首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of a range of homologous transferrin-like proteins to donate iron to pieces of human duodenal mucosa, was examined with an in vitro incubation technque. In contrast to serum transferrin and ovotransferrin, only lactotransferrin was able to yield its iron to intestinal tissue, but in an autologous system this protein was unable to donate iron to human reticulocyte preparations. Studies with 125I-labelled lactotransferrin and lactotransferrin dual-labelled with 59Fe and 125I, indicated that the intact protein is excluded from entry into the enterocytes. The experiments suggest that iron may be transported across the brush border after delivery to specific protein binding sites at the cell surface.  相似文献   

2.
Visualization of lactotransferrin brush-border receptors by ligand-blotting   总被引:1,自引:0,他引:1  
The uptake of iron (III) mediated by lactotransferrin to human biopsies from upper intestine has suggested the presence of specific receptors for human lactotransferrin at the brush border (Cox, T., Mazurier, J., Spik, G., Montreuil, J. and Peters, T.J. (1979) Biochim. Biophys. Acta 588, 120-128). In the present data, using 125I-radiolabeled transferrins, we have demonstrated that a preparation of microvillous membrane vesicles, from rabbit jejunal brush-border specifically binds human lactotransferrin. This binding is specific, saturable and calcium dependent. Scatchard plots analysis of lactotransferrin binding indicates 1.5 X 10(13) sites per mg of membrane proteins with an equilibrium constant of 1.2 X 10(6) M-1. Sodium dodecyl sulfate solubilization of the brush-border proteins allows the lactotransferrin receptor to retain its binding activity. Moreover, the ligand blotting of the detergent solubilized membrane proteins on nitrocellulose sheet and after incubation with 125I-labeled lactotransferrin, has shown that the receptor is a protein of about 100 kDa. In the same experimental conditions, the rabbit microvillous membrane vesicles do not specifically bind rabbit serotransferrin indicating the absence of serotransferrin receptors at the brush border.  相似文献   

3.
In the resting rate, the human peripheral blood lymphocytes did not show detectable surface and intracellular receptors for human lactotransferrin. However, both types of lactotransferrin receptors were expressed during stimulation of lymphocytes with phytohemagglutinin. The appearance of receptors was time-dependent and the number of receptors reached a plateau after at least two days of mitogen stimulation. These results suggest that the presence of surface receptors on mitogen-stimulated lymphocytes is not consecutive to a modification of subcellular distribution but to an induction of biosynthesis of the receptors. As measured by incorporation of [3H]thymidine into DNA, addition of human lactotransferrin in a serum-free medium increased the proliferative activity of phytohemagglutinin-stimulated lymphocytes. Optimal enhancement of [3H]thymidine incorporation was obtained by adding 30% iron-saturated lactotransferrin at a concentration of 0.17 microM. Therefore, the role of lactotransferrin in the response of lymphocytes to mitogen stimulation appears to be similar to that previously described for serotransferrin. The lactotransferrin receptor was visualized using 125I-labeled lactotransferrin on nitrocellulose paper after electroblotting of the Triton X-100 extract of the phytohemagglutinin-stimulated lymphocytes as two protein bands of 100 and 110 kDa molecular mass. Purification of the lactotransferrin receptor from the Triton-X-100-soluble extract of stimulated lymphocytes was performed by antiligand-affinity chromatography. The binding of lactotransferrin to the purified receptors was reversible and dependent on concentration and pH.  相似文献   

4.
The uptake of iron (III) mediated by lactotransferrin to human biopsies from upper intestine has suggested the presence of specific receptors for human lactotransferrin at the brush border (Cox, T., Mazurier, J., Spik, G., Montreuil, J. and Peters, T.J. (1979) Biochim. Biophys. Acta 588, 120–128). In the present data, using 125I-radiolabeled transferrins, we have demonstrated that a preparation of microvillous membrane vesicles, from rabbit jejunal brush-border specifically binds human lactotransferrin. This binding is specific, saturable and calcium dependent. Scatchard plots analysis of lactotransferrin binding indicates 1.5 · 1013 sites per mg of membrane proteins with an equilibrium constant of 1.2 · 106 M−1. Sodium dodecyl sulfate solubilization of the brush-border proteins allows the lactotransferrin receptor to retain its binding activity. Moreover, the ligand blotting of the detergent solubilized membrane proteins on nitrocellulose sheet and after incubation with 125I-labeled lactotransferrin, has shown that the receptor is a protein of about 100 kDa. In the same experimental conditions, the rabbit microvillous membrane vesicles do not specifically bind rabbit serotransferrin indicating the absence of serotransferrin receptors at the brush border.  相似文献   

5.
Fluorescein isothiocyanate derivatization of the human lactotransferrin on Lys-264 inhibits the binding of the protein of human PHA-activated lymphocytes [Legrand, D., Mazurier, J., Maes, P., Rochard, E., Montreuil, J., & Spik, G. (1991) Biochem. J. 276, 733-738], indicating that part of the receptor-binding site is located in the N-terminal domain I of lactotransferrin. In the present study, a 6-kDa peptide (residues 4-52) was isolated from the N-terminal lobe of human lactotransferrin which inhibited the binding of the protein to its cell receptor. In addition, lactotransferrin was derivatized using sulfosuccinimidyl 2-(p-azidosalicylamido)ethyl-1,3'-dithiopropionate (SASD) and sulfosuccinimidyl 6-((4'-azido-2'-nitrophenyl)amino)hexanoate (sulfo-SANPAH), two heterobifunctional reagents generally used for receptor-ligand cross-linking. The azide group of these two reagents was inactivated by photolysis, and only the succinimidyl ester group was allowed to react with lysine residues of the protein. The binding of the derivatized lactotransferrins to the human lymphocyte receptor was assayed. SASD, which binds to Lys-74, was able to inhibit the binding of lactotransferrin to the cell receptor, in contrast to Lys-281-binding sulfo-SANPAH. Molecular modeling showed the position of SASD, sulfo-SANPAH, and fluorescein molecules at the surface of the protein and suggested that SASD and fluorescein could mask residues 4-6 and two loop-containing regions of human lactotransferrin (residues 28-34 and 38-45). The comparison of the primary and tertiary structures of human lactotransferrin and serotransferrin, which bind to specific cell receptors, shows that the above-mentioned regions, which are likely involved in protein-receptor interactions, possess specific structural features.  相似文献   

6.
Several lines of evidence have recently suggested the occurrence of a specific lactotransferrin receptor in the small intestinal brush-border membrane in several animal species, which is thought to be involved in lactotransferrin-mediated intestinal iron absorption. We report here for the first time the isolation and partial characterization of this receptor from mouse intestinal brush border. The receptor has been purified to homogeneity by affinity chromatography on an immobilized human lactotransferrin column. The purified receptor was found to be active in that it binds iron-free and iron-saturated lactotransferrin with a Kd of 0.1 microM. Anti-receptor antibodies were prepared, and the receptor was further isolated by immunoaffinity chromatography in higher yield but in a denatured form. The purified receptor was revealed by sodium dodecyl sulfate-polyacrylamide electrophoresis to be a protein of about Mr = 130,000, consisting of a single polypeptide chain. The isoelectric point was determined to be 5.8. The receptor was further shown to bear concanavalin A and phytohemagglutinin L binding glycans. Digestion by N-glycanase and endo-N-acetyl-beta-D-glucosaminidase B led to a decrease of Mr = 25,000, while the endo-N-acetyl-beta-D-glucosaminidase H was uneffective, suggesting that the lactotransferrin receptor is mainly glycosylated by bi- and triantennary glycans. To gain further insight into the interaction of the receptor with lactotransferrin, namely, the number of ligand molecules bound per molecule of receptor, mouse lactotransferrin was cross-linked to its membrane-bound enterocyte receptor by use of radiolabeled sulfosuccinimidyl 3-[[2-(p-azidosalicylamido)ethyl]dithio]propionate (SASD).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Human lactotransferrin binds 2 Fe3+ tightly at two specific sites. In order to demonstrate differences between the stability of the two iron-binding sites, the removal of iron was studied in buffers in the pH range 8-3 varying the ionic strength and with or without metal chelators such as phosphate ions and EDTA.The results show that in the presence of formate and acetate buffers of ionic strength 0.1–0.4 and in a pH range of 5–3, the two Fe3+ from human lactotransferrin are removed stimultaneously.Addition of 4 mM EDTA to buffers of ionic strength 0.1 and in the pH range 8–3 shows that between pH 5–4.3 the iron from only one of the binding sites, called the ‘acid labile’ site, is removed.Addition of 0.2 M phosphate ions to buffers of ionic strength 0.2 and in pH range 8–3 containing 4 mM EDTA shows that Fe3+ from the ‘acid labile’ site may be completely removed at pH 6. Removal of Fe3+ from the ‘acid stable’ site is obtained at pH 4.The differential behavior of the two iron binding sites was also shown by saturation experiments in the presence of citrate/bicarbonate buffers at different pH values. In a pH range 6.2–4.8, 50% saturation was obtained, but at pH 6.35 complete saturation was achieved. When saturation of partially saturated samples of human lactotransferrin was performed with 59Fe it was demonstrated that in the pH range 6.2–4.8 iron is bound only to the ‘acid labile’ site.  相似文献   

8.
Human lactotransferrin is able to bind two vanadyl(IV) ions in specific metal-binding sites. The EPR signals of the two vanadyl bound ions, however, appear as one. This result suggests that the environments of the binding sites of human lactotransferrin are similar. The binding activity is promoted to pH 4 using carbonate or bicarbonate as synergistic anion. This unusual stability of the anion-binding site, which is destroyed below pH 6 for other transferrins, can explain in part the great stability of the metallic complexes of human lactotransferrin. However, the different sensitivities of the two metal-binding sites towards protonation permit the preparation of mixed vanadyl(IV), iron(III) complexes with VO2+ bound either on the N-terminal (acid-labile or B site) or on the C-terminal (acid-stable or A site) site. Analysis of the spectra of such mixed complexes shows the presence of a third nonspecific VO2+-binding site termed A'. The nonspecific A' site seems to be located on the outer surface of the protein close to the C-terminal site.  相似文献   

9.
A specific lactotransferrin receptor was identified in the mouse small-intestinal brush-border membrane and the binding features were investigated in homologous and heterologous systems. The receptor was found to be specific for lactotransferrins isolated from milk of various species, but the affinity was higher toward the homologous ligand (Ka = 3.5 x 10(6) M-1 compared with 2.6 x 10(6) M-1 for both human and bovine lactotransferrins). However, the number of binding sites (n) was the same for the three lactotransferrins, namely 0.53 x 10(12)/micrograms of membrane protein. The binding of mouse lactotransferrin to its receptor was found to be pH-dependent, with an optimal binding at pH 5.5, and seemed unlikely to be carbohydrate-mediated. The receptor was demonstrated to be devoid of any affinity for human and mouse serotransferrins or for a 'serotransferrin-like' protein isolated from mouse milk. The receptor was solubilized with 1% Triton X-100 with good yield. The solubilized receptor was found to retain lactotransferrin-binding activity and sensitivity to pH.  相似文献   

10.
The optimal conditions of the binding of human lactotransferrin to human alveolar macrophages have been determined and the necessity to measure the binding in absence of bovine serum albumin was demonstrated. In these conditions, diferric lactotransferrin and iron-free lactotransferrin are reversibly bound with the following parameters: association constant Ka = 2 and 5 X 10(6) M-1, respectively, and the number of binding sites N = 1.2 and 1 X 10(7), respectively. The binding of the two forms of lactotransferrins was inhibited by various neoglycoproteins, the highest inhibition being obtained with L-fucosyl, then, in the following decreasing order: D-mannosyl greater than N-acetyl-D-glucosaminyl greater than D-galactosyl. In the same conditions, the binding of serotransferrin (Ka = 2 X 10(7) M-1 and 1.6 X 10(7) M-1; N = 5 X 10(4) and 8 X 10(4) for diferric and iron-free protein, respectively) was not inhibited. These results suggest that the recognition of lactotransferrin is mediated by one or several membrane lectins, the fucose being one of the sugar playing an important role in the association. On the contrary, the binding of serotransferrin does not depend on a membrane lectin system.  相似文献   

11.
Lactotransferrin was highly purified from lysates of human neutrophilic leucocytes by immuno-affinity chromatography. A comparative analysis of the molar carbohydrate compositions of human leucocyte lactotransferrin and human milk lactotransferrin reveals that the glycans of leucocyte lactotransferrin differ essentially by the absence of fucose residues. Structural analysis combining methylation-mass spectrometry and 400 MHz 1H-n.m.r. spectrometry of oligosaccharide alditols released from human leucocyte lactotransferrin shows the presence of two disialylated and non-fucosylated biantennary glycans of the N-acetyl-lactosaminic type. These results question a previously proposed mechanism for hyposideraemia in which the leucocyte lactotransferrin was involved and in which the fucose residues played a key role.  相似文献   

12.
There are several options available for intravenous application of iron supplements, but they all have a similar structure:—an iron core surrounded by a carbohydrate coating. These nanoparticles require processing by the reticuloendothelial system to release iron, which is subsequently picked up by the iron-binding protein transferrin and distributed throughout the body, with most of the iron supplied to the bone marrow. This process risks exposing cells and tissues to free iron, which is potentially toxic due to its high redox activity. A new parenteral iron formation, ferric pyrophosphate citrate (FPC), has a novel structure that differs from conventional intravenous iron formulations, consisting of an iron atom complexed to one pyrophosphate and two citrate anions. In this study, we show that FPC can directly transfer iron to apo-transferrin. Kinetic analyses reveal that FPC donates iron to apo-transferrin with fast binding kinetics. In addition, the crystal structure of transferrin bound to FPC shows that FPC can donate iron to both iron-binding sites found within the transferrin structure. Examination of the iron-binding sites demonstrates that the iron atoms in both sites are fully encapsulated, forming bonds with amino acid side chains in the protein as well as pyrophosphate and carbonate anions. Taken together, these data demonstrate that, unlike intravenous iron formulations, FPC can directly and rapidly donate iron to transferrin in a manner that does not expose cells and tissues to the damaging effects of free, redox-active iron.  相似文献   

13.
Human lactotransferrin contains six residues of methionine per mol. Seven different fragments were characterized after treatment with cyanogen bromide (CNBr) and large parts of their sequences were determined. The alignment of the CNBr fragments was established by the determination of N- and C-terminal sequences, by the study of the C-terminal domain obtained by peptic digestion of the protein and by taking into account the internal homology as well as homology with human serum transferrin. The two glycopeptides were situated in the N- and C-terminal parts of the protein, respectively, a situation quite different from that encountered in serum transferrin. The sequence studies allowed us to suggest a 4- and perhaps 6-fold internal homology.  相似文献   

14.
Summary The mechanism of iron uptake by avian erythroid cells was investigated using cells from 7 and 15-day chicken embryos, and chicken serum transferrin and conalbumin (ovotransferrin) labelled with125I and59Fe. Endocytosis of the protein was determined by incubation of the cells with Pronase at 4°C to distinguish internalized from surface-bound protein.Iron was taken up by the cells by receptor-mediated endocytosis of transferrin or conalbumin. The receptors had the same affinity for serum transferrin and conalbumin. Endocytosis of diferric transferrin and conalbumin and exocytosis of apo-protein occurred at the same rates, indicating that iron donation to the cells occurred during the process of intracellular cycling of the protein. The recycling time was approximately 4 min. The rate of endocytosis of diferric protein varied with incubation temperature and at each temperature the rate of endocytosis was sufficient to account for the iron accumulated by the cells. These results and experiments with a variety of inhibitors confirmed the role of endocytosis in iron uptake.The mean cell volumes, receptor numbers and iron uptake rates of 7-day embryo cells were approximately twice those of 15-day embryo cells but the protein recycling times were approximately the same. Hence, the level of transferrin receptors is probably the main determinant of the rate of iron uptake during development of chicken erythroid cells.Transferrins from a variety of mammalian species were unable to donate iron to the chicken cells, but toad (Bufo marinus) transferrin could do so at a slow rate. The mechanism of iron uptake by developing chicken erythroid cells appears to be similar to that described for mammalian cells, although receptor numbers and iron uptake rates are lower than those reported for mammalian cells at a similar stage of development.Abbreviations BSS Hanks balanced salt solution - PBS phosphate buffered saline - MCV mean corpuscular volume - CCCP carbonyl cyanide-M-chlorophenyl hydrazone  相似文献   

15.
Mysteries of the transferrin-transferrin receptor 1 interaction uncovered   总被引:1,自引:0,他引:1  
Richardson DR 《Cell》2004,116(4):483-485
How does the iron (Fe) binding protein, transferrin (Tf), bind to the transferrin receptor 1 (TfR1) to donate Fe to cells? In this issue of Cell, Cheng et al., describe the molecular structure of the human TfR1-Tf complex, This atomic model shows that Tf binds laterally to the TfR1 dimer and extends into the gap between the bottom of the receptor ectodomain and the membrane.  相似文献   

16.
D Legrand  J Mazurier  J Montreuil  G Spik 《Biochimie》1988,70(9):1185-1195
Transferrins are iron-binding glycoproteins involved in iron metabolism and antibacterial defense mechanisms. Since the discovery of transferrins, many studies have attempted to characterize the iron ligands and to establish the conformation of the iron-binding sites. From chemical and spectroscopic studies, it was generally accepted that iron was hexacoordinated to Tyr and His residues, to a water molecule and to a (bi)carbonate ion, electrostatically linked to an Arg residue. On the basis of these studies, on the one hand, and on the basis of the homologies between the amino acid sequences of transferrins, on the other hand, predicted data have been provided about the number and location of the iron ligands. Recent X-ray crystallography studies of human lactotransferrin have partially confirmed the above-mentioned predicted data and have brought invaluable information about the nature of the ligands and the conformation of the iron-binding site. On the basis of the obtained results, a scheme has been proposed in which the iron is coordinated to 2 Tyr, 1 His and 1 Asp residues, to a (bi)carbonate linked to an Arg residue and probably to a water molecule. The iron-binding site is located at the interface between the two domains which constitute each lobe of the transferrins.  相似文献   

17.
The recent determination by X-ray diffraction of the tridimensional structure of human lactotransferrin has underlined the presence of two lobes, each composed of two domains, I and II, as well as the involvement of five ligands in the binding of iron. Only one of the ligands (Asp-61) is located in domain I (residues 1-90 and 252-320), while the others [two tyrosine, one histidine and one (bi)carbonate ion linked to an arginine residue] belong to domain II (residues 91-251). On the basis of these data and of our previous results concerning the isolation of the 30 kDa N-tryptic fragment (residues 4-281) and the 20 kDa N2-glycopeptide (N-terminal domain II; residues 91-253) from human and bovine lactotransferrins, we have compared the iron-binding properties of these two fragments. The results demonstrate that Asp-61, which is missing from domain II, does not take part in the stability upon protonation of the iron complex of both human and bovine lactotransferrins. Furthermore, by comparing the iron-binding properties of human and bovine lactotransferrins to those of isolated 30 kDa N-tryptic and 50 kDa C-tryptic fragments and of the reassociated N,C-tryptic complex of both proteins, it has been shown that the non-covalent interactions which occurred between the two lobes of lactotransferrins and in the reassociated N,C-tryptic complex can explain in part the high affinity of lactotransferrins for iron. Finally, deglycosylation experiments on the 30 kDa N-tryptic fragment and N-terminal domain II from human and bovine lactotransferrins demonstrate that full removal of the glycan moiety leads to the loss of iron-binding capacity and so underlines the importance of the glycan moiety in the stability upon protonation of the N-terminal iron-binding site of both lactotransferrins.  相似文献   

18.
Human lactotransferrin receptors have been recently characterized on mitogen-stimulated human lymphocytes [(1989) Eur. J. Biochem. 179, 481-487]. In order to define the lactotransferrin recognition site by these receptors, the binding to lymphocytes of several tryptic fragments, isolated from human lactotransferrin by mild tryptic hydrolysis [(1984) Biochim. Biophys. Acta 787, 90-96], has been investigated. The 30 kDa N-tryptic fragment (residues 4-281) and the re-associated N,C-tryptic complex bind to lactotansferrin lymphocyte receptor with a dissociation constant of 44 nM and 39 nM, respectively, similar to the value obtained for the native lactotransferrin (Kd = 46 nM). However, neither the N-terminal domain II (residues 91-257) nor the 50 kDa C-tryptic fragment (residues 282-703) are recognized. These results suggest that the binding site of human lactotransferrin by the lymphocyte receptor is located in the N-terminal lobe and more precisely in the N-terminal domain I (residues 4-90 and/or 258-281).  相似文献   

19.
鼻咽癌是一种多基因遗传性肿瘤,其发病与遗传因素和环境因素密切相关,基因与环境因素间存在复杂的交互作用. 本课题组通过全基因组杂合性丢失扫描及比较基因组杂交,发现鼻咽癌中3号染色体短臂存在高频缺失,通过鼻咽癌家系连锁分析,发现染色体3p21区域为鼻咽癌易感基因区,随后通过表型克隆策略在该染色体区域分离鉴定了鼻咽癌候选易感/抑瘤基因LTF. LTF基因编码的乳铁蛋白是一种广泛分布于哺乳动物乳汁、鼻咽分泌物、泪液等分泌液中的天然免疫分子,在正常鼻咽部高表达而在鼻咽癌组织中表达显著下调,且与鼻咽癌的临床进展及侵袭转移密切相关. 病例-对照关联分析发现LTF基因中2个单核苷酸多态位点与鼻咽癌发病风险密切相关,且多态性改变可影响LTF基因的表达水平. 我们发现乳铁蛋白能与EB病毒在人B细胞表面的受体CD21结合,阻断EB病毒入侵宿主B细胞,并抑制EB病毒由B细胞向鼻咽上皮细胞的传递,在鼻咽上皮的癌变过程中起保护作用. 我们还发现LTF能通过MAPK和AKT等通路抑制鼻咽癌细胞的增殖和侵袭转移. 这些结果表明乳汁中的天然成份乳铁蛋白在鼻咽癌等EB病毒相关疾病的防治中具有重要的应用前景.  相似文献   

20.
Y A Suzuki  K Shin  B L?nnerdal 《Biochemistry》2001,40(51):15771-15779
Lactoferrin (Lf), a major iron-binding protein in human milk, has been suggested to have multiple biological roles such as facilitating iron absorption, modulating the immune system, embryonic development, and cell proliferation. Our previous binding studies suggested the presence of a specific receptor for Lf (LfR) in the small intestine of newborn infants, which may facilitate iron absorption. We here report the cloning and the functional expression of the human intestinal LfR and the evidence of its involvement in iron metabolism. The entire coding region of the LfR cDNA was cloned by PCR based on amino acid sequences of the purified native LfR (nLfR). The recombinant LfR (rLfR) was then expressed in a baculovirus-insect cell system and purified by immobilized human Lf (hLf) affinity chromatography where binding of hLf to the rLfR was partially Ca(2+) dependent. The apparent molecular mass was 136 kDa under nonreducing conditions and 34 kDa under reducing conditions. 125I-hLf bound to the rLfR with an apparent K(d) of approximately 360 nM. These biochemical properties of the rLfR are similar to those of the nLfR. RT-PCR revealed that the gene was expressed at high levels in fetal small intestine and in adult heart and at lower levels in Caco-2 cells. PI-PLC treatment of Caco-2 cells indicated that the LfR is GPI anchored. In Caco-2 cells transfected with the LfR gene, 125I-hLf binding and 59Fe-hLf uptake were increased by 1.7 and 3.4 times, respectively, compared to those in mock-transfected cells. Our findings demonstrate the presence of a unique receptor-mediated mechanism for nutrient uptake by the newborn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号