首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray interferometry/holography was applied to meridional x-ray diffraction data to determine uniquely the profile structures of a single monolayer of an integral membrane protein and a peripheral membrane protein, each tethered to the surface of a solid inorganic substrate. Bifunctional, organic self-assembled monolayers (SAMs) were utilized to tether the proteins to the surface of Ge/Si multilayer substrates, fabricated by molecular beam epitaxy, to facilitate the interferometric/holographic x-ray structure determination. The peripheral membrane protein yeast cytochrome c was covalently tethered to the surface of a sulfhydryl-terminated 11-siloxyundecanethiol SAM via a disulfide linkage with residue 102. The detergent-solubilized, photosynthetic reaction center integral membrane protein was electrostatically tethered to the surface of an analogous amine-terminated SAM. Optical absorption measurements performed on these two tethered protein monolayer systems were consistent with the x-ray diffraction results indicating the reversible formation of densely packed single monolayers of each fully functional membrane protein on the surface of the respective SAM. The importance of utilizing the organic self-assembled monolayers (as opposed to Langmuir-Blodgett) lies in their ability to tether specifically both soluble peripheral membrane proteins and detergent-solubilized integral membrane proteins. The vectorial orientations of the cytochrome c and the reaction center molecules were readily distinguishable in the profile structure of each monolayer at a spatial resolution of 7 A.  相似文献   

2.
Hydrophobic organization: Determination of the structure of the bacterial photosynthetic reaction center, bacterial porins, and bacteriorhodopsin allows a comparison of the basic structural features of integral membrane proteins. Structure parameters of membrane- and water-soluble proteins are surprisingly similar, given the different dielectric environments, except for the polarity of residues on the protein surface. Hydrophobic and electrostatic forces: 1) Intramembrane helix-helix interactions that are sensitive to small structure changes can dictate assembly of membrane proteins, as indicated by reconstitution of bacteriorhodopsin from proteolytic fragments and specific dimer formation of the human erythrocyte sialoglycoprotein glycophorin A. 2) Electrostatic interactions have an important role in determining the trans-membrane orientation of integral membrane proteins of the bacterial inner membrane, as expressed by the "positive-inside" rule for the distribution of basic residues on the cis relative to the trans side of the membrane-spanning alpha-helices. The use of this charge asymmetry rule, in conjunction with a hydrophobicity algorithm for prediction of membrane-spanning domains, allows accurate prediction of the folding patterns of such polypeptides across the membrane. A role of electrostatic interactions in assembly and maintenance of the structure of oligomeric integral membrane protein complexes is also implied by the separation and extrusion from the membrane, at high pH, of the major hydrophobic subunits of the cytochrome b6f complex from the chloroplast thylakoid membrane. It is inferred that the hydrophobic helix-helix interactions between the subunits of this complex, whose function is electron transfer and proton translocation, are relatively weak compared to those in bacteriorhodopsin.  相似文献   

3.
Native tubular membranes were purified from the purple non-sulfur bacterium Rhodobacter sphaeroides. These tubular structures contain all the membrane components of the photosynthetic apparatus, in the relative ratio of one cytochrome bc1 complex to two reaction centers, and approximately 24 bacteriochlorophyll molecules per reaction center. Electron micrographs of negative-stained membranes diffract up to 25 A and allow the calculation of a projection map at 20 A. The unit cell (a = 198 A, b = 120 A and gamma = 103 degrees) contains an elongated S-shaped supercomplex presenting a pseudo-2-fold symmetry. Comparison with density maps of isolated reaction center and light-harvesting complexes allowed interpretation of the projection map. Each supercomplex is composed of light-harvesting 1 complexes that take the form of two C-shaped structures of approximately 112 A in external diameter, facing each other on the open side and enclosing the two reaction centers. The remaining positive density is tentatively attributed to one cytochrome bc1 complex. These features shed new light on the association of the reaction center and the light-harvesting complexes. In particular, the organization of the light-harvesting complexes in C-shaped structures ensures an efficient exchange of ubihydroquinone/ubiquinone between the reaction center and the cytochrome bc1 complex.  相似文献   

4.
The Rhodobacter sphaeroides intracytoplasmic membrane (ICM) is an inducible membrane that is dedicated to the major events of bacterial photosynthesis, including harvesting light energy, separating primary charges, and transporting electrons. In this study, multichromatographic methods coupled with Fourier transform ion cyclotron resonance mass spectrometry, combined with subcellular fractionation, was used to test the hypothesis that the photosynthetic membrane of R. sphaeroides 2.4.1 contains a significant number of heretofore unidentified proteins in addition to the integral membrane pigment-protein complexes, including light-harvesting complexes 1 and 2, the photochemical reaction center, and the cytochrome bc(1) complex described previously. Purified ICM vesicles are shown to be enriched in several abundant, newly identified membrane proteins, including a protein of unknown function (AffyChip designation RSP1760) and a possible alkane hydroxylase (RSP1467). When the genes encoding these proteins are mutated, specific photosynthetic phenotypes are noted, illustrating the potential new insights into solar energy utilization to be gained by this proteomic blueprint of the ICM. In addition, proteins necessary for other cellular functions, such as ATP synthesis, respiration, solute transport, protein translocation, and other physiological processes, were also identified to be in association with the ICM. This study is the first to provide a more global view of the protein composition of a photosynthetic membrane from any source. This protein blueprint also provides insights into potential mechanisms for the assembly of the pigment-protein complexes of the photosynthetic apparatus, the formation of the lipid bilayer that houses these integral membrane proteins, and the possible functional interactions of ICM proteins with activities that reside in domains outside this specialized bioenergetic membrane.  相似文献   

5.
The nucleotide sequence of the puf operon, which contains the genes encoding the B870 light-harvesting protein and the reaction center complex of the purple photosynthetic bacterium, Rhodovulum sulfidophilum, was determined. The operon, which consisted of six genes, pufQ, pufB, pufA, pufL, pufM, and pufC, is a new variety in photosynthetic bacteria in the sense that pufQ and pufC coexist. The amino acid sequence of the cytochrome subunit of the reaction center deduced from the pufC sequence revealed that this cytochrome contains only three possible heme-binding motifs; the heme-1-binding motif of the corresponding tetraheme cytochrome subunits was not present. This is the first exception of the "tetraheme" cytochrome family in purple bacteria and green filamentous bacteria. The pufC sequence also revealed that the sixth axial ligands to heme-1 and heme-2 irons were not present in the cytochrome either. This cytochrome was actually detected in membrane preparation as a 43-kDa protein and shown to associate functionally with the photosynthetic reaction center as the immediate electron donor to the photo-oxidized special pair of bacteriochlorophyll. This new cytochrome should be useful for studies on the role of each heme in the cytochrome subunit of the bacterial reaction center and the evolution of proteins in photosynthetic electron transfer systems.  相似文献   

6.
A suite of FORTRAN programs, PREF, is described for calculating preference functions from the data base of known protein structures and for comparing smoothed profiles of sequence-dependent preferences in proteins of unknown structure. Amino acid preferences for a secondary structure are considered as functions of a sequence environment. Sequence environment of amino acid residue in a protein is defined as an average over some physical, chemical, or statistical property of its primary structure neighbors. The frequency distribution of sequence environments in the data base of soluble protein structures is approximately normal for each amino acid type of known secondary conformation. An analytical expression for the dependence of preferences on sequence environment is obtained after each frequency distribution is replaced by corresponding Gaussian function. The preference for the α-helical conformation increases for each amino acid type with the increase of sequence environment of buried solvent-accessible surface areas. We show that a set of preference functions based on buried surface area is useful for predicting folding motifs in α-class proteins and in integral membrane proteins. The prediction accuracy for helical residues is 79% for 5 integral membrane proteins and 74% for 11 α-class soluble proteins. Most residues found in transmembrane segments of membrane proteins with known α-helical structure are predicted to be indeed in the helical conformation because of very high middle helix preferences. Both extramembrane and transmembrane helices in the photosynthetic reaction center M and L subunits are correctly predicted. We point out in the discussion that our method of conformational preference functions can identify what physical properties of the amino acids are important in the formation of particular secondary structure elements. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
The prediction of a protein's structure from its amino acid sequence has been a long-standing goal of molecular biology. In this work, a new set of conformational parameters for membrane spanning alpha helices was developed using the information from the topology of 70 membrane proteins. Based on these conformational parameters, a simple algorithm has been formulated to predict the transmembrane alpha helices in membrane proteins. A FORTRAN program has been developed which takes the amino acid sequence as input and gives the predicted transmembrane alpha-helices as output. The present method correctly identifies 295 transmembrane helical segments in 70 membrane proteins with only two overpredictions. Furthermore, this method predicts all 45 transmembrane helices in the photosynthetic reaction center, bacteriorhodopsin and cytochrome c oxidase to an 86% level of accuracy and so is better than all other methods published to date.  相似文献   

8.
Hucke O  Schiltz E  Drews G  Labahn A 《FEBS letters》2003,535(1-3):166-170
Most of the bacterial photosynthetic reaction centres known to date contain a cytochrome subunit with four covalently bound haem groups. In the case of Blastochloris viridis, this reaction centre subunit is anchored in the membrane by a lipid molecule covalently attached to the cysteine which forms the N-terminus of the mature protein after processing by a signal peptidase. We show that posttranslational N-terminal cleavage of the cytochrome subunit does not occur in the aerobic photosynthetic bacterium Roseobacter denitrificans. From sequence analysis of the resulting elongated N-terminus it follows that a transmembrane helix is anchoring the reaction centre-bound cytochrome in the membrane. Comparative sequence analysis strongly suggests that all cytochrome subunits lacking the lipid coupling cysteine share this structural feature. Comparison of the N-terminal segment of the cytochrome subunit of Roseobacter denitrificans with the sequences of the PufX proteins from Rhodobacter sphaeroides and Rhodobacter capsulatus suggests a phylogenetic relation.  相似文献   

9.
Chloroplast material active in photosynthetic electron transport has been isolated from Scenedesmus acutus (strain 270/3a). During homogenization, part of cytochrome 553 was solubilized, and part of it remained firmly bound to the membrane. A direct correlation between membrane cytochrome 553 and electron transport rates could not be found. Sonification removes plastocyanin, but leaves bound cytochrome 553 in the membrane. Photooxidation of the latter is dependent on added plastocyanin. In contrast to higher plant chloroplasts, added soluble cytochrome 553 was photooxidized by 707 nm light without plastocyanin present. Reduced plastocyanin or cytochrome 553 stimulated electron transport by Photosystem I when supplied together or separately. These reactions and cytochrome 553 photooxidation were not sensitive to preincubation of chloroplasts with KCN, indicating that both redox proteins can donate their electrons directly to the Photosystem I reaction center. Scenedesmus cytochrome 553 was about as active as plastocyanin from the same alga, whereas the corresponding protein from the alga Bumilleriopsis was without effect on electron transport rates.

It is suggested that besides the reaction sequence cytochrome 553 → plastocyanin → Photosystem I reaction center, a second pathway cytochrome 553 → Photosystem I reaction center may operate additionally.  相似文献   


10.
By deletion of the pufX gene of Rhodobacter capsulatus from a plasmid carrying the puf operon and complementation of a chromosomal puf operon deletion, we created pufX mutants and used them to characterize possible functions of the pufX gene product. The pufX mutants were incapable of photosynthetic growth in a minimal medium, or in a rich medium at low light intensities, although second-site mutations suppressed this phenotype. Measurements made in vitro with intact and solubilized chromatophore preparations indicated that the individual complexes of the photosynthetic unit seemed to function normally, but electron transfer from the reaction center to the cytochrome b/c1 complex was impaired. The structures of the photosynthetic apparatus of pseudo-wild type and mutant strains were evaluated using absorption spectroscopy and electron microscopy. The pufX mutants had intracytoplasmic membrane invaginations about 50% larger in diameter than those of the pseudo-wild type and higher levels of B870 light-harvesting complex. It is concluded that the PufX protein plays an important role in the structure of the functional photosynthetic unit, and its absence results in loss of efficient electron transfer from the QB site of the reaction center to the Qz site of the cytochrome b/c1 complex.  相似文献   

11.
Photosynthetic proteins power the biosphere. Reaction centres, light harvesting antenna proteins and cytochrome b(6)f (or bc(1)) complexes are expressed at high levels, have been subjected to an intensive spectroscopic, biochemical and mutagenic analysis, and several have been characterised to an informatively high resolution by X-ray crystallography. In addition to revealing the structural basis for the transduction of light energy, X-ray crystallography has brought molecular insights into the relationships between these multicomponent membrane proteins and their lipid environment. Lipids resolved in the X-ray crystal structures of photosynthetic proteins bind light harvesting cofactors, fill intra-protein cavities through which quinones can diffuse, form an important part of the monomer-monomer interface in multimeric structures and may facilitate structural flexibility in complexes that undergo partial disassembly and repair. It has been proposed that individual lipids influence the biophysical properties of reaction centre cofactors, and so affect the rate of electron transfer through the complex. Lipids have also been shown to be important for successful crystallisation of photosynthetic proteins. Comparison of the three types of reaction centre that have been structurally characterised reveals interesting similarities in the position of bound lipids that may point towards a generic requirement to reinforce the structure of the core electron transfer domain. The crystallographic data are also providing new opportunities to find molecular explanations for observed effects of different types of lipid on the structure, mechanism and organisation of reaction centres and other photosynthetic proteins.  相似文献   

12.
The complete nucleotide sequence of the cytochrome c-554 gene from the green photosynthetic bacterium Chloroflexus aurantiacus has been determined. The derived amino acid sequence showed that the cytochrome precursor protein consists of 414 residues and contains 4-Cys-X-X-Cys-His- heme binding motifs. The only regions of the cytochrome c-554 sequence that were found to be significantly similar to the sequences of cytochromes from other organisms were the heme binding sites. The highest similarity was found with the heme binding segments in the four-heme reaction center cytochrome subunit from the purple photosynthetic bacterium Rhodopseudomonas viridis. The importance of this similarity for the evolutionary relationship between Chloroflexus and the purple bacteria is discussed.  相似文献   

13.
A photosynthetic reaction center complex has been isolated from the green sulfur bacterium Chlorobium vibrioforme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals polypeptides with apparent molecular masses of 80, 40, 18, 15, 9, and 6 kDa. Only the 18-kDa polypeptide is stained with 3,3',5,5'-tetramethylbenzidine, a heme-specific reagent. Oxidized minus reduced difference spectra show the presence of approximately one heme/P840 and the presence of a cytochrome c551. Flash photolysis of P840 was followed by rereduction of P840+ and oxidation of cytochrome c551, both with a biphasic kinetic with t1/2 values of 7 and 50 microseconds. Using oligonucleotide probes derived from an N-terminal amino acid sequence of the 18-kDa polypeptide, a genomic clone was isolated. The sequence of the gene, which we designate cycA, predicts a single heme binding site (Cys-Asn-Lys-Cys-His). The 621-base pair open reading frame encodes an apoprotein of 22,858 Da with three predicted membrane-spanning alpha-helices. No extensive sequence similarity is found to other cytochromes. Northern blotting indicates that the cycA gene is transcribed as a monocistronic mRNA. Southern blotting shows the presence of only one cycA gene in the C. vibrioforme and Chlorobium tepidum genomes. The unique membrane-bound monoheme cytochrome c551 of C. vibriforme is assigned to a new class of c-type cytochromes. The implications for the current view of evolution of photosynthetic reaction center complexes are discussed.  相似文献   

14.
Analysis of electron-transfer (ET) kinetics data obtained from experiments on Ru-modified proteins (azurin, cytochrome c, myoglobin) and the bacterial photosynthetic reaction center reveals that distant donor-acceptor electronic couplings depend upon the secondary structure of the intervening polypeptide matrix. The β-sheet azurin structure efficiently and isotropically mediates coupling with an exponential distance-decay constant of 1.1?Å–1. The experimentally derived distance-decay constant of 1.4?Å–1 for long-range ET in myoglobin and the reaction center suggests that hydrogen-bond couplings are weaker through α helices than across β sheets. The donor-acceptor interactions of systems with comparable tunneling energies fall into two coupling zones: the β zone (bounded by distance-decay constants of 0.9?and 1.15 Å–1) includes all the β-sheet (azurin) couplings and all but one coupling in cytochrome c; the α zone (boundaries: 1.25 and 1.6?Å–1) includes less strongly coupled donor-acceptor pairs in myoglobin and the reaction center as well as a relatively weakly coupled pair in cytochrome c.  相似文献   

15.
We have analyzed the structure of mitochondrial cytochrome c oxidase in terms of general characteristics thought to be important for describing the architecture of helix bundle membrane proteins. Many aspects of the structure are similar to what has previously been found for the photosynthetic reaction center and bacteriorhodopsin. Our results lead to a considerably more precise general picture of membrane protein architecture than has hitherto been possible to obtain.  相似文献   

16.
Mammalian cytochrome c can effectively replace bacterial cytochrome c2 as the electron donor to the bacterial photosynthetic reaction center in either the natural chromatophore or a reconstituted reaction center/phospholipid membrane. In this paper, the reconstituted membrane was used to describe the nature of cytochrome c binding to the reaction center, the location of bound cytochrome c in the membrane profile and the perturbation of the reaction center and phospholipid profile structures induced by cytochrome c binding. These structural studies utilized the combined techniques of X-ray and neutron diffraction.  相似文献   

17.
The purple nonsulfur photosynthetic eubacterium Rhodobacter capsulatus is a versatile organism that can obtain cellular energy by several means, including the capture of light energy for photosynthesis as well as the use of light-independent respiration, in which molecular oxygen serves as a terminal electron acceptor. In this study, we have identified and characterized a novel gene, senC, mutations in which affect respiration as well as the induction of photosynthesis gene expression. The protein coded by senC exhibits 33% sequence identity to the yeast nucleus-encoded protein SCO1, which is thought to be a mitochondrion-associated cytochrome c oxidase assembly factor. Like yeast SCO1, SenC is required for optimal cytochrome c oxidase activity in aerobically grown R. capsulatus cells. We further show that senC is required for maximal induction from the puf and puh operons, which encode the structural polypeptides of the light-harvesting and reaction center complexes.  相似文献   

18.
19.
The amino acid sequence of the small copper protein auracyanin A isolated from the thermophilic photosynthetic green bacterium Chloroflexus aurantiacus has been determined to be a polypeptide of 139 residues. His58, Cys123, His128, and Met132 are spaced in a way to be expected if they are the evolutionary conserved metal ligands as in the known small copper proteins plastocyanin and azurin. Secondary structure prediction also indicates that auracyanin has a general beta-barrel structure similar to that of azurin from Pseudomonas aeruginosa and plastocyanin from poplar leaves. However, auracyanin appears to have sequence characteristics of both small copper protein sequence classes. The overall similarity with a consensus sequence of azurin is roughly the same as that with a consensus sequence of plastocyanin, namely 30.5%. We suggest that auracyanin A, together with the B forms, is the first example of a new class of small copper proteins that may be descendants of an ancestral sequence to both the azurin proteins occurring in prokaryotic nonphotosynthetic bacteria and the plastocyanin proteins occurring in both prokaryotic cyanobacteria and eukaryotic algae and plants. The N-terminal sequence region 1-18 of auracyanin is remarkably rich in glycine and hydroxy amino acids, and required mass spectrometric analysis to be determined. The nature of the blocking group X is not yet known, although its mass has been determined to be 220 Da. The auracyanins are the first small blue copper proteins found and studied in anoxygenic photosynthetic bacteria and are likely to mediate electron transfer between the cytochrome bc1 complex and the photosynthetic reaction center.  相似文献   

20.
Primary structure of the reaction center from Rhodopseudomonas sphaeroides   总被引:17,自引:0,他引:17  
The reaction center is a pigment-protein complex that mediates the initial photochemical steps of photosynthesis. The amino-terminal sequences of the L, M, and H subunits and the nucleotide and derived amino acid sequences of the L and M structural genes from Rhodopseudomonas sphaeroides have previously been determined. We report here the sequence of the H subunit, completing the primary structure determination of the reaction center from R. sphaeroides. The nucleotide sequence of the gene encoding the H subunit was determined by the dideoxy method after subcloning fragments into single-stranded M13 phage vectors. This information was used to derive the amino acid sequence of the corresponding polypeptide. The termini of the primary structure of the H subunit were established by means of the amino and carboxy terminal sequences of the polypeptide. The data showed that the H subunit is composed of 260 residues, corresponding to a molecular weight of 28,003. A molecular weight of 100,858 for the reaction center was calculated from the primary structures of the subunits and the cofactors. Examination of the genes encoding the reaction center shows that the codon usage is strongly biased towards codons ending in G and C. Hydropathy analysis of the H subunit sequence reveals one stretch of hydrophobic residues near the amino terminus; the L and M subunits contain five such stretches. From a comparison of the sequences of homologous proteins found in bacterial reaction centers and photosystem II of plants, an evolutionary tree was constructed. The analysis of evolutionary relationships showed that the L and M subunits of reaction centers and the D1 and D2 proteins of photosystem II are descended from a common ancestor, and that the rate of change in these proteins was much higher in the first billion years after the divergence of the reaction center and photosystem II than in the subsequent billion years represented by the divergence of the species containing these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号