首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant phenols as in vitro inhibitors of glutathione S-transferase(s)   总被引:3,自引:0,他引:3  
Ellagic acid, a commonly occurring plant phenol, was shown to be a potent in vitro inhibitor of GSH-transferase(s) activity. Other plant phenols such as ferrulic acid, caffeic acid and chlorogenic acid also showed a concentration dependent inhibition of GSH-transferase(s) activity. The I50 values of ellagic acid, caffeic acid, chlorogenic acid and ferrulic acid were 8.3 X 10(-5)M, 14.0 X 10(-5)M, 20.0 X 10(-5)M and 22.0 X 10(-5)M respectively, suggesting that ellagic acid is the most potent inhibitor of all the four studied plant phenols. At 55 microM concentration of ellagic acid, a significant inhibition (35-47%) was observed on GSH-transferase activity towards CDNB, p-nitrobenzyl chloride and 1,2-epoxy-3-(p-nitrophenoxy)propane as substrates. Ellagic acid inhibited GSH-transferase(s) activity in a non-competitive manner with respect to CDNB while with respect to GSH it inhibited the enzyme activity in a competitive manner. Other phenolic compounds purpurogallin , quercetin, alizarin and monolactone also showed a concentration dependent inhibition of the enzyme activity with a I50 of 0.8 X 10(-5)M, 1.0 X 10(-5)M, 8.0 X 10(-5)M and 16.0 X 10(-5)M respectively. These inhibitors of GSH-transferase(s) activity should be useful in studying the in vitro enzyme mediated reactions of exogenous and endogenous compounds.  相似文献   

2.
Bradykinin and 22 of its analogs were evaluated for their abilities to inhibit the hydrolysis of [3H]hippurylglycylglycine by purified porcine kidney angiotensin I converting enzyme. The mean inhibitory concentration (IC50) for bradykinin was 1.2 +/- 0.2 X 10(-6) M. Except for Ile-Ser-bradykinin and [Sar4]-bradykinin, none of the kinin analogs were more potent in this regard than bradykinin. Bacitracin, gamma-aminobutyric acid, epsilon-aminocaproic acid, and structurally related compounds were also tested. The IC50 value for bacitracin was 1.9 +/- 0.4 X 10(-4) M, gamma-aminobutyric acid, 83.4 +/- 7.2 mM, and for epsilon-aminocaproic acid, 7.0 +/- 1.4 mM. Compounds were also evaluated for their abilities to prevent 125I-labelled [Tyr1]-kallidin binding to angiotensin I converting enzyme inhibited by EDTA. The IC50 values for bradykinin, bacitracin, gamma-aminobutyric acid, and epsilon-aminocaproic acid were 1.6 +/- 0.3 X 10(-8) M, 2.6 +/- 0.9 X 10(-6) M, greater than 291 mM, and 13.2 +/- 3.9 mM, respectively.  相似文献   

3.
A new series of 12 N(4)-substituted isatin-3-thiosemicarbazones 2a-l has been synthesized, characterized and screened for in vitro cytotoxic, phytotoxic and urease inhibitory effects. All the compounds proved to be active in the brine shrimp bioassay; 2a, 2b, 2d, 2f and 2h-l exhibited a high degree of cytotoxic activity (LD(50) = 1.10 x 10(- 5) M-3.10 x 10(- 5) M). In urease-inhibition assay, compounds 2a, 2b, 2e, 2f, 2h-j and 2l proved to be potent inhibitors displaying relatively much greater inhibition of the enzyme with IC(50) values ranging from 20.6 microM to 50.6 microM. Amongst these, 2a and 2f were found to be the most potent ones exhibiting pronounced inhibition with IC(50) value 20.6 microM. All the synthetic compounds showed weak to moderate (10-40%) phytotoxicity at the highest tested concentration (500 microg/mL) indicating their usefulness as inhibitors of soil ureases.  相似文献   

4.
Novel purine-pyrazole hybrids combining thiazoles, thiazolidinones and rhodanines, were designed and tested as 15-LOX inhibitors, potential anticancer and antioxidant agents. All tested compounds were found to be potent 15-LOX inhibitors with IC50 ranging from 1.76 to 6.12 µM. The prepared compounds were evaluated in vitro against five cancer cell lines: A549 (lung), Caco-2 (colon), PC3 (prostate), MCF-7 (breast) and HepG-2 (liver). Compounds 7b and 8b displayed broad spectrum anticancer activity against the five tested cell lines (IC50 = 18.5–95.39 µM). While, compound 7h demonstrated moderate anticancer activity against lung A549 and colon Caco-2 cell lines. Antioxidant screening revealed that six compounds (5a, 5b, 6b, 7b, 7h and 8b) with IC50 ranging from 0.93 to 14.43 µg/ml were found to be more potent scavengers of 2,2- diphenyl-1-picrylhydrazyl (DPPH) than the reference ascorbic acid with IC50 value of 15.34 µg/ml. Compounds 7b, 7h and 8b, when evaluated for their antioxidant activity, where found to be potent DPPH scavengers. Moreover, compound 7b displayed twice the potency of ascorbic acid as NO scavenger. Docking study was performed to elucidate the possible binding mode of the most active compounds with the active site of 15-LOX enzyme. Collectively, the purine-pyrazole hybrids having thiazoline or thizolidinone moieties (7b, 7h and 8b) constitute a promising scaffold in designing more potent 15-LOX inhibitors with anticancer and antioxidant potential.  相似文献   

5.
A series of pyrazolyl-thiazolinone derivatives (E1-E36) have been designed and synthesized and their biological activities were also evaluated as potential EGFR and HER-2 kinase inhibitors. Thirty-four of the 36 compounds were reported for the first time. Among them, compound 2-(5-(4-bromophenyl)-3-p-tolyl-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-one (E28) displayed the most potent inhibitory activity (IC(50)=0.24μM for EGFR and IC(50)=1.07μM for HER-2). Antiproliferative assay results indicated that compound E28 owned high antiproliferative activity against MCF-7, B16-F10 and HCT-116 in vitro, with IC(50) value of 0.30, 0.54, and 0.70μM, respectively. Docking simulation was further performed to position compound E28 into the EGFR active site to determine the probable binding model. Based on the preliminary results, compound E28 with potent inhibitory activity in tumor growth would be a potential anticancer agent.  相似文献   

6.
Abstract— The effects of divalent metal ions, sulfhydryl reagents, carbonyl trapping reagents, substrate analogs, and organic solvents on purified mouse brain 4-aminobutyrate-2-ketoglutarate transaminase (EC 2.6.1.19) and the subunit structure of this enzyme were studied. Of the metal ions tested, Hg2+ was found to be the most potent inhibitor inhibiting the enzyme 50 percent at a concentration of 0-7 μM. The order of decreasing inhibitory potency for the divalent metal ions was: Hg2+± Cd2+± Zn2+± Cu2+± Co2+± Ba2+± Sr2+± Ni2+± Mn2+± Ca2+± Mg2+. p-Chloromercuribenzoale was the most potent inhibitor among the sulfhydryl reagents tested inhibiting the enzyme to the extent of 50 per cent at 0-5 μM 3-Mercaptopropionic acid was found to be a competitive inhibitor for GABA and non-competitive for 2-ketoglutarate. The Ki, value was estimated to be 13 μM. Aminooxyacetic acid was the most potent inhibitor of the carbonyl trapping agents with a K, value of 0-06 μM. being competitive with GABA and non-competitive with 2-ketoglutarate. Hydroxylamine and hydrazine were the next most potent compounds in this group. Of a series of substrate analogs and metabolites tested, only acetic acid, propionic acid, butyric acid, glutamic acid, adipic acid, pimelic acid and 2-ketoadipic acid inhibited the enzyme to a significant extent. Dioxan inhibited the enzyme 50 per cent at a concentration of 5 per cent (v/v) whereas methanol and ethanol only inhibited 5-10 per cent at 10 per cent (v/v) concentration. A spectrum of the native enzyme at pH 7-2 showed maxima at 278 nm. 330 nm and 411 nm. Treatment of the enzyme with aminooxyacetic acid or 3-mercaptopropionic acid caused the maximum at 411 nm to disappear. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the enzyme revealed two protein bands. The molecular weights of these two subunits were determined to be 53.000 and 58,000, respectively.  相似文献   

7.
A series of aliphatic and aromatic trifluoromethyl ketones has been tested as inhibitors of the antennal esterases of the Egyptian armyworm Spodoptera littoralis, by evaluation of the extent of hydrolysis of [1-3H]-(Z,E)-9, 11-tetradecadienyl acetate (1), a tritiated analog of the major component of the sex pheromone. The most active compounds with a long chain aliphatic structure were 3-octylthio-1,1,1-trifluoropropan-2-one (2) (IC50 0.55 μM) and 1,1,1-trifluorotetradecan-2-one (4) (IC50 1.16 μM). The aromatic compounds were generally less potent inhbitors than the coressponding aromatic ones, although β-naphthyltrifuloromethyl ketone (10) exhibited a remarkable inhibitory activity (IC50 7.9 μM). Compounds 2, 4 and 10 exhibit a competitive inhibition with Ki values of 2.51×10−5 M, 2.98×10−5 M and 2.49×10−4 M, respectively. Some of the trifluoromethyl ketones tested were slow-binding inhibitors and compounds 2 and 10 are described as inhibitors of the antennal esterases of a moth for the first time.  相似文献   

8.
In this study three new classes of linear N-tricyclic compounds, derived by condensation of the quinoline nucleus with 1,2,3-triazole, imidazole or pyrazine, were synthesized, obtaining triazolo[4,5-g]quinolines, imidazo[4,5-g]quinolines and pyrido[2,3-g]quinoxalines, respectively. Title compounds were tested in cell-based assays for cytotoxicity and antiviral activity against RNA viruses representative of the three genera of the Flaviviridae family, that is BVDV (Pestivirus), YFV (Flavivirus) and HCV (Hepacivirus). Quinoline derivatives were also tested against representatives of other RNA virus families containing single-stranded, either positive-sense (ssRNA(+)) or negative-sense (RNA(-)), and double-stranded genomes (dsRNA), as well as against representatives of two DNA virus families. Some quinolines showed moderate, although selective activity against CVB-5, Reo-1 and RSV. However, derivatives belonging to all classes showed activity against BVDV. Among the most potent were the bis-triazoloquinoline 1m, the imidazoquinolines 2e and 2h, and the pyridoquinoxalines 4h, 4j and 5n (EC(50) range 1-5 μM). When tested in a replicon assay, compound 2h was the sole derivative to also display anti-HCV activity (EC(50)=3.1 μM). In enzyme assays, 1m, 2h, 5m and 5n proved to be potent inhibitors of the BVDV RNA-dependent RNA polymerase (RdRp), while only 2h also inhibited the recombinant HCV enzyme.  相似文献   

9.
Three novel 4-subsituted-7-(2'-deoxy-2'-fluoro-4'-azido-β-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidine analogues were designed, synthesized, and tested for their anti-HIV-1 activity. Initial biological studies indicated that among these pyrrolo[2,3-d]pyrimidine ribonucleoside analogues, 4-amino-7-(2'-deoxy-2'-fluoro-4'-azido-β-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidine 10 exhibited the most potent anti-HIV-1 activity (EC(50)=0.5±0.3 μM), while 4-hydroxy-7-(2'-deoxy-2'-fluoro-4'-azido-β-D-ribofuranosyl)pyrrolo[2,3-d] pyrimidine 9 and 4-amino-5-fluoro-7-(2'-deoxy-2'-fluoro-4'-azido-β-D-ribofuranosyl)pyrrolo[2,3-d] pyrimidine 11 showed moderate activity (EC(50)=13±8 and 5.4±0.3 μM, respectively). The cytotoxicity of these compounds has also been assessed. No significant cytotoxicities were found for any of these compounds with concentrations up to 25 μM.  相似文献   

10.
The properties of rat heart peptidase hydrolyzing luliberin were studied. This peptidase was shown to be a sulfhydryl metalloenzyme with m.w. of about 100000. The maximal enzyme activity was observed at neutral values of pH Ca2+ (5 X 10(-6) M) increased the enzyme activity by 50%, thus being indicative of an anomalous dependence of the enzyme activity of substrate concentration. At luliberin concentrations of 10(-7)-10(-6) M the enzyme activation by Ca2+ was considerably reduced and returned to the initial level when the peptide concentration was increased up to 10(-5) M. It was assumed that the peptidase under study is a regulatory enzyme whose activity depends on concentrations of Ca2+ and of the reaction substrate, luliberin.  相似文献   

11.
The synthesis of a series of 5-phenyl substituted 1-methyl-2-pyridones (I) and 4'-substituted biphenyl-4-carboxylic acids (II) as novel A-C ring steroidomimetic inhibitors of 5alpha-reductase (5alphaR) is described. Compounds 1-4 (I) were synthesized by palladium catalyzed cross coupling (Ishikura) reaction between diethyl(3-pyridyl)borane and aryl halides (1b-4b) followed by alpha-oxidation with sodium ferrocyanate of the 1-methyl-pyridinium salt. Inhibitors II (5-18) were obtained either by two successive Friedel-Crafts acylations from biphenyl (5a-10a) followed by saponification to yield the corresponding carboxylic acids (5-10) or by Suzuki cross coupling reaction to give the 4'-substituted biphenyl-4-carbaldehydes 11a-18a. The latter compounds were subjected to a Lindgren oxidation to yield compounds 11-18. The compounds were tested for inhibitory activity toward human and rat 5alphaR1 and 2. The test compounds inhibited 5alphaR, showing a broad range of inhibitory potencies. The best compound in series I was the N-(dicyclohexyl)-4-(1,2-dihydro-1-methyl-2-oxopyrid-5-yl)benzamide 4 exhibiting an IC(50) value for the human type 2 enzyme of 10 microM. In series II, the most active compound toward human type 2 isozyme was the 4'-(dicyclohexyl)acetyl-4-biphenyl carboxylic acid (10; IC(50)=220nM). Both series showed only marginal activity toward the human type 1 isozyme. In conclusion, the biphenyl carboxylic acids (II) are more appropriate for 5alphaR inhibition than the 5-phenyl-1-methyl-2-pyridones (I). Especially the 4'-carbonyl compounds 5-10 represent new lead structures for the development of novel human type 2 inhibitors.  相似文献   

12.
The structure-activity relationships of flavonoids with regard to their inhibitory effects on NADH-cytochrome b5 reductase (E.C. 1.6.2.2), a clinically and toxicologically important enzyme, are not known. In the present study, the inhibitory effects of fourteen selected flavonoids of variable structure on the activity of purified bovine liver cytochrome b5 reductase, which shares a high degree of homology with the human counterpart, were investigated and the relationship between structure and inhibition was examined. Of all the compounds tested, the flavone luteolin was the most potent in inhibiting b5 reductase with an IC50 value of 0.11 μM, whereas naringenin, naringin and chrysin were inactive within the concentration range tested. Most of the remaining flavonoids (morin, quercetin, quercitrin, myricetin, luteolin-7-O-glucoside, (-)-epicatechin, and (+)-catechin) produced a considerable inhibition of enzyme activity with IC50 values ranging from 0.81 to 4.5 μM except apigenin (36 μM), rutin (57 μM) and (+)-taxifolin (IC50 not determined). The magnitude of inhibition was found to be closely related to the chemical structures of flavonoids. Analysis of structure-activity data revealed that flavonoids containing two hydroxyl groups in ring B and a carbonyl group at C-4 in combination with a double bond between C-2 and C-3 produced a much stronger inhibition, whereas substitution of a hydroxyl group at C-3 was associated with a less inhibitory effect. The physiologically relevant IC50 values for most of the flavonoids tested regarding b5 reductase inhibition indicate a potential for significant flavonoid-drug and/or flavonoid-xenobiotic interactions which may have important therapeutic and toxicological outcomes for certain drugs and/or xenobiotics.  相似文献   

13.
Several novel 1-substituted-phenyl beta-carbolines bearing the 2-substituted-1,3,4-oxadiazol-5-yl and 5-substituted-1,2,4-triazol-3-yl groups at C-3 were synthesized and evaluated for their in vitro anticancer activity. The assay results pointed thirteen compounds with growth inhibition effect (GI(50)<100 microM) for all eight different types of human cancer cell lines tested. The beta-carbolines 7a and 7h, bearing the 3-(2-metylthio-1,3,4-oxadiazol-5-yl) group, displayed high selectivity and potent anticancer activity against ovarian cell line with GI(50) values lying in the nanomolar concentration range (GI(50)=10 nM for both compounds). The 1-(N,N-dimethylaminophenyl)-3-(5-thioxo-1,2,4-triazol-3-yl) beta-carboline (8g) was the most active compound, showing particular effectiveness on lung (GI(50)=0.06 microM), ovarian and renal cell lines. The potent anticancer activity presented for synthesized compounds 7a, 7h, and 8g, together with their easiness of synthesis, makes these compounds promising anticancer agents.  相似文献   

14.
A series of long-chain derivatives of chrysin (compounds 322) were synthesized to evaluate for their antiproliferative activities against the human liver cancer cell line HT-29 and EGFR inhibitory activity. Among the compounds tested, compounds hexadecyl 2-(5-hydroxy-4-oxo-2-phenyl-4H-chromen-7-yloxy)acetate (10) and N-hexadecyl 2-(5-hydroxy-4-oxo-2-phenyl-4H-chromen-7-yloxy)acetamide (20) displayed potent EGFR inhibitory activity with IC50 values of 0.048 μM and 0.035 μM), comparable to the positive control erlotinib. Docking simulation of compounds 10 and 20 was carried out to illustrate the binding mode of the molecular into the EGFR active site, and the result suggested that compound 10 and 20 can bind the EGFR kinase well. Thus, compounds 10 and 20 with potent EGFR inhibitory activity would be potential anticancer agents.  相似文献   

15.
A series of novel N-phenylsulfonylnicotinamide derivatives (1-24) have been synthesized and evaluated as potential EGFR tyrosine kinase (TK) inhibitors. Among all the compounds, compound 10 (5-bromo-N-(4-chlorophenylsulfonyl)nicotinamide) showed the most potent growth inhibitory activity against EGFR TK and antiproliferative activity of MCF-7 cancer cell line in vitro, with IC(50) value of 0.09 and 0.07 μM. Docking simulation was performed to insert compound 10 into the EGFR TK active site to determine the probable binding model. Based on the preliminary results, compound 10 with potent inhibitory activity to tumor growth may be a potential anticancer agent.  相似文献   

16.
The present study was designed to investigate conazoles as new antileishmanial agents. Several 3-imidazolylalkyl-indoles were prepared under mild reaction conditions and pharmacomodulation at N1 and C5 of the indole ring and at the level of the alkyl chain (R) was carried out starting from the corresponding 3-formylindoles 7-10. All target imidazolyl compounds 38-52 were evaluated in vitro against Leishmania mexicana promastigotes; ketoconazole, amphotericin B and meglumine antimoniate were used as references. Eight out of fifteen compounds (40,43,44,47,48, 50, 51 and 52) exerted similar activity to ketoconazole, with IC50 values in the range of 2.10-3.30 microg/mL. However the most potent compound, 1-(2-bromobenzyl)-3-(1H-imidazol-1-ylmethyl)-1H-indole (38), exhibited IC50 value (0.011+/-0.003 microg/mL) 270-fold lower than that of ketoconazole. Four compounds (38, 43, 50 and 52) were also tested against intracellular amastigotes of L. mexicana; compound 38 exhibited the highest activity with an IC50 value of 0.018+/-0.004 microg/mL.  相似文献   

17.
Eleven new protolimonoids, chisopanins A-K (1-11), were isolated from the twigs of Chisocheton paniculatus, as well as thirteen known (12-24) protolimonoids. The structures were elucidated on the basis of spectroscopic analysis, X-ray crystallographic analysis, and chemical methods. Chisopanins A and B (1 and 2) possessing uncommon hemiketal tetrahydropyran ring at C-17 showed the most potent inhibitory activities on lipopolysaccharide-stimulated inflammation factor-release with IC(50) values at 5.4 and 7.9 μM for NO, and at 26.9 and 30.7 μM for TNF-α, respectively. In addition, compounds 5-7, 9, 12, 13, and 20 were potent to inhibit NO production with IC(50) value lower than 10 μM.  相似文献   

18.
Anti-Candida activity of four antifungal benzothiazoles   总被引:1,自引:0,他引:1  
Abstract Anti- Candida activity of 6-amino-2- n -pentylthiobenzothiazole (I), benzylester of (6-amino-2-benzothiazolylthio)acetic acid (II) and of 3-butylthio-(1,2,4-triazolo)-2,3-benzothiazole (III) was followed and compared to that of 2-mercaptobenzothiazole (IV). I and II exhibited good activity against the C. albicans yeast form, similar to IV. They were inhibitorily active against other Candida strains, IC50 values being of the order of 10−5 M, which means better activity than IV. Compound I also exhibited inhibitory activity on germ-tube formation and mycelial growth in the C. albicans strains, while II, III and IV were not active in these tests. III was the least active form of the compounds tested, IC50 values being of the order of 10−4 M. All the compounds tested were highly active on a nystatin-resistant C. albicans mutant, with IC50s of the order of 10−6 M−10−5 M.  相似文献   

19.
Structural analogs of atriopeptins (APs) were compared for their ability to activate particulate guanylate cyclase and bind to specific receptors in rat adrenal membranes. All analogs tested increase Vmax without altering the concentration of substrate required for half-maximum activity or the positive coperativity exhibited by the enzyme. Maximum velocities (pmoles of cGMP produced per min per mg protein) achieved in the absence and presence of APs were 128.3 +/- 6.6 and 283.8 +/- 20.6 using Mn2+-GTP, and 53.7 +/- 3.7 and 149.9 +/- 7.6 using Mg2+-GTP as the substrate, respectively. Although all APs were equally efficacious in activating the enzyme, their rank potency was ANF (8-33) = AP III = AP II greater than AP I when either divalent cation was used as the cofactor. The EC50 for activation of guanylate cyclase by AP I was about 10(-7) M, while that for the other peptides was about 10(-8) M, using either divalent cation cofactor. 125I-labeled ANF bound to rat adrenal membranes with a KD of 5.10(-10) M. Although all APs were equally efficacious in competing with labeled ANF for receptor binding, their rank potency was identical to that for enzyme activation. The Ki for AP I was about 10(-8) M, while that for the other peptides was about 10(-10) M. These data suggest that the carboxy terminal Phe-Arg present in the AP analogs except AP I and critical for biological and receptor-binding activity are also important in coupling receptor-ligand interaction with guanylate cyclase activation. The correlation between the rank order potency for receptor binding, enzyme activation, and the reported physiological actions of APs support the suggestion of a functional coupling between these proteins.  相似文献   

20.
A novel series of pyrazolo[1,5-a]pyrimidines were synthesized and proved by their spectral and elemental analysis, some elected of the newly synthesized compounds were examined for their cytotoxic activity employing MTT assay on two cancer cell lines (Breast and Hela cancers). Compounds 5, 7e and 7i showed the higher cytotoxicity against two cancer cell lines with (IC50 = 13.91 ± 1.4 and 22.37 ± 1.8 μM/L), (IC50 = 6.56 ± 0.5 and 8.72 ± 0.9 μM/L) and (IC50 = 4.17 ± 0.2 and 5.57 ± 0.4 μM/L) for two cancer cell lines breast and hela respectively, using doxorubicin as a reference drug. The most potent cytotoxic active compounds 5, 7e and 7i presented inhibitory activity against KDM (histone lysine demethylases) with IC50 = 4.05, 1.91 and 2.31 μM, respectively. The most potent KDM inhibitor 7e (IC50 = 1.91 μM) showed to cause cell cycle arrest at G2/M phase by 4 folds than control and induce total apoptotic effect by 10 folds more than control. In silico studies performed on the more potent cytotoxic active compounds 5, 7e and 7i included lipinisk's rule of five. Moreover, molecular docking study was utilized to explore the binding mode of the most active compounds to the target enzyme (PDB-ID: 5IVE). Also, some bioinformatics studies were carried out for compounds 7e and 7i using Swiss ADME (Swiss Institute of bioinformatics 2018).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号