首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein synthesis in polyoma virus-infected cells was inhibited by 99% within 4 min after exposure to 10 mug of cycloheximide per ml. Subsequent to the block in protein synthesis, the rate of viral DNA synthesis declined via inhibition of the rate of initiation of new rounds of genome replication (Yu and Cheevers, 1976). This process was inhibited with complex kinetics: within 15 min after the addition of cycloheximide, the rate of formation of closed-circular viral DNA was reduced by about one-half. Thereafter, DNA synthesis in cycloheximide-treated cells declined more slowly, reaching a level of 10% of untreated cells only after approximately 2 h. Protein synthesis was also required for normal closure of progeny form I DNA: in the presence of cycloheximide, DNA synthesis was diverted from the production of form I to form Ic, a monomeric closed-circular DNA component deficient in superhelical turns (Yu and Cheevers, 1976). Form I is replaced by Ic with first-order exponential kinetics. It is concluded that at least two proteins are involved in the control of polyoma DNA replication. One is apparently a stoichiometric requirement involved in the initiation step of viral DNA synthesis, since this process cannot be maintained at a normal rate for more than a few minutes in the absence of protein synthesis. The second protein requirement, governing the closure of newly synthesized progeny DNA, is considered distinct from the "initiation" protein on the basis of the kinetic data.  相似文献   

2.
K Yu  J Kowalski    W Cheevers 《Journal of virology》1975,15(6):1409-1417
The formation of viral DNA was inhibited in polyoma virus-infected cells in which protein synthesis had been blocked by cycloheximide. The present studies show the following. (i) The pool of replicating viral DNA molecules was reduced in cycloheximide-treated cells by an amount consistent with inhibition of [3-H]thymidine incorporation into viral DNA, whereas the rate of turnover of the replicating population was not affected. (ii) The rate of conversion of replicating molecules into closed-circular DNA was not affected by cycloheximide. (iii) The rate of elongation of nascent viral DNA fragments into strands of unit genome length was unaffected by cycloheximide. It is concluded that viral DNA synthesis is inhibited in the absence of protein synthesis exclusively at the level of initiation of new rounds of genome replication. Replicating molecules already initiated at the time of addition of cycloheximide matured into progeny closed-circular DNA at a normal rate.  相似文献   

3.
Synthesis of type 2 Adenovirus DNA in the Presence of Cycloheximide   总被引:18,自引:15,他引:3       下载免费PDF全文
Adenovirus type 2 DNA synthesis, either in permissive human cells or nonpermissive monkey cells, becomes independent of protein synthesis after the appearance of progeny viral DNA. In the presence of cycloheximide, semiconservative replication and initiation of progeny molecules can occur.  相似文献   

4.
Treatment of Physarum polycephalum with cycloheximide during the DNA synthesis period resulted in a reduction in the incorporation of [3H]thymidine into DNA. This effect was caused by both a reduction in the specific activity of TTP and by an inhibition of progeny strand elongation within replication units. No effect of the drug on the initiation of synthesis of replication units or on the ligation of DNA fragments was detected.  相似文献   

5.
Cloning of the phi X174 viral origin of replication into phage M13mp8 produced an M13-phi X174 chimera, the DNA of which directed efficient replicative-form----single-strand rolling-circle replication in vitro. This replication assay was performed with purified phi X174-encoded gene A protein, Escherichia coli rep helicase, single-stranded DNA-binding protein, and DNA polymerase III holoenzyme. The nicking of replicative-form I (RFI) DNA by gene A protein was essentially unaffected by the presence of UV lesions in the DNA. However, unwinding of UV-irradiated DNA by the rep helicase was inhibited twofold as compared with unwinding of the unirradiated substrate. UV irradiation of the substrate DNA caused a strong inhibition in its ability to direct DNA synthesis. However, even DNA preparations that contained as many as 10 photodimers per molecule still supported the synthesis of progeny full-length single-stranded DNA. The appearance of full-length radiolabeled products implied at least two full rounds of replication, since the first round released the unlabeled plus viral strand of the duplex DNA. Pretreatment of the UV-irradiated DNA substrate with purified pyrimidine dimer endonuclease from Micrococcus luteus, which converted photodimer-containing supercoiled RFI DNA into relaxed, nicked RFII DNA and thus prevented its replication, reduced DNA synthesis by 70%. Analysis of radiolabeled replication products by agarose gel electrophoresis followed by autoradiography revealed that this decrease was due to a reduction in the synthesis of progeny full-length single-stranded DNA. This implies that 70 to 80% of the full-length DNA products produced in this system were synthesized on molecules that carried photodimers. Thus, similarly to its activity on UV-irradiated single-stranded DNA, DNA polymerase III holenzyme can bypass pyrimidine photodimers in the more complex replicative form --->single-strand replication, which involves, in addition to the polymerizing activity, the unwinding of the duplex by the rep helicase and the participation of a more complex multiprotein replisome.  相似文献   

6.
A drastic and brief inhibition of protein synthesis (up to 95% for 3--6 hrs) by cycloheximide in the liver of rats starved for 24 hrs results in a recovery and subsequent marked stimulation of non-histone proteins, histone chromosomal proteins and DNA. The stimulation of non-histone protein synthesis was observed after 1 hr (inhibition) 12--24 hrs (recovery and stimulation of protein synthesis) and 48--60 hrs (stimulation of DNA synthesis) following the administration of cycloheximide. Two periods of histone biosynthesis were observed. The first one (24--36 hrs) was not coupled and the second one (48--60 hrs) was coupled with DNA replication. During the recovery and stimulation of protein synthesis acetylation of the histone and non-histone proteins proceeds at an increased rate. Possible applicability of the model in question for investigations of chromatin biogenesis is discussed.  相似文献   

7.
Low concentrations of a protein synthesis inhibitor, cycloheximide, were added throughout the process of in vitro differentiation of 11-day old embryonic chick lens cells. We found with low concentrations of cycloheximide (0.01 to 0.03 microgram/ml, 3 days of culture), that there was an almost complete delay of DNA degradation as observed on alkaline sucrose gradient. Identical concentrations and exposure time had no blocking effect on increased delta-crystallin synthesis as detected by immunoprecipitation and electrophoresis. Higher concentrations of cycloheximide (0.1 to 1 microgram/ml) showed a marked effect on DNA size and a net inhibition on delta-crystallin synthesis. Thus a selective effect of low doses of cycloheximide was observed on terminal differentiation suggesting that there was not a relationship between DNA degradation and delta-crystallin synthesis in these short term experiments. The investigations of minor proteins could be of interest as they may have a crucial role in intact nuclei cataracts.  相似文献   

8.
M M Seidman  A J Levine  H Weintraub 《Cell》1979,18(2):439-449
  相似文献   

9.
10.
The invivo dose response of rat liver protein and DNA synthesis to cycloheximide have been determined. Protein synthesis was quite sensitive to relatively low doses of cycloheximide being inhibited by more than 90% with 1.5 mg/kg. Maximal inhibition of 98% was achieved with 5 mg/kg. There was no inhibition of RNA synthesis with this dose of cycloheximide. Larger doses of cycloheximide did lead to quite marked inhibition of RNA synthesis without any change in the already maximally inhibited rate of protein synthesis. This differential effect of cycloheximide on protein and RNA synthesis as a function of dose indicates that the inhibition of RNA synthesis caused by the antibiotic is not a consequence of the inhibition of protein synthesis but related otherwise to the effects of large doses of cycloheximide.  相似文献   

11.
Several different forms of progeny viral DNA can be identified in polyoma virus (Py)-infected mouse L-cells. The majority comprise mature form I superhelical DNA and the circular, double-stranded "theta" replicating intermediates in which the progeny DNA strands never exceed the unit genome length of the template. There is formed, in addition, a minority fraction of multimeric, linear, double-stranded Py DNA molecules that sediment heterogeneously at 28 to 35S and greater than 35S. Restriction enzyme analysis of these large Py DNA molecules reveals them to be tandem arrays of multiple unit genome lengths, covalently linked head to tail. It is estimated that the 28 to 35S multimeric DNA has an average size of about 20 megadaltons, made up of 6 to 20 Py genome units. The greater than 35S Py DNA is, of course, larger. Kinetic analysis indicates that formation of the monomeric progeny viral DNA and the 28 to 35S multimeric Py DNA reaches a peak at about 35 to 36 h postinfection. Synthesis of the very large linear molecules of greater than 35S is first detected after this interval and continues thereafter. The de novo synthesis of all of these progeny Py DNA molecules proceeds apparently normally in Py-infected tsA1S9 mouse L-cells incubated at 38.5 degrees C under conditions which restrict normal cellular DNA replication. These findings suggest that the cellular DNA topoisomerase II activity, encoded in the tsA1S9 locus (R. W. Colwill and R. Sheinin, submitted for publication), is not required for de novo formation of any form of Py DNA. However, the total amount made and the rate of synthesis of the large molecular weight Py DNA are affected very late in temperature-inactivated tsA1S9 cells.  相似文献   

12.
Replication of the single-stranded DNA parvovirus H-1 involves the synthesis of a double-stranded DNA replicative form (RF). In this study, the metabolism of RF DNA was examined in parasynchronous hamster embryo cells. The initiation of RF DNA replication was found to occur late in S phase, as was the synthesis of the DNA upon which subsequent viral hemagglutinin synthesis is dependent. Evidence is presented which indicates that initiation of RF replication requires proteins synthesized in late S phase, but that concomittant protein synthesis is not required for the continuation of RF replication. The data also suggest a requirement for viral protein(s) for progeny strand synthesis. Incorporation of 5-bromo-2'-deoxyuridine (BUdR) into viral DNA resulted in an "all-or-none" inhibition of viral hemagglutinin and viral antigen synthesis. BUdR inactivation of viral protein function was used to explore the time of synthesis of viral DNA serving as template for viral RNA synthesis and the effect of viral protein on RF replication and progeny strand synthesis. Results of this study suggest that parental RF DNA is synthesized shortly after infection, and that viral mRNA is transcribed from only a few copies of the viral genome in each cell. They also support the conclusion that viral protein is inhibitory to RF DNA replication. Density labeling of RF DNA with BUdR, allowing separation of viral strand DNA (V) from viral complementary strand (C), provided additional data in support of the above findings.  相似文献   

13.
The objectives of this study were to identify the mechanism(s) of pseudorabies virus (PrV)-induced down-regulation of porcine class I molecules and the viral protein(s) responsible for the effect. The ability of PrV to interfere with the peptide transport activity of TAP was determined by an in vitro transport assay. In this assay, porcine kidney (PK-15) cells were permeabilized with streptolysin-O and incubated with a library of 125I-labeled peptides having consensus motifs for glycosylation in the endoplasmic reticulum (ER). The efficiency of transport of peptides from the cytosol into the ER was determined by adsorbing the ER-glycosylated peptides onto Con A-coupled Sepharose beads. Dose-dependent inhibition of TAP activity was observed in PrV-infected PK-15 cells. This inhibition, which occurred as early as 2 h postinfection (h.p.i.), reached the maximum level by 6 h.p.i., indicating that TAP inhibition is one of the mechanisms by which PrV down-regulates porcine class I molecules. Infection of cells with PrV in the presence of metabolic inhibitors revealed that cycloheximide a protein synthesis inhibitor, but not phosphonoacetic acid a herpesvirus DNA synthesis inhibitor, could restore the cell surface expression of class I molecules, indicating that late proteins are not responsible for the down-regulation. Infection in the presence of cycloheximide followed by actinomycin-D, which results in accumulation of the immediate-early protein, failed to down-regulate class I, indicating that one or more early proteins are responsible for the down-regulation of class I molecules.  相似文献   

14.
15.
Inhibition of protein synthesis stabilizes histone mRNA.   总被引:36,自引:19,他引:17       下载免费PDF全文
  相似文献   

16.
Timing of protein synthesis which is a prerequisite to DNA synthesis induced in potato tuber tissue (Solanum tuberosum L.) by cut injury has been studied using cycloheximide. The induction of DNA synthesis which was measured by incorporation of 3H-thymidine was completely inhibited when the inhibitor was applied to the tuber discs immediately after slicing. When the application of cycloheximide was delayed for 6 hours or more after slicing, DNA synthesis was observed but its rate was reduced to 20% of control. The inhibitory effect of cycloheximide, however, rapidly decreased when the inhibitor was applied at 6 or less hours immediately prior to determination of DNA synthesis. The effect of cycloheximide on the incorporation of 14C-leucine suggests that the change in the effect of cycloheximide on the induction of DNA synthesis is not due to incomplete inhibition of protein synthesis. Cycloheximide did not have significant effects on either uptake or phosphorylation of 3H-thymidine in the discs. Inhibition of both protein and DNA synthesis by cycloheximide was reversed by washing and further incubation of the discs. Almost no qualitative difference was detected by buoyant density analysis between DNA formed under inhibition of protein synthesis of the later stage and DNA synthesized under normal conditions. These results suggest that DNA synthesis induced in potato tuber tissue by cut injury requires continuous synthesis of new protein molecules in a characteristically programmed sequence.  相似文献   

17.
A new class of linear duplex DNA structures that contain simian virus 40 (SV40) DNA sequences and that are replicated during productive infection of cells with SV40 is described. These structures comprise up to 35% of the radioactively labeled DNA molecules that can be isolated by selective extraction. These molecules represent a unique size class corresponding to the length of an open SV40 DNA molecule (FO III), and they contain a heterogeneous population of DNA sequences either of host or of viral origin, as shown by restriction endonuclease analysis and nucleic acid hybridization. Part of the FO III DNA molecules contain viral-host DNA sequences covalently linked with each other. They start to replicate with the onset of SV40 superhelix replication 1 day after infection. Their rate of synthesis is most pronounced 3 days after infection when superhelix replication is already declining. Furthermore, they cannot be chased into other structures. At least a fraction of these molecules is infectious when administered together with DEAE-dextran to permissive cells. After intracellular circularization, superhelical DNA FO I with an aberrant cleavage pattern accumulates. In addition, tumor and viral capsid antigen are induced, and infectious viral progeny is obtained. Infection of cells with purified SV40 FO I DNA does not result in FO III DNA molecules in the infected cells or in the viral progeny. It is suggested, therefore, that these FO III DNA molecules are perpetuated within SV40 virus pools by encapsidation into pseudovirions.  相似文献   

18.
J Nyce  L Liu    P A Jones 《Nucleic acids research》1986,14(10):4353-4367
Post-synthetic enzymatic hypermethylation of DNA was induced in hamster fibrosarcoma cells by the DNA synthesis inhibitors cytosine arabinoside, hydroxyurea and aphidicolin. This effect required direct inhibition of DNA polymerase alpha or reduction in deoxynucleotide pools and was not specific to a single cell type. At equivalently reduced levels of DNA synthesis, neither cycloheximide, actinomycin D nor serum deprivation affected DNA methylation in this way. The topoisomerase inhibitors nalidixic acid and novobiocin caused significant hypomethylation indicating that increased 5-mCyt content was not a necessary consequence of DNA synthesis inhibition. The induced hypermethylation occurred predominantly in that fraction of the DNA synthesized in the presence of inhibitor; was stable in the absence of drug; was most prominent in low molecular weight DNA representing sites of initiated but incomplete DNA synthesis; and occurred primarily within CpG dinucleotides, although other dinucleotides were overmethylated as well. Drug-induced CpG hypermethylation may be capable of silencing genes, an effect which may be relevant to the aberrantly expressed genes characteristic of neoplastic cells.  相似文献   

19.
W K Yang  D M Yang    J O Kiggans  Jr 《Journal of virology》1980,36(1):181-188
Formation of viral closed circular supercoiled DNA duplexes and production of progeny virus were both inhibited in cultured mouse cells treated with cycloheximide in the first 4 h of type C retrovirus infection. With different doses of cycloheximide to cause different degrees of inhibition, the number of viral supercoiled DNA duplexes detected in the cells at 11 h showed an apparent correlation with the amount of progeny virus produced in the 12- to 22-h period of infection. A slight accumulation of the full-genome linear duplex and an open circular duplex of viral DNA intermediate was observed in the cycloheximide-treated cells. Cycloheximide given to the cells during the time of conversion of viral DNA from linear to supercoiled duplex forms (6 to 11 h after virus inoculation) did not inhibit the conversion. These kinetic data suggest that a cycloheximide-sensitive metabolic process, probably early viral protein synthesis, is required for retrovirus replication and supercoiled viral DNA formation in the cell.  相似文献   

20.
A phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), induced the cleavage of nuclear DNA at linker regions in cultured mouse thymocytes. Similar DNA fragmentation was induced by 1-oleoyl-2-acetyl-glycerol, a synthetic diacylglycerol, but not by 4 alpha-phorbol-12,13 didecanoate. The DNA fragmentation was inhibited by 1-(5-isoquinoline-sulfonyl)-2-methyl-piperazine dihydrochloride, an inhibitor of protein kinase C, as well as actinomycin D and cycloheximide. It appears that TPA induces DNA cleavage through activation of protein kinase C and synthesis of yet unidentified protein(s). That the inhibition of DNA fragmentation was accompanied by a reduction in cell lysis suggests a causal relationship between DNA fragmentation and cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号