of 92 kDa was only observed in immunoprecipitates analyzed under reducing conditions. By immunoblotting, 24 of the 34 PCA-positive sera reacted with only the 60-90-kDa antigen, three reacted with a broad 60-120-kDa smear, one reacted only with a 92-kDa antigen and six did not react. Reactivity with the 60-90-kDa antigen was observed with gastric membranes from dog, pig, rat, and rabbit. Twenty PCA-negative sera did not react with these components by immunoprecipitation or immunoblotting. PCA reactivity with the 60-90-kDa antigen was abolished when the gastric membranes were (a) digested with Pronase, (b) reduced with 100 mM dithiothreitol, (c) treated with sodium periodate, or (d) digested with N-glycanase. The 60-90-kDa and 100-120-kDa components were insensitive to neuraminidase treatment. N-glycanase digestion of 125I-labeled antigens purified by immunoprecipitation and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis collapsed the 60-90-kDa antigen to a sharp 34-kDa band; the 100-120-kDa component was unaffected. These observations suggest that (i) parietal cell antigens comprise three components of 60-90, 92, and 100-120 kDa; (ii) the epitopes differ in conformational sensitivity; (iii) the 60-90-kDa antigen is a conserved molecule comprising a 34-kDa core protein extensively glycosylated with N-linked oligosaccharides; (iv) sialic acid residues are not present in the 60-90- and 100-120-kDa molecules, and (v) the carbohydrate and protein moieties of the 60-90-kDa molecule are required for antibody binding.  相似文献   

15.
During germination of Lupinus albus seeds, a 20-kDa polypeptide accumulates in the cotyledons of 4-d-old plants (Ferreira et al., 1995b, J Exp Bot 46: 211–219). Immunological, polypeptide cleavage with cyanogen bromide and amino acid sequencing experiments indicate that the 20-kDa polypeptide and ubiquitin are structurally unrelated. However there is a strong sequence homology between the 20-kDa polypeptide and the vicilin-like storage proteins from pea and soybean. Our results indicate that the 20-kDa polypeptide is an intermediate breakdown product of β-conglutin catabolism, the vicilin-like storage protein from L. albus, and that its interaction with anti-ubiquitin antibodies results from the recognition of the antibodies by the 20-kDa polypeptide rather than by the opposite. Besides rabbit anti-ubiquitin antibodies, the 20-kDa polypeptide interacts with a variety of glycoproteins, including immunoglobulin G from several animal species, peroxidase and alkaline phosphatase, suggesting that it possesses a lectin-type activity. Its activity is resistant to sodium dodecyl sulfate or methanol treatments, boiling and autoclaving. Purification of the 20-kDa polypeptide and immunological studies with anti-20-kDa-polypeptide antibodies showed that the non-glycosylated polypeptide is part of a glycoprotein with an estimated molecular mass of 210 kDa, composed of several types of structurally related subunit with molecular masses ranging from 14 to 50 kDa. Purified native protein containing the 20-kDa polypeptide self-aggregates in a calcium-dependent manner as reported for some glycosylated lectins. The possible physiological function of the 20-kDa polypeptide is discussed. Received: 28 June 1996 / Accepted: 7 February 1997  相似文献   

16.
We have addressed the problem of anti-La autoimmune responses by defining the specific binding sites of human mAb to the La protein. Two human anti-La mAb were developed; one an IgM (kappa) (designated 8G3) and the second an IgG1 (kappa) (9A5) isotype. The mAb 8G3 immunoprecipitated the La RNA and La protein from crude human cell lysates; bound the 50-kDa La protein and a 28-kDa digestion fragment in immunoblots, and recognized a small defined internal segment from the cloned La protein. In contrast, the IgG isotype (9A5) failed to precipitate native La from cell lysates but bound the same segment of digested La protein and the same polypeptide of 131 amino acids in length from the cloned La protein. Immunoprecipitation experiments performed with these mAb demonstrated that the La protein is a component of a subset of Ro particles. The data suggest that the La protein is not present on the hY RNA in the absence of the Ro polypeptide. These observations may define functional subsets or maturation states of hY RNA based on their association with Ro or Ro and La polypeptides.  相似文献   

17.
4.1 Proteins are a family of multifunctional cytoskeletal components (4.1R, 4.1G, 4.1N and 4.1B) derived from four related genes, each of which is expressed in the nervous system. Using subcellular fractionation, we have investigated the possibility that 4.1 proteins are components of forebrain postsynaptic densities, cellular compartments enriched in spectrin and actin, whose interaction is regulated by 4.1R. Antibodies to each of 4.1R, 4.1G, 4.1N and 4.1B recognize polypeptides in postsynaptic density preparations. Of these, an 80-kDa 4.1R polypeptide is enriched 11-fold in postsynaptic density preparations relative to brain homogenate. Polypeptides of 150 and 125 kDa represent 4.1B; of these, only the 125 kDa species is enriched (threefold). Antibodies to 4.1N recognize polypeptides of approximately 115, 100, 90 and 65 kDa, each enriched in postsynaptic density preparations relative to brain homogenate. Minor 225 and 200 kDa polypeptides are recognized selectively by specific anti-4.1G antibodies; the 200 kDa species is enriched 2.5-fold. These data indicate that specific isoforms of all four 4.1 proteins are components of postsynaptic densities. Blot overlay analyses indicate that, in addition to spectrin and actin, postsynaptic density polypeptides of 140, 115, 72 and 66 kDa are likely to be 4.1R-interactive. Of these, 72 kDa and 66 kDa polypeptides were identified as neurofilament L and alpha-internexin, respectively. A complex containing 80 kDa 4.1R, alpha-internexin and neurofilament L was immunoprecipitated with anti-4.1R antibodies from brain extract. We conclude that 4.1R interacts with the characteristic intermediate filament proteins of postsynaptic densities, and that the 4.1 proteins have the potential to mediate the interactions of diverse components of postsynaptic densities.  相似文献   

18.
A heterodimeric 13.8 kDa napin-like polypeptide has previously been isolated from Chinese cabbage (Brassica parachinensis) seeds with a procedure involving ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, FPLC-ion exchange chromatography on Mono S and FPLC-gel filtration on Superdex 75. In the present study the N-terminal sequence of the 8.8 kDa subunit of the polypeptide (PQGPQQRPPKLLQQQTNEEHE) was found to have pronounced homology to napins, albumins and trypsin inhibitors, but demonstrated little similarity to the 5 kDa subunit. The polypeptide stimulated nitrite production by mouse peritoneal macrophages and reduced the viability of leukaemia (L1210) cells. It inhibited trypsin with a higher potency than it inhibited chymotrypsin, but was devoid of ribonuclease and antifungal activities.  相似文献   

19.
Ngai PH  Ng TB 《Peptides》2004,25(2):171-176
Napins are 1:1 disulfide-linked complexes of a smaller (ca. 4kDa) subunit and a larger (ca. 10kDa) subunit. The intent of the present study was to ascertain the production of napin by the seeds of a Brassica species that has not been examined previously, and also to explore new biological activities of the napin. A heterodimeric 11-kDa napin-like polypeptide has been isolated from Chinese white cabbage (Brassica chinensis cv dwarf) seeds with a protocol comprising ion exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, fast protein liquid chromatography (FPLC)-ion exchange chromatography on Mono S and FPLC-gel filtration on Superdex 75. The N-terminal sequence of the 7-kDa subunit manifests striking similarity to napin large chain, albumin and trypsin inhibitor. The N-terminal sequence of the 4-kDa subunit is homologous to napin large chain and an antimicrobial peptide. The napin-like polypeptide inhibited translation in the rabbit reticulocyte system with an IC50 of 18.5nM. This translation-inhibitory activity was stable between pH 4 and 11, and between 10 and 40 degrees C. The polypeptide inhibited trypsin with a higher potency ( IC50 = 8.5 microM) than it inhibited chymotrypsin (IC50 = 220 microM), but was devoid of ribonuclease and antifungal activities. It manifested antibacterial activity against Pseudomonas aeruginosia, Bacillus subtilis, Bacillus cereus, and Bacillus megaterium. The results revealed that the napin-like polypeptide from Chinese white cabbage seeds exhibited some potentially exploitable activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号