首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antinociceptive activity of a novel buprenorphine analogue   总被引:2,自引:0,他引:2  
HS-599 is a didehydroderivative of buprenorphine that displays high affinity and good selectivity for mu-opioid receptors. We studied its antinociceptive properties after s.c. injection in mice with the tail-flick and hot-plate tests. In the tail-flick test HS-599 (AD50 = 0.2801 micromol/kg s.c.) behaved as a full agonist and was twice as potent as buprenorphine (AD50=0.4569 micromol/kg s.c.) and 50 times more potent than morphine (AD50 = 13.3012 micromol/kg s.c.). Whereas the mu-opioid receptor antagonists naloxone (1-10 mg/kg s.c.) and naltrexone (5-15 mg/kg s.c.) antagonized HS-599 induced analgesia, the delta-opioid receptor antagonist naltrindole (20 mg/kg s.c.) and the kappa-opioid receptor antagonist nor-binaltorphimine (20 mg/kg s.c.) did not. With the hot-plate test at 50 degrees C, HS-599 (AD50 = 0.0359 micromol/kg s.c.) was a full agonist about 130 times more potent than morphine (AD50 = 4.8553 micromol/kg s.c.). With a high intensity nociceptive stimulus (55 degrees C) HS-599 (AD50 = 1.0382 micromol/kg s.c.) remained 7 times more potent than morphine (AD50 = 7.0210 micromol/kg s.c.) but never exceeded the 55% of the maximum possible effect, behaving as a partial agonist able to antagonize morphine antinociception in a dose-dependent manner. HS-599 promises to be a potent and safe new analgesic, preferentially acting at spinal level.  相似文献   

2.
Uzbay IT  Cinar MG  Aytemir M  Tuglular I 《Life sciences》1999,64(15):1313-1319
The effects of tianeptine, a novel and unusual tricyclic antidepressant drug, on tail-flick and hot-plate tests, which are two thermal analgesia evaluating methods, have been investigated in mice. Tianeptine (5 and 10 mg/kg), para-chlorophenylalanine (pCPA) (100 mg/kg) and a combination of pCPA and tianeptine (10 mg/kg) or saline were injected to mice intraperitoneally. pCPA (100 mg/kg) was injected 24 h before tianeptine or saline treatment when it was combined with tinaeptine (10 mg/kg) or tested alone. The tail-flick latencies and hot-plate reaction times of the mice were measured between 15th and 180th minutes following injections. Tianeptine (10 mg/kg) exhibited a significant antinociceptive activity that could be measured by both tests as compared to groups which were treated with saline or pCPA alone between 15th and 180th min of the observation period. The lower dose of tianeptine (5 mg/kg) or pCPA (100 mg/kg) did not produce any significant changes on tail-flick latency or hot-plate reaction time of the mice. However, pretreatment with pCPA completely blocked the antinociceptive effect induced by tianeptine (10 mg/kg) in both tests used in the present study. Furthermore, tianeptine (10 mg/kg) did not cause any significant impairment effects on rotarod performance of the mice. Our results suggested that tianeptine has a prominent thermal antinociceptive activity in mice and that increased serotonergic activity may be responsible for the analgesic effect of tianeptine.  相似文献   

3.
Peptides normally do not cross the blood-brain barrier (BBB). Previously, it has been shown that the hexapeptide enkephalin analogue dalargin with polysorbate-80-coated nanoparticles (DAL/NP) can be transported across the BBB and is able to exhibit an antinociceptive effect in mice. In the present study, the circadian time and dose dependencies of the antinociceptive effect of different dalargin preparations were investigated. The active preparation (DAL/NP, 5 mg/kg, 10 mg/kg), as well as a dalargin solution in phosphate buffered saline (DAL/SOL, 10 mg/kg) were injected intravenously to groups of 10-12 inbred DBA/2 mice at 12 different circadian times; mice were synchronized to a light-dark (LD) 12:12 regimen. The antinociceptive effect was determined 15 minutes postinjection by the hot-plate test. Experiments with DAL/NP were repeated using the tail-flick test system at two selected times (08:00 and 20:00) to test for dose dependency (2.5, 5, 7.5, 10 mg/kg). Hot-plate latencies were rhythmic under baseline and after DAL/SOL, with acrophases in the dark phase; DAL/SOL did not influence latency time. In contrast, DAL/NP significantly increased reaction time dose dependency; the maximal possible effect was rhythmic with the 10 mg/kg preparation, with a peak effect in the early light phase. Results were confirmed by the tail-flick test. The experiments demonstrate that an enkephalin analogue coated with nanoparticles can easily cross the BBB and is able to display a dose- and time-dependent antinociceptive effect.  相似文献   

4.
Pang CS  Tsang SF  Yang JC 《Life sciences》2001,68(8):943-951
The possible analgesic effect of melatonin was investigated in young male ICR mice. The formalin test which elicits typically 2 phases of pain response, the acute (first) phase and tonic (second) phase, was used. The test was performed in the late light period when the mice have been reported to be more sensitive to pain. Compared to control mice, no significant difference in nociceptive response was observed when melatonin was injected intraperitoneally at doses of 0.1, 5, and 20, mg/kg body weight. The combined effects of melatonin with diazepam and/or morphine, were also investigated. Melatonin, injected at 20 mg/kg 15 min before formalin test, significantly increased the antinociceptive response of diazepam (1 mg/kg) or morphine (5 mg/kg) in the second phase. In addition, when melatonin was given at 20 mg/kg together with diazepam and morphine, antinociceptive responses in both the first and second phase were increased. These data indicate the synergistic analgesia effect of melatonin with morphine and diazepam and suggest the possible involvement of melatonin as an adjunct medicine for pain patients.  相似文献   

5.
Mitragynine is an indole alkaloid isolated from the Thai medicinal plant Mitragyna speciosa. We previously reported the morphine-like action of mitragynine and its related compounds in the in vitro assays. In the present study, we investigated the opioid effects of 7-hydroxymitragynine, which is isolated as its novel constituent, on contraction of isolated ileum, binding of the specific ligands to opioid receptors and nociceptive stimuli in mice. In guinea-pig ileum, 7-hydroxymitragynine inhibited electrically induced contraction through the opioid receptors. Receptor-binding assays revealed that 7-hydroxymitragynine has a higher affinity for micro-opioid receptors relative to the other opioid receptors. Administration of 7-hydroxymitragynine (2.5-10 mg/kg, s.c.) induced dose-dependent antinociceptive effects in tail-flick and hot-plate tests in mice. Its effect was more potent than that of morphine in both tests. When orally administered, 7-hydroxymitragynine (5-10 mg/kg) showed potent antinociceptive activities in tail-flick and hot-plate tests. In contrast, only weak antinociception was observed in the case of oral administration of morphine at a dose of 20 mg/kg. It was found that 7-hydroxymitragynine is a novel opioid agonist that is structurally different from the other opioid agonists, and has potent analgesic activity when orally administered.  相似文献   

6.
H H Suh  L F Tseng 《Life sciences》1990,46(11):759-765
Antinociceptive tolerance and cross-tolerance to intracerebroventricular (i.c.v.) beta-endorphin, morphine, and DPDPE (D-Pen2-D-Pen5-enkephalin) induced by a prior i.c.v. administration of beta-endorphin, morphine and DPDPE, respectively, were studied in mice. Acute tolerance was induced by i.c.v. pretreatment with beta-endorphin (0.58 nmol), morphine (6 nmol) and DPDPE (31 nmol) for 120, 180 and 75 min, respectively. Various doses of beta-endorphin, morphine or DPDPE were then injected. The tail-flick and hot-plate tests were used as antinociceptive tests. Pretreatment of mice with beta-endorphin i.c.v. reduced inhibition of the tail-flick and hot-plate responses to i.c.v. administered beta-endorphin, but not morphine and DPDPE. Pretreatment of mice with morphine i.c.v. reduced inhibition of the tail-flick and hot-plate responses to morphine but not beta-endorphin. Pretreatment of mice with DPDPE reduced inhibition of the tail-flick and hot-plate responses to DPDPE but not beta-endorphin. The results indicate that one injection of beta-endorphin, morphine or DPDPE induces acute antinociceptive tolerance to its own distinctive opioid receptor and does not induce cross-tolerance to other opioid agonists with different opioid receptor specificities. The data support the hypothesis that beta-endorphin, morphine and DPDPE produce antinociception by stimulating specific epsilon, mu- and delta-opioid receptors, respectively.  相似文献   

7.
Opioids, when co-administered with L-type calcium channel blockers (L-CCBs) show morphine like higher antinociceptive effect. This antinociceptive effect has been further investigated using a different experimental paradigm. The effect of two different L-CCBs (nifedipine and nimodipine) on morphine-induced antinociception was studied by the tail-flick test (40 min after morphine administration) in adult Wistar rats. A fixed-dose of nimodipine or nifedipine (2 mg/kg, once daily) was combined with a fixed dose of morphine (10 mg/kg, twice daily) for 10 days. Co-administration of L-CCBs significantly increased the antinociceptive effect of morphine, even 12 hr after administration. Also, nimodipine was more effective than nifedipine. Nimodipine was further studied using a higher and escalating doses of morphine (20-30 mg/kg twice daily for 14 days). Nimodipine increased the antinociceptive effect of morphine in the latter part of the study (days nine to fourteen) though significant difference was observed on 11th evening and 12th morning. No obvious adverse effects were observed in the present study. The results show for the first time that nimodipine is more effective than nifedipine and that these L-CCBs continue to be effective, even 12 hr after administration in the tail-flick test.  相似文献   

8.
We have previously demonstrated that the acute administration of morphine increases the level of endogenous substances, which have antinociceptive activity, in cerebrospinal fluid (CSF). The present study was conducted to determine whether other opioid analgesics exert a similar effect. CSF was withdrawn from the cisterna magna of anesthetized rabbits before and after s.c. injections of meperidine, pentazocine, levorphanol and methadone, and was bioassayed for opioid-like activity in the mouse tail-flick and phenylquinone writhing tests. The opioid-like activity of CSF taken 60 min after meperidine (50 mg/kg) was significantly increased in both bioassays, and the CSF level of meperidine was insufficient to account for this effect. Pentazocine (25-75 mg/kg) also significantly increased opioid-like activity in rabbit CSF, but the effects of methadone (5-10 mg/kg) and levorphanol (20 mg/kg) were less marked. Dextrorphan (20 mg/kg), diazepam (10 mg/kg) and pentobarbital (20 mg/kg) administration did not significantly increase opioid-like activity in CSF. It is concluded that the antinociceptive action of some opioid analgesics in rabbits may be mediated in part by the release of endogenous antinociceptive substances.  相似文献   

9.
The experiments on rats have shown that repeated administration of depakin and baclofen induced the development of tolerance to their antinociceptive effect. The animals tolerant to depakin and baclofen were supersensitive to the analgetic effect of morphine and clonidine in tail-flick test. In vocalization test the analgetic effect of clonidine in baclofen- and depakin-tolerant animals was not altered. The antinociceptive effect of morphine under these conditions was reduced significantly in depakin-tolerant rats and was unchanged in baclofen-tolerant animals. The role of opioid and adrenergic mechanisms in GABA-ergic analgesia and in the development of tolerance is discussed.  相似文献   

10.
Neurotensin induced significant antinociceptive activity as measured in a variety of nociceptive tests 10 and 30 min following intracerebroventricular (i.c.v.) injection in mice. The lowest effective peptide doses were 25 ng in the writhing test, 25–50 ng in the tail-flick test, 50–100 ng in the hot-plate test and 2000 ng in the tail electrical stimulation test. The neurotensin related hexapeptide neuromedin N also displayed antinociceptive properties but only in the writhing and tail-flick tests. Furthermore, as compared to neurotensin, the neuromedin effects required higher doses. ED50's for neurotensin and neuromedin in the writhing test were 70 ng and 1070 ng, respectively. Separate or combined injections of the endopeptidase 24.11 (enkephalinase) inhibitor thiorphan (l0μg) and the aminopeptidase inhibitor bestatin (50μg) did not affect tail-flick latencies. In contrast, i.c.v. injection of thiorphan together with an ineffective dose of neurotensin (25 ng) resulted in a significant antinociceptive effect. Bestatin did not modify tail-flick latencies in neurotensin-treated mice whether in the absence or presence of thiorphan. On the contrary, each of these peptidase inhibitors promoted antinociceptive effects of subthreshold doses of neuromedin (lμg) in the tail-flick test. Maximal antinociception was obtained by combining both inhibitors, thus conferring antinociceptive effects to neuromedin doses that were as low as 10 ng. Naloxone (0.5–2 mg/kg, s.c.) did not significantly reduced the antinociceptive effects of combinations of neurotensin and thiorphan and of neuromedin, thiorphan and bestatin. The data show that both neurotensin and neuromedin elicit analgesia in mice through an opiate independent mechanism. Furthermore, like enkephalin, neuromedin is readily degraded by brain endopeptidase 24.11 and bestatin sensitive aminopeptidase(s), whereas the resistance of neurotensin to aminopeptidase attack confers to this peptide a broader spectrum and longer duration of action than its congener neuromedin.  相似文献   

11.
Involvement of T-type voltage dependent Ca2+ channels (VDCCs) on morphine antinociception, in the development of tolerance and dependence to morphine, and naloxone-precipitated abstinence syndrome in morphine dependent mice was examined by using mibefradil, a T-type VDCCs blocker. Mice were rendered tolerant and dependent on morphine by subcutaneous (s.c.) implantation of a morphine pellet containing 75 mg of morphine base for 72 hr. The tail-flick test was used to assess the nociceptive threshold. Coadministration of acute mibefradil (10 mg/kg, i.p.) with morphine enhanced the antinociceptive effects of acute morphine. Repeated mibefradil administration (10 mg/kg, i.p., just before, 24 and 48 hr after morphine pellet implantation) completely blocked the development of tolerance to the antinociceptive effect of morphine and even by this effect reached supersensitivity to morphine. However, repeated mibefradil treatment did not alter the development of dependence to morphine assessed by the A(50) values of naloxone (s.c.) required to precipitate withdrawal jumping 72 hr after morphine pellet. But, acute mibefradil (10, 30, and 50 mg/kg, i.p.) dose dependently decreased the expression of morphine abstinence syndrome when given directly 30 min prior to naloxone (0,05 mg/kg, s.c.) 72 hr after morphine pellet. These results indicate a critical role of T-type VDCCs in morphine antinociception, the development of tolerance to the antinociceptive effects of morphine and in morphine abstinence syndrome.  相似文献   

12.
The involvement of nitric oxide in the analgesic effects of ketamine   总被引:11,自引:0,他引:11  
We investigated the contribution of NO-cyclic GMP (cGMP) pathway to the antinociceptive effects of ketamine in mice by using the nitric oxide synthase inhibitor, nitro(g)- L-arginine methyl ester (L-NAME). Intraperitoneal (i.p.) (1, 5 or 10 mg/kg) or intrathecal (i.th.) (10, 30 or 60 microg/mouse) administration of ketamine produced dose-dependent antinociceptive effects in the acetic acid-induced writhing and formalin tests but not in the tail-flick nor in hot-plate tests. Pretreatment of mice with L-NAME (10 mg/kg, i.p.) which produced no antinociception on its own, significantly inhibited the antinociceptive effect of ketamine (1, 5 or 10 mg/kg, i.p.). However, L-NAME (30 microg/mouse) was given intrathecally, it neither modified the antinociceptive effect of i.th. ketamine (10, 30 or 60 microg/mouse) nor did it produce an antinociceptive effect alone. These data suggest that the activation of the NO-cGMP pathway probably at the supraspinal level, but not spinal level, contributes to the antinociceptive effects of ketamine.  相似文献   

13.
Morphine is widely used to treat chronic pain, however its utility is hindered by the development of tolerance to its analgesic effects. The aim of this study was to investigate effects of fluoxetine, a specific serotonin (5-HT) reuptake inhibitor, and LY 367265, an inhibitor of the 5-HT transporter and 5-HT2A receptor antagonist, on tolerance induced to the analgesic effect of morphine in rats. The study was carried out on male Wistar Albino rats (weighing 170-190 g). To constitute morphine tolerance, animals received morphine (50 mg/kg; s.c.) once daily for 3 days. After last dose of morphine, injected on day 4, morphine tolerance was evaluated. The analgesic effects of fluoxetine (10 mg/ kg; i.p.), LY 367265 (3 mg/kg; i.p.) and morphine were considered at 30-min intervals by tail-flick and hot-plate tests. The results showed that fluoxetine and LY 367265 significantly attenuated the development and expression of morphine tolerance. The maximal antinociceptive effects were obtained 30 min after administration of fluoxetine and 60 min after administration of LY 367265. In conclusion, we observed that co-injection of morphine with fluoxetine and LY 367265 increased the analgesic effects of morphine and delayed development of tolerance to morphine analgesia.  相似文献   

14.
Cholera toxin, an agent that impairs the function of Gs transducer proteins, was injected (0.5 microgram/mouse, icv) and the antinociceptive activity of opioids and clonidine was studied 24h later in the tail-flick test. In these animals, an enhancement of the analgesic potency of morphine, beta-endorphin and clonidine could be observed. Cholera toxin did not modify the antinociception evoked by the enkephalin derivatives DAGO and DADLE. Pertussis toxin that catalyses the ADP ribosylation of alpha subunits of Gi/Go regulatory proteins was given icv (0.5 microgram/mouse). This treatment reduced the analgesic effect of opioids and clonidine. However, while the analgesia elicited by DAGO, DADLE and clonidine was greatly decreased, the effect of morphine and beta-endorphin was reduced to a moderate extent. It is concluded that Gi/Go regulatory proteins functionally coupled to opioid and alpha 2 receptors are implicated in the efficacy displayed by opioids and clonidine to produce supraspinal analgesia. Moreover, these two receptors are susceptible to regulation by a process that might involve a Gs protein.  相似文献   

15.
R M Eisenberg 《Life sciences》1982,30(19):1615-1623
Short-term tolerance to morphine, which can be demonstrated in as little as 3 hours after a single administration of the opiate, was examined in animals chronically pretreated with diazepam, phenobarbital, or amphetamine. Tail-flick latency in mice and changes in plasma corticosterone in rats were the parameters tested in these experiments. Rats primed with either saline or morphine, 10 mg/kg, were injected 3 hours subsequently with morphine, 5 mg/kg. Those primed with saline showed the characteristic plasma corticosterone elevation following morphine, when serial blood samples were examined, whereas those previously treated with morphine did not. Mice were primed with saline or either of two doses of morphine, 30 or 100 mg/kg, 3.5 hours prior to estimation of tail-flick latency and ED50 determinations. Mice primed with either dose of morphine had significantly higher ED50's than those primed with saline. Chronic treatment with diazepam or amphetamine in either species did not significantly alter short-term tolerance development by either parameter. However, with phenobarbital pretreatment, the plasma corticosterone response was attenuated and short-term tolerance to morphine's analgesic effects did not occur. Further studies in morphine-pelleted mice showed that analgesic tolerance occurred similarly in all groups. This suggests that barbiturates may delay the process.  相似文献   

16.
The nociceptive effect was measured using withdrawal latency in tail flick test in mice rendered diabetic by administering streptozotocin (200 mg/kg, i.p.). The antinociceptive effect of morphine (4 and 8 mg/kg, s.c.) and cromakalim, a KATP channel opener, (0.3, 1 and 2 micrograms, i.c.v.) was significantly reduced in diabetic mice. Moreover, co-administration of cromakalim(0.3 microgram) did not alter the reduced antinociceptive effect of morphine(4 mg/kg) in diabetic mice. Spleenectomy in diabetic mice restored the decrease in antinociceptive effect of morphine and cromakalim. Multiple dose treatment with insulin to maintain euglycaemia for 3 days in diabetic mice prevented the decrease in antinociceptive effect of morphine and cromakalim. However, hyperglycaemic tyrode's buffer did not alter the pD2 value of morphine in isolated guinea pig ileum suggesting that hyperglycaemia does not interfere with mu receptor mediated responses in vitro. The results suggest that hyperglycaemia induced decrease in antinociceptive effect of morphine and cromakalim may be due to alteration in KATP channels. Some unknown factor from spleen in diabetic mice may be responsible for this alteration in KATP channels in diabetic mice.  相似文献   

17.
It has been shown that morphine increases 5alpha-reductase enzyme activity in the rat central nervous system; however importance of this finding on morphine analgesia, tolerance and dependence has not been reported. In the present study, we investigated inhibition of 5alpha-reductase enzyme on morphine effects using finasteride. To determine whether the 5alpha-reductase enzyme interact with morphine analgesia, finasteride (5 mg/kg, i.p.) was administrated with morphine (5 and 7 mg/kg, i.p.). The tail-flick test was used to assess the nociceptive threshold, before and 15, 30, 45, 60 and 90 min after drug administration. In tolerance experiments, morphine 20 mg/kg was injected i.p., twice daily for 4 days. The development and expression of dependence were assessed in the naloxone precipitation test 5 days after the morphine (20-30 mg/kg, i.p.) administration. We found that finasteride could potentiate the antinociceptive effect of morphine. In addition, chronic finasteride administration effectively blocked development of tolerance and dependence to morphine. Following chronic morphine administration, single dose injection of finasteride failed to reverse tolerance but prevented naloxone precipitate withdrawal syndrome. Therefore, it was concluded that there is a functional relationship between 5alpha-reductase enzyme and morphine.  相似文献   

18.
The intracerebroventricular (i.c.v.) injection of antisera directed against different sequences of Gs alpha to mice enhanced the antinociceptive potency of the opioids morphine, beta h-endorphin-(1-31) and of the alpha 2-agonist clonidine when studied 24 h later in the tail-flick test. The activity of DAGO, DADLE, DPDPE and [D-Ala2]-Deltorphin II remained unchanged after that treatment. Cholera toxin (0.5 microgram/mouse, i.c.v.), agent that impairs the receptor regulation of Gs transducer proteins promoted comparable changes in the supraspinal analgesia induced by these substances. Six days after a single i.c.v. injection (0.5 microgram/mouse) of pertussis toxin the antinociceptive activity of all the opioids and clonidine appeared diminished. It is concluded that opioids and clonidine promote analgesia after binding to receptors functionally coupled to Gi/G(o) proteins, moreover, the activity of morphine, beta-endorphin and clonidine in this test seems to be counteracted by a process involving activation of Gs alpha transducer proteins.  相似文献   

19.
Previously, we have demonstrated that intrathecally (i.t.) administered corticotropin-releasing factor (CRF) in mice produces stimulus-specific antinociception and modulation of morphine-induced antinociception by mechanisms involving spinal kappa opioid receptors. Recently, we also have found that CRF releases immunoreactive dynorphin A, a putative endogenous kappa opioid receptor agonist, from superfused mice spinal cords in vitro. Dynorphin A administered intracerebroventricularlly (i.c.v.) to mice has been shown to modulate the expression of morphine tolerance. In the present study, the possible modulatory effects of i.t. administered CRF as well as dynorphin A on morphine tolerance were studied in an acute tolerance model. Subcutaneous administration of 100 mg/kg of morphine sulfate (MS) to mice caused an acute tolerance to morphine-induced antinociception. The antinociceptive ED50 of MS was increased from 4.4 mg/kg (naive mice) to 17.9 mg/kg (4 hours after the injection of 100 mg/kg MS). To study the modulatory effects of spinally administered CRF and dynorphin A on the expression of morphine tolerance, CRF and dynorphin A were injected i.t. at 15 min and 5 min, respectively, before testing the tolerant mice by the tail-flick assay. The antinociceptive ED50 of MS in tolerant mice was decreased to 8.8 mg/kg and 7.1 mg/kg, respectively, after i.t. administration of CRF (0.1 nmol) and dynorphin A (0.2 nmol). In contrast, 0.5 nmol of alpha-helical CRF (9-41), a CRF antagonist and 0.4 nmol of norbinaltorphimine, a highly selective kappa opioid receptor antagonist, when administered i.t. at 15 min before the tail-flick test in tolerant mice, increased the antinociceptive ED50 of MS to 56.6 mg/kg and 88.8 mg/kg, respectively. These data confirmed the modulatory effect of dynorphin A on morphine tolerance and suggested that CRF, which releases dynorphin A in several central nervous system regions, also plays a modulatory role in the expression of morphine tolerance.  相似文献   

20.
《Life sciences》1996,59(11):PL133-PL139
The antinociceptive effect of racemic tetrahydropapaveroline (THP), of its two R(+)- and S(−) enantiomers, of 1-2-dehydro-THP and of 1-carboxy-THP was assessed using different pain tests in mice. None of these drugs possessed a significant activity in the hot-plate and tail-flick tests. However, after i.p. injection, they reduced the number of abdominal writhes induced by phenylbenzoquinone, with ED50 values of 51 ± 7, 73 ± 9 and 79 ± 7 mg/kg for the most potent compounds: 1,2-dehydro-THP, ±THP and -THP, respectively. This activity was not antagonized by naloxone (1 mg/Kg, S.c.). However combination of inactive doses of these three compounds (32 mg/Kg, I.p.) and of morphine (0.5 mg/Kg, S.c.) led to a significant antinociceptive effect (83 to 85 % of reduction of the number of writhes). This synergistic potentiation confirmed with the combination of ±THP (16 mg/Kg, I.p.) and morphine (0.5 mg/Kg, S.c.) was totally inhibited by naloxone (1 mg/Kg, S.c.). These results, although excluding a direct agonistic effect of THP derivatives on opiate receptors, suggest an indirect interaction of these drugs with the endogenous opioid system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号