首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA ligase I is responsible for joining Okazaki fragments during DNA replication. An additional proposed role for DNA ligase I is sealing nicks generated during excision repair. Previous studies have shown that there is a physical interaction between DNA ligase I and proliferating cell nuclear antigen (PCNA), another important component of DNA replication and repair. The results shown here indicate that human PCNA enhances the reaction rate of human DNA ligase I up to 5-fold. The stimulation is specific to DNA ligase I because T4 DNA ligase is not affected. Electrophoretic mobility shift assays indicate that PCNA improves the binding of DNA ligase I to the ligation site. Increasing the DNA ligase I concentration leads to a reduction in PCNA stimulation, consistent with PCNA-directed improvement of DNA ligase I binding to its DNA substrate. Two experiments show that PCNA is required to encircle duplex DNA to enhance DNA ligase I activity. Biotin-streptavidin conjugations at the ends of a linear substrate inhibit PCNA stimulation. PCNA cannot enhance ligation on a circular substrate without the addition of replication factor C, which is the protein responsible for loading PCNA onto duplex DNA. These results show that PCNA is responsible for the stable association of DNA ligase I to nicked duplex DNA.  相似文献   

2.
Uracil-DNA glycosylase (UDG) is an important repair enzyme in all organisms to remove uracil bases from DNA. Recent biochemical studies have revealed that human nuclear UDG (UNG2) forms a multiprotein complex in replication foci and initiates the base excision repair pathway by interacting with proliferating cell nuclear antigen (PCNA). Here, we show the physical and functional interactions between UDG and PCNA from the hyperthermophilic euryarchaeon, Pyrococcus furiosus. The physical interaction between the two proteins was identified by a surface plasmon resonance analysis. Furthermore, the uracil glycosylase activity of P. furiosus UDG is stimulated by P. furiosus PCNA (PfuPCNA) in vitro. This stimulatory effect was observed only when wild type PfuPCNA, but not a monomeric PCNA mutant, was present in the reaction. Mutational analyses revealed that our predicted PCNA-binding region (AKTLF) in P. furiosus UDG is actually important for the interaction with PfuPCNA. This is the first report describing the functional interaction between archaeal UDG and PCNA.  相似文献   

3.
Replication factor C (RFC) and proliferating cell nuclear antigen (PCNA) are accessory proteins essential for processive DNA synthesis. The function of RFC is to load PCNA, a processivity factor of replicative DNA polymerases, onto primed DNA templates. The central hole of the PCNA homo-trimeric ring encircles doublestranded DNA, so that DNA polymerases can operate for DNA synthesis with PCNA along a DNA template. The Pyrococcus furiosus RFC (PfuRFC) consists of a small subunit (RFCS, 37kDa) and a large subunit (RFCL, 55kDa), which show significant sequence identity to the eukaryotic homologs. The C-terminal region of RFCL has an acidic cluster of about 30 amino acids, which consists mainly of glutamic acid residues, and a following basic cluster of 10 amino acids, which consists mainly of lysine residues. These clusters of charged amino acids, which precede the C-terminal consensus sequence, PIP (PCNA interacting protein)-box, are conserved in several archaeal RFCLs. The series of mutant PfuRFC containing the C-terminal deletions in RFCL were constructed. The mutational analyses showed that the charged cluster is not essential for loading of PCNA onto DNA. However, the region containing the basic cluster is important for the stable ternary (RFC-PCNA-DNA) complex formation.  相似文献   

4.
Proliferating cell nuclear antigen (PCNA) is the sliding clamp that is essential for the high processivity of DNA synthesis during DNA replication. Pyrococcus furiosus, a hyperthermophilic archaeon, has at least two DNA polymerases, polymerase BI (PolBI) and PolD. Both of the two DNA polymerases interact with the archaeal P. furiosus PCNA (PfuPCNA) and perform processive DNA synthesis in vitro. This phenomenon, in addition to the fact that both enzymes display 3'-5' exonuclease activity, suggests that both DNA polymerases work in replication fork progression. We demonstrated here that both PolBI and PolD functionally interact with PfuPCNA at their C-terminal PIP boxes. The mutant PolBI and PolD enzymes lacking the PIP-box sequence do not respond to the PfuPCNA at all in an in vitro primer extension reaction. This is the first experimental evidence that the PIP-box motif, located at the C termini of the archaeal DNA polymerases, is actually critical for PCNA binding to form a processive DNA-synthesizing complex.  相似文献   

5.
Ko R  Bennett SE 《DNA Repair》2005,4(12):239-1431
Uracil residues arise in DNA by the misincorporation of dUMP in place of dTMP during DNA replication or by the deamination of cytosine in DNA. Uracil-DNA glycosylase initiates DNA base excision repair of uracil residues by catalyzing the hydrolysis of the N-glycosylic bond linking the uracil base to deoxyribose. In human cells, the nuclear form of uracil-DNA glycosylase (UNG2) contains a conserved PCNA-binding motif located at the N-terminus that has been implicated experimentally in binding PCNA. Here we use purified preparations of UNG2 and PCNA to demonstrate that UNG2 physically associates with PCNA. UNG2 co-eluted with PCNA during size exclusion chromatography and bound to a PCNA affinity column. Association of UNG2 with PCNA was abolished by the addition of 100 mM NaCl, and significantly decreased in the presence of 10 mM MgCl(2). The functional significance of the UNG2.PCNA association was demonstrated by UNG2 activity assays. Addition of PCNA (30-810 pmol) to standard uracil-DNA glycosylase reactions containing linear [uracil-(3)H]DNA stimulated UNG2 catalytic activity up to 2.6-fold. UNG2 activity was also stimulated by 7.5 mM MgCl(2). The stimulatory effect of PCNA was increased by the addition of MgCl(2); however, the dependence on PCNA concentration was the same, indicating that the effects of MgCl(2) and PCNA on UNG2 activity occurred by independent mechanisms. Loading of PCNA onto the DNA substrate was required for stimulation, as the activity of UNG2 on circular DNA substrates was not affected by the addition of PCNA. Addition of replication factor C and ATP to reactions containing 90 pmol of PCNA resulted in two-fold stimulation of UNG2 activity on circular DNA.  相似文献   

6.
During normal DNA replication, the proliferating cell nuclear antigen (PCNA) enhances the processivity of DNA polymerases at the replication fork. When DNA damage is encountered, PCNA is monoubiquitinated on Lys-164 by the Rad6-Rad18 complex as the initiating step of translesion synthesis. DNA damage bypass by the translesion synthesis polymerase Rev1 is enhanced by the presence of ubiquitinated PCNA. Here we have carried out a mutational analysis of Rev1, and we have identified the functional domain in the C terminus of Rev1 that mediates interactions with PCNA. We show that a unique motif within this domain binds the ubiquitin moiety of ubiquitinated PCNA. Point mutations within this ubiquitin-binding motif of Rev1 (L821A,P822A,I825A) abolish its functional interaction with ubiquitinated PCNA in vitro and strongly attenuate damage-induced mutagenesis in vivo. Taken together, these studies suggest a specific mechanism by which the interaction between Rev1 and ubiquitinated PCNA is stabilized during the DNA damage response.  相似文献   

7.
J Q Zhou  H He  C K Tan  K M Downey    A G So 《Nucleic acids research》1997,25(6):1094-1099
DNA polymerase delta is usually isolated as a heterodimer composed of a 125 kDa catalytic subunit and a 50 kDa small subunit of unknown function. The enzyme is distributive by itself and requires an accessory protein, the proliferating cell nuclear antigen (PCNA), for highly processive DNA synthesis. We have recently demonstrated that the catalytic subunit of human DNA polymerase delta (p125) expressed in baculovirus-infected insect cells, in contrast to the native heterodimeric calf thymus DNA polymerase delta, is not responsive to stimulation by PCNA. To determine whether the lack of response to PCNA of the recombinant catalytic subunit is due to the absence of the small subunit or to differences in post-translational modification in insect cells versus mammalian cells, we have co-expressed the two subunits of human DNA polymerase delta in insect cells. We have demonstrated that co-expression of the catalytic and small subunits of human DNA polymerase delta results in formation of a stable, fully functional heterodimer, that the recombinant heterodimer, similar to native heterodimer, is markedly stimulated (40- to 50-fold) by PCNA and that the increase in activity seen in the presence of PCNA is the result of an increase in processivity. These data establish that the 50 kDa subunit is essential for functional interaction of DNA polymerase delta with PCNA and for highly processive DNA synthesis.  相似文献   

8.
During DNA replication and repair, many proteins bind to and dissociate in a highly specific and ordered manner from proliferating cell nuclear antigen (PCNA). We describe a combined approach of in silico searches at the genome level and combinatorial peptide synthesis to investigate the binding properties of hundreds of short PCNA-interacting peptides (PIP-peptides) to archaeal and eukaryal PCNAs. Biological relevance of our combined approach was demonstrated by identification an inactive complex of Pyrococcus abyssi ribonuclease HII with PCNA. Furthermore we show that PIP-peptides interact with PCNA largely in a sequence independent manner. Our experimental approach also identified many so far unidentified PCNA interacting peptides in a number of human proteins.  相似文献   

9.
The interaction between proliferating cell nuclear antigen (PCNA) and DNA polymerase delta is essential for processive DNA synthesis during DNA replication/repair; however, the identity of the subunit of DNA polymerase delta that directly interacts with PCNA has not been resolved until now. In the present study we have used reciprocal co-immunoprecipitation experiments to determine which of the two subunits of core DNA polymerase delta, the 125-kDa catalytic subunit or the 50-kDa small subunit, directly interacts with PCNA. We found that PCNA co-immunoprecipitated with human p50, as well as calf thymus DNA polymerase delta heterodimer, but not with p125 alone, suggesting that PCNA directly interacts with p50 but not with p125. A PCNA-binding motif, similar to the sliding clamp-binding motif of bacteriophage RB69 DNA polymerase, was identified in the N terminus of p50. A 22-amino acid oligopeptide containing this sequence (MRPFL) was shown to bind PCNA by far Western analysis and to compete with p50 for binding to PCNA in co-immunoprecipitation experiments. The binding of p50 to PCNA was inhibited by p21, suggesting that the two proteins compete for the same binding site on PCNA. These results establish that the interaction of PCNA with DNA polymerase delta is mediated through the small subunit of the enzyme.  相似文献   

10.
DNA ligase IV is an essential protein that functions in DNA non-homologous end-joining, the major mechanism that rejoins DNA double-strand breaks in mammalian cells. LIG4 syndrome represents a human disorder caused by mutations in DNA ligase IV that lead to impaired but not ablated activity. Thus far, five conserved motifs in DNA ligases have been identified. We previously reported G469E as a mutational change in a LIG4 syndrome patient. G469 does not lie in any of the previously reported motifs. A sequence comparison between DNA ligases led us to identify residues 468-476 of DNA ligase IV as a further conserved motif, designated motif Va, present in eukaryotic DNA ligases. We carried out mutational analysis of residues within motif Va examining the impact on adenylation, double-stranded ligation, and DNA binding. We interpret our results using the DNA ligase I:DNA crystal structure. Substitution of the glycine at position 468 with an alanine or glutamic acid severely compromises protein activity and stability. Substitution of G469 with an alanine or glutamic acid is better tolerated but still impacts upon activity and protein stability. These finding suggest that G468 and G469 are important for protein stability and provide insight into the hypomorphic nature of the G469E mutation identified in a LIG4 syndrome patient. In contrast, residues 470, 473 and 476 within motif Va can be changed to alanine residues without any impact on DNA binding or adenylation activity. Importantly, however, such mutational changes do impact upon double-stranded ligation activity. Considered in light of the DNA ligase I:DNA crystal structure, our findings suggest that residues 470-476 function as part of a molecular pincer that maintains the DNA in a conformation that is required for ligation.  相似文献   

11.
Proliferating cell nuclear antigen (PCNA) plays an essential role in nucleic acid metabolism as a component of the DNA replication and DNA repair machinery. As such, PCNA interacts with many proteins that have a sequence motif termed the PCNA interacting motif (PIM) and also with proteins lacking a PIM. Three regions in human and rat DNA polymerases beta (beta-pol) that resemble the consensus PIM were identified, and we show here that beta-polymerase and PCNA can form a complex both in vitro and in vivo. Immunoprecipitation experiments, yeast two-hybrid analysis, and overlay binding assays were used to examine the interaction between the two proteins. Competition experiments with synthetic PIM-containing peptides suggested the importance of a PIM in the interaction, and studies of a beta-polymerase PIM mutant, H222A/F223A, demonstrated that this alteration blocked the interaction with PCNA. The results indicate that at least one of the PIM-like sequences in beta-polymerase appears to be a functional PIM and was required in the interaction between beta-polymerase and PCNA.  相似文献   

12.
In mammalian cells, DNA replication occurs at discrete nuclear sites termed replication factories. Here we demonstrate that DNA ligase I and the large subunit of replication factor C (RF-C p140) have a homologous sequence of approximately 20 amino acids at their N-termini that functions as a replication factory targeting sequence (RFTS). This motif consists of two boxes: box 1 contains the sequence IxxFF whereas box 2 is rich in positively charged residues. N-terminal fragments of DNA ligase I and the RF-C large subunit that contain the RFTS both interact with proliferating cell nuclear antigen (PCNA) in vitro. Moreover, the RFTS of DNA ligase I and of the RF-C large subunit is necessary and sufficient for the interaction with PCNA. Both subnuclear targeting and PCNA binding by the DNA ligase I RFTS are abolished by replacement of the adjacent phenylalanine residues within box 1. Since sequences similar to the RFTS/PCNA-binding motif have been identified in other DNA replication enzymes and in p21(CIP1/WAF1), we propose that, in addition to functioning as a DNA polymerase processivity factor, PCNA plays a central role in the recruitment and stable association of DNA replication proteins at replication factories.  相似文献   

13.
The importance of the interdomain connector loop and of the carboxy-terminal domain of Saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA) for functional interaction with DNA polymerases delta (Poldelta) and epsilon (Pol epsilon) was investigated by site-directed mutagenesis. Two alleles, pol30-79 (IL126,128AA) in the interdomain connector loop and pol30-90 (PK252,253AA) near the carboxy terminus, caused growth defects and elevated sensitivity to DNA-damaging agents. These two mutants also had elevated rates of spontaneous mutations. The mutator phenotype of pol30-90 was due to partially defective mismatch repair in the mutant. In vitro, the mutant PCNAs showed defects in DNA synthesis. Interestingly, the pol30-79 mutant PCNA (pcna-79) was most defective in replication with Poldelta, whereas pcna-90 was defective in replication with Pol epsilon. Protein-protein interaction studies showed that pcna-79 and pcna-90 failed to interact with Pol delta and Pol epsilon, respectively. In addition, pcna-90 was defective in interaction with the FEN-1 endo-exonuclease (RTH1 product). A loss of interaction between pcna-79 and the smallest subunit of Poldelta, the POL32 gene product, implicates this interaction in the observed defect with the polymerase. Neither PCNA mutant showed a defect in the interaction with replication factor C or in loading by this complex. Processivity of DNA synthesis by the mutant holoenzyme containing pcna-79 was unaffected on poly(dA) x oligo(dT) but was dramatically reduced on a natural template with secondary structure. A stem-loop structure with a 20-bp stem formed a virtually complete block for the holoenzyme containing pcna-79 but posed only a minor pause site for wild-type holoenzyme, indicating a function of the POL32 gene product in allowing replication past structural blocks.  相似文献   

14.
The yeast two-hybrid screening method was used to identify novel proteins that associate with human DNA polymerase delta (pol delta). Two baits were used in this study. These were the large (p125) and small (p50) subunits of the core pol delta heterodimer. p50 was the only positive isolated with p125 as the bait. Two novel protein partners, named PDIP38 and PDIP46, were identified from the p50 screen. In this study, the interaction of PDIP38 with pol delta was further characterized. PDIP38 encodes a protein of 368 amino acids whose C terminus is conserved with the bacterial APAG protein and with the F box A protein. It was found that PDIP38 also interacts with proliferating cell nuclear antigen (PCNA). The ability of PDIP38 to interact with both the p50 subunit of pol delta and with PCNA was confirmed by pull-down assays using glutathione S-transferase (GST)-PDIP38 fusion proteins. The PCNA-PDIP38 interaction was also demonstrated by PCNA overlay experiments. The association of PDIP38 with pol delta was shown to occur in calf thymus tissue and mammalian cell extracts by GST-PDIP38 pull-down and coimmunoprecipitation experiments. PDIP38 was associated with pol delta isolated by immunoaffinity chromatography. The association of PDIP38 with pol delta could also be demonstrated by native gel electrophoresis.  相似文献   

15.
Uchiyama Y  Suzuki Y  Sakaguchi K 《Planta》2008,227(6):1233-1241
In plants, there are no DNA polymerase β (Pol β) and DNA ligase III (Lig3) genes. Thus, the plant short-patch base excision repair (short-patch BER) pathway must differ considerably from that in mammals. We characterized the rice (Oryza Sativa L. cv. Nipponbare) homologue of the mammalian X-ray repair cross complementing 1 (XRCC1), a well-known BER protein. The plant XRCC1 lacks the N-terminal domain (NTD) which is required for Pol β binding and is essential for mammalian cell survival. The recombinant rice XRCC1 (OsXRCC1) protein binds single-stranded DNA (ssDNA) as well as double-stranded DNA (dsDNA) and also interacts with rice proliferating cell nuclear antigen (OsPCNA) in a pull-down assay. Through immunoprecipitation, we demonstrated that OsXRCC1 forms a complex with PCNA in vivo. OsXRCC1 mRNA was expressed in all rice organs and was induced by application of bleomycin, but not of MMS, H2O2 or UV-B. Bleomycin also increased the fraction of OsXRCC1 associated with chromatin. These results suggest that OsXRCC1 contributes to DNA repair pathways that differ from the mammalian BER system.  相似文献   

16.
The DNA polymerase accessory factor proliferating cell nuclear antigen (PCNA) has been caught in interaction with an ever increasing number of proteins. To characterize the sites and functions of some of these interactions, we constructed four mutants of human PCNA and analysed them in a variety of assays. By targeting loops on the surface of the PCNA trimer and changing three or four residues at a time to alanine, we found that a region including part of the domain-connecting loop of PCNA and loops on one face of the trimer, close to the C-termini, is involved in binding to all of the following proteins: DNA polymerase delta, replication factor C, the flap endonuclease Fen1, the cyclin dependent kinase inhibitor p21 and DNA ligase I. An inhibition of DNA ligation caused by the interaction of PCNA with DNA ligase I was found, and we show that DNA ligase I and Fen1 can inhibit DNA synthesis by DNA polymerase delta/PCNA. We demonstrate that PCNA must be located below a 5' flap on a forked template to stimulate Fen1 activity, and considering the interacting region on PCNA for Fen1, this suggests an orientation for PCNA during DNA replication with the C-termini facing forwards, in the direction of DNA synthesis.  相似文献   

17.
The formation of a complex between DNA polymerase delta (pol delta) and its sliding clamp, proliferating cell nuclear antigen (PCNA), is responsible for the maintenance of processive DNA synthesis at the leading strand of the replication fork. In this study, the ability of the p125 catalytic subunit of DNA polymerase delta to engage in protein-protein interactions with PCNA was established by biochemical and genetic methods. p125 and PCNA were shown to co-immunoprecipitate from either calf thymus or HeLa extracts, or when they were ectopically co-expressed in Cos 7 cells. Because pol delta is a multimeric protein, this interaction could be indirect. Thus, rigorous evidence was sought for a direct interaction of the p125 catalytic subunit and PCNA. To do this, the ability of recombinant p125 to interact with PCNA was established by biochemical means. p125 co-expressed with PCNA in Sf9 cells was shown to form a physical complex that can be detected on gel filtration and that can be cross-linked with the bifunctional cross-linking agent Sulfo-EGS (ethylene glycol bis (sulfosuccinimidylsuccinate)). An interaction between p125 and PCNA could also be demonstrated in the yeast two hybrid system. Overlay experiments using biotinylated PCNA showed that the free p125 subunit interacts with PCNA. The PCNA overlay blotting method was also used to demonstrate the binding of synthetic peptides corresponding to the N2 region of pol delta and provides evidence for a site on pol delta that is involved in the protein-protein interactions between PCNA and pol delta. This region contains a sequence that is a potential member of the PCNA binding motif found in other PCNA-binding proteins. These studies provide an unequivocal demonstration that the p125 subunit of pol delta interacts with PCNA.  相似文献   

18.
19.
Proliferating cell nuclear antigen (PCNA) plays an essential role in DNA replication, repair, and cell cycle control. PCNA is a homotrimeric ring that, when encircling DNA, is not easily extractable. Consequently, the dynamics of protein-protein interactions established by PCNA at DNA replication sites is not well understood. We have used DNase I to release DNA-bound PCNA together with replication proteins including the p125-catalytic subunit of DNA polymerase delta (p125-pol delta), DNA ligase I, cyclin A, and cyclin-dependent kinase 2 (CDK2). Interaction with these proteins was investigated by immunoprecipitation with antibodies binding near the interdomain connector loop or to the C-terminal domain of PCNA, respectively, or with antibodies to p125-pol delta or DNA ligase I. PCNA interaction with p125-pol delta or DNA ligase I was detected only by the latter antibodies, and found to be mutually exclusive. In contrast, antibodies to PCNA co-immunoprecipitated only CDK2. A GST-p21(waf1/cip1) C-terminal peptide displaced p125-pol delta and DNA ligase I, but not CDK2, from PCNA. These results suggest that PCNA trimers bound to DNA during the S phase are organized as distinct pools able to bind selectively different partners. Among them, p125-pol delta and DNA ligase I interact with PCNA in a mutually exclusive manner.  相似文献   

20.
Antibodies against the proliferating cell nuclear antigen (PCNA) was first discovered in the sera of systemic lupus erythematosus (SLE) patients. However, the reactivity and specificity of anti-PCNA autoantibodies are still unclear. To investigate the property of anti-PCNA autoantibodies, we conducted an ELISA screening of the anti-PCNA autoantibodies in sera of SLE patients. Eighteen out of 191 SLE sera were found to be positive for anti-PCNA antibodies giving a frequency of nearly 10%. Among the positive sera, a sample with the highest titer of anti-PCNA autoantibody preferentially recognizes the wild-type PCNA as compared to the Y114A mutation which contains a single amino acid substitution at 114 and fails to form the toroidal structure. Moreover, the autoantibody purified from this serum identifies only the free PCNA in crude mammalian cell extracts but not other associated cellular components. This finding raises a possibility that immunostaining with the human anti-PCNA autoantibodies in previous studies might have only partially PCNAs in tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号