首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diversity and variation of total and active ammonia-oxidizing bacteria in a full-scale aerated submerged biofilm reactor for drinking water pretreatment were characterized by clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA and its gene during a whole year. Sequences obtained from clone libraries affiliated with the Nitrosomonas oligotropha lineage and the Nitrosomonas communis lineage. An uncultured subgroup of Nitrosomonas communis lineage was also detected. Seasonal variations in both total and active ammonia-oxidizing bacteria communities were observed in the DGGE profiles, but an RNA-based analysis reflected more obvious dynamic changes in ammonia-oxidizer community than a DNA-based approach. Statistical study based on canonical correspondence analysis showed that a community shift of active ammonia oxidizers was significantly influenced by temperature and pH, but no significant correlation was found between environmental variables and total ammonia-oxidizer community shift.  相似文献   

2.
The microbial community structure and activity dynamics of a phosphate-removing biofilm from a sequencing batch biofilm reactor were investigated with special focus on the nitrifying community. O(2), NO(2)(-), and NO(3)(-) profiles in the biofilm were measured with microsensors at various times during the nonaerated-aerated reactor cycle. In the aeration period, nitrification was oxygen limited and restricted to the first 200 microm at the biofilm surface. Additionally, a delayed onset of nitrification after the start of the aeration was observed. Nitrate accumulating in the biofilm in this period was denitrified during the nonaeration period of the next reactor cycle. Fluorescence in situ hybridization (FISH) revealed three distinct ammonia-oxidizing populations, related to the Nitrosomonas europaea, Nitrosomonas oligotropha, and Nitrosomonas communis lineages. This was confirmed by analysis of the genes coding for 16S rRNA and for ammonia monooxygenase (amoA). Based upon these results, a new 16S rRNA-targeted oligonucleotide probe specific for the Nitrosomonas oligotropha lineage was designed. FISH analysis revealed that the first 100 microm at the biofilm surface was dominated by members of the N. europaea and the N. oligotropha lineages, with a minor fraction related to N. communis. In deeper biofilm layers, exclusively members of the N. oligotropha lineage were found. This separation in space and a potential separation of activities in time are suggested as mechanisms that allow coexistence of the different ammonia-oxidizing populations. Nitrite-oxidizing bacteria belonged exclusively to the genus Nitrospira and could be assigned to a 16S rRNA sequence cluster also found in other sequencing batch systems.  相似文献   

3.
Ammonia-oxidizing archaea (AOA) outnumber ammonia-oxidizing bacteria (AOB) in many terrestrial and aquatic environments. Although nitrification is the primary function of aquarium biofilters, very few studies have investigated the microorganisms responsible for this process in aquaria. This study used quantitative real-time PCR (qPCR) to quantify the ammonia monooxygenase (amoA) and 16S rRNA genes of Bacteria and Thaumarchaeota in freshwater aquarium biofilters, in addition to assessing the diversity of AOA amoA genes by denaturing gradient gel electrophoresis (DGGE) and clone libraries. AOA were numerically dominant in 23 of 27 freshwater biofilters, and in 12 of these biofilters AOA contributed all detectable amoA genes. Eight saltwater aquaria and two commercial aquarium nitrifier supplements were included for comparison. Both thaumarchaeal and bacterial amoA genes were detected in all saltwater samples, with AOA genes outnumbering AOB genes in five of eight biofilters. Bacterial amoA genes were abundant in both supplements, but thaumarchaeal amoA and 16S rRNA genes could not be detected. For freshwater aquaria, the proportion of amoA genes from AOA relative to AOB was inversely correlated with ammonium concentration. DGGE of AOA amoA genes revealed variable diversity across samples, with nonmetric multidimensional scaling (NMDS) indicating separation of freshwater and saltwater fingerprints. Composite clone libraries of AOA amoA genes revealed distinct freshwater and saltwater clusters, as well as mixed clusters containing both freshwater and saltwater amoA gene sequences. These results reveal insight into commonplace residential biofilters and suggest that aquarium biofilters may represent valuable biofilm microcosms for future studies of AOA ecology.  相似文献   

4.
Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are important for nitrogen cycling in marine ecosystems. Little is known about the diversity and abundance of these organisms on the surface of marine macroalgae, despite the algae's potential importance to create surfaces and local oxygen-rich environments supporting ammonia oxidation at depths with low dissolved oxygen levels. We determined the abundance and composition of the epiphytic bacterial and archaeal ammonia-oxidizing communities on three species of macroalgae, Osmundaria volubilis, Phyllophora crispa, and Laminaria rodriguezii, from the Balearic Islands (western Mediterranean Sea). Quantitative PCR of bacterial and archaeal 16S rRNA and amoA genes was performed. In contrast to what has been shown for most other marine environments, the macroalgae's surfaces were dominated by bacterial amoA genes rather than those from the archaeal counterpart. On the basis of the sequences retrieved from AOB and AOA amoA gene clone libraries from each algal species, the bacterial ammonia-oxidizing communities were related to Nitrosospira spp. and to Nitrosomonas europaea and only 6 out of 15 operational taxonomic units (OTUs) were specific for the host species. Conversely, the AOA diversity was higher (43 OTUs) and algal species specific, with 17 OTUs specific for L. rodriguezii, 3 for O. volubilis, and 9 for P. crispa. Altogether, the results suggest that marine macroalgae may exert an ecological niche for AOB in marine environments, potentially through specific microbe-host interactions.  相似文献   

5.
Considering their abundance and broad distribution, non-extremophilic Crenarchaeota are likely to play important roles in global organic and inorganic matter cycles. The diversity and abundance of archaeal 16S rRNA and putative ammonia monooxygenase alpha-subunit (amoA) genes were comparatively analyzed to study genetic potential for nitrification of ammonia-oxidizing archaea (AOA) in the surface layers (0-1 cm) of four marine sediments of the East Sea, Korea. After analysis of a 16S rRNA gene clone library, we found various archaeal groups that include the crenarchaeotal group (CG) I.1a (54.8%) and CG I.1b (5.8%), both of which are known to harbor ammonia oxidizers. Notably, the 16S rRNA gene of CG I.1b has only previously been observed in terrestrial environments. The 16S rRNA gene sequence data revealed a distinct difference in archaeal community among sites of marine sediments. Most of the obtained amoA sequences were not closely related to those of the clones retrieved from estuarine sediments and marine water columns. Furthermore, clades of unique amoA sequences were likely to cluster according to sampling sites. Using real-time PCR, quantitative analysis of amoA copy numbers showed that the copy numbers of archaeal amoA ranged from 1.1 x 10(7) to 4.9 x 10(7) per gram of sediment and were more numerous than those of bacterial amoA, with ratios ranging from 11 to 28. In conclusion, diverse CG I.1a and CG I.1b AOA inhabit surface layers of marine sediments and AOA, and especially, CG I.1a are more numerous than other ammonia-oxidizing bacteria.  相似文献   

6.
7.
The current perception of evolutionary relationships and the natural diversity of ammonia-oxidizing bacteria (AOB) is mainly based on comparative sequence analyses of their genes encoding the 16S rRNA and the active site polypeptide of the ammonia monooxygenase (AmoA). However, only partial 16S rRNA sequences are available for many AOB species and most AOB have not yet been analyzed on the amoA level. In this study, the 16S rDNA sequence data of 10 Nitrosomonas species and Nitrosococcus mobilis were completed. Furthermore, previously unavailable 16S rRNA sequences were determined for three Nitrosomonas sp. isolates and for the gamma-subclass proteobacterium Nitrosococcus halophilus. These data were used to revaluate the specificities of published oligonucleotide primers and probes for AOB. In addition, partial amoA sequences of 17 AOB, including the above-mentioned 15 AOB, were obtained. Comparative phylogenetic analyses suggested similar but not identical evolutionary relationships of AOB by using 16S rRNA and AmoA as marker molecules, respectively. The presented 16S rRNA and amoA and AmoA sequence data from all recognized AOB species significantly extend the currently used molecular classification schemes for AOB and now provide a more robust phylogenetic framework for molecular diversity inventories of AOB. For 16S rRNA-independent evaluation of AOB species-level diversity in environmental samples, amoA and AmoA sequence similarity threshold values were determined which can be used to tentatively identify novel species based on cloned amoA sequences. Subsequently, 122 amoA sequences were obtained from 11 nitrifying wastewater treatment plants. Phylogenetic analyses of the molecular isolates showed that in all but two plants only nitrosomonads could be detected. Although several of the obtained amoA sequences were only relatively distantly related to known AOB, none of these sequences unequivocally suggested the existence of previously unrecognized species in the wastewater treatment environments examined.  相似文献   

8.
Zero-discharge marine aquaculture systems are an environmentally friendly alternative to conventional aquaculture. In these systems, water is purified and recycled via microbial biofilters. Here, quantitative data on nitrifier community structure of a trickling filter biofilm associated with a recirculating marine aquaculture system are presented. Repeated rounds of the full-cycle rRNA approach were necessary to optimize DNA extraction and the probe set for FISH to obtain a reliable and comprehensive picture of the ammonia-oxidizing community. Analysis of the ammonia monooxygenase gene (amoA) confirmed the results. The most abundant ammonia-oxidizing bacteria (AOB) were members of the Nitrosomonas sp. Nm143-lineage (6.7% of the bacterial biovolume), followed by Nitrosomonas marina-like AOB (2.2% of the bacterial biovolume). Both were outnumbered by nitrite-oxidizing bacteria of the Nitrospira marina-lineage (15.7% of the bacterial biovolume). Although more than eight other nitrifying populations were detected, including Crenarchaeota closely related to the ammonia-oxidizer 'Nitrosopumilus maritimus', their collective abundance was below 1% of the total biofilm volume; their contribution to nitrification in the biofilter is therefore likely to be negligible.  相似文献   

9.
Ammonia-oxidizing bacterial populations in an industrial wastewater treatment plant were investigated with amoA and 16S rRNA gene real-time PCR assays. Nitrosomonas nitrosa initially dominated, but over time RI-27-type ammonia oxidizers, also within the Nitrosomonas communis lineage, increased from below detection to codominance. This shift occurred even though nitrification remained constant.  相似文献   

10.
The functional gene amoA was used to compare the diversity of ammonia-oxidizing bacteria (AOB) in the water column and sediment-water interface of the two freshwater lakes Plusssee and Sch?hsee and the Baltic Sea. Nested amplifications were used to increase the sensitivity of amoA detection, and to amplify a 789-bp fragment from which clone libraries were prepared. The larger part of the sequences was only distantly related to any of the cultured AOB and is considered to represent new clusters of AOB within the Nitrosomonas/Nitrosospira group. Almost all sequences from the water column of the Baltic Sea and from 1-m depth of Sch?hsee were related to different Nitrosospira clusters 0 and 2, respectively. The majority of sequences from Plusssee and Sch?hsee were associated with sequences from Chesapeake Bay, from a previous study of Plusssee and from rice roots in Nitrosospira-like cluster A, which lacks sequences from Baltic Sea. Two groups of sequences from Baltic Sea sediment were related to clonal sequences from other brackish/marine habitats in the purely environmental Nitrosospira-like cluster B and the Nitrosomonas-like cluster. This confirms previous results from 16S rRNA gene libraries that indicated the existence of hitherto uncultivated AOB in lake and Baltic Sea samples, and showed a differential distribution of AOB along the water column and sediment of these environments.  相似文献   

11.
The model marine crenarchaeote ' Cenarchaeum symbiosum ' is until now the only ammonia-oxidizing archaeon known from a marine sponge. Here, phylogenetic analyses based on the 16S rRNA and ammonia monooxygenase subunit A ( amoA ) genes revealed the presence of putative ammonia-oxidizing archaea (AOA) in a diverse range of sponges from the western Pacific, Caribbean and Mediterranean. amoA diversity was limited even between different oceans, with many of the obtained sequences (75.9%; n total = 83) forming a monophyletic, apparently sponge- (and coral-) specific lineage, analogous to those previously inferred from comparative 16S rRNA gene studies of sponge-associated microbes. The presence of AOA in sponge larvae, as detected by 16S rRNA and amoA PCR assays as well as by fluorescence in situ hybridization, suggests they are vertically transmitted and thus might be of importance for ammonia detoxification within the sponge.  相似文献   

12.
We investigated the phylogenetic diversity of ammonia-oxidizing bacteria (AOB) in Yellow Sea continental shelf sediment by the cloning and sequencing of PCR-amplified amoA and 16S rRNA genes. Phylogenetic analysis of the amoA-related clones revealed that the diversity of AOB was extremely low at the study site. The majority (92.7%) of amoA clones obtained belonged to a single cluster, environmental amoA cluster-3, the taxonomic position of which was previously unknown. Phylogenetic analysis on AOB-specific 16S rRNA gene sequences also demonstrated a very low diversity. All of the cloned 16S rRNA gene sequences comprised a single phylotype that belonged to the members of uncultured Nitrosospira cluster-1, suggesting that AOB belonging to the uncultured Nitrosospira cluster- 1 could carry amoA sequences of environmental amoA cluster-3.  相似文献   

13.
Communities of ammonia-oxidizing bacteria (AOB) were characterized in two acidic soil sites experimentally subjected to varying levels of nitrogen and sulphur deposition. The sites were an acidic spruce forest soil in Deepsyke, Southern Scotland, with low background deposition, and a nitrogen-saturated upland grass heath in Pwllpeiran, North Wales. Betaproteobacterial ammonia-oxidizer 16S rRNA and ammonia monooxygenase (amoA) genes were analysed by cloning, sequencing and denaturing gradient gel electrophoresis (DGGE). DGGE profiles of amoA and 16S rRNA gene fragments from Deepsyke soil in 2002 indicated no effect of nitrogen deposition on AOB communities, which contained both Nitrosomonas europaea and Nitrosospira. In 2003, only Nitrosospira could be detected, and no amoA sequences could be retrieved. These results indicate a decrease in the relative abundance of AOB from the year 2002 to 2003 in Deepsyke soil, which may be the result of the exceptionally low rainfall in spring 2003. Nitrosospira-related sequences from Deepsyke soil grouped in all clusters, including cluster 1, which typically contains only sequences from marine environments. In Pwllpeiran soil, 16S rRNA gene libraries were dominated by nonammonia oxidizers and no amoA sequences were detectable. This indicates that autotrophic AOB play only a minor role in these soils even at high nitrogen deposition.  相似文献   

14.
15.
Comparisons of the activities and diversities of ammonia-oxidizing bacteria (AOB) in the root environment of different cultivars of rice (Oryza sativa L.) indicated marked differences despite identical environmental conditions during growth. Gross nitrification rates obtained by the 15N dilution technique were significantly higher in a modern variety, IR63087-1-17, than in two traditional varieties. Phylogenetic analysis based on the ammonium monooxygenase gene (amoA) identified strains related to Nitrosospira multiformis and Nitrosomonas europaea as the predominant AOB in our experimental rice system. A method was developed to determine the abundance of AOB on root biofilm samples using fluorescently tagged oligonucleotide probes targeting 16S rRNA. The levels of abundance detected suggested an enrichment of AOB on rice roots. We identified 40 to 69% of AOB on roots of IR63087-1-17 as Nitrosomonas spp., while this subpopulation constituted 7 to 23% of AOB on roots of the other cultivars. These results were generally supported by denaturing gradient gel electrophoresis of the amoA gene and analysis of libraries of cloned amoA. In hydroponic culture, oxygen concentration profiles around secondary roots differed significantly among the tested rice varieties, of which IR63087-1-17 showed maximum leakage of oxygen. The results suggest that varietal differences in the composition and activity of root-associated AOB populations may result from microscale differences in O2 availability.  相似文献   

16.
太湖竺山湾沉积物中氨氧化原核生物的垂直分布与多样性   总被引:8,自引:0,他引:8  
原核生物驱动的氨氧化过程对于富营养化湖泊的氮循环具有重要意义。为了解太湖藻型湖区沉积物中氨氧化原核生物的垂直分布和多样性特征,采用分子生态学方法,对竺山湾沉积物剖面中氨单加氧酶基因(amoA)或16S rRNA基因等特征分子标记的变化和序列特征进行了分析。结果表明,氨氧化细菌(ammonia-oxidizing bacteria,AOB)和氨氧化古菌(ammonia-oxidizing archaea,AOA)共存于沉积物各层。AOB的优势种在5cm深度以下发生明显改变,这可能与沉积物氧化还原电位及铵态氮的变化有关;所有细菌amoA序列均属亚硝化单胞菌(Nitrosomonas)。AOA群落结构自表层至7cm深度变化不大,所有古菌amoA序列分属泉古菌CG1.1b和CG1.1a两大类群,这可能与太湖形成历史上的海陆交替过程有关。此外,沉积物各层均未发现典型厌氧氨氧化(anaerobic ammonium oxidation,anammox)细菌16S rRNA基因序列。这些发现丰富了对太湖藻型湖区氨氧化原核生物分布、多样性及环境调控原理的认识,对理解富营养化湖泊氨氧化规律、认识湖泊生态系统氮循环功能具有借鉴意义。  相似文献   

17.
Denaturing gradient gel electrophoresis (DGGE) of PCR amplicons of the ammonia monooxygenase gene (amoA) was developed and employed to investigate the diversity of ammonia-oxidizing bacteria (AOB) in four different habitats. The results were compared to DGGE of PCR-amplified partial 16S rDNA sequences made with primers specific for ammonia-oxidizing bacteria. Potential problems, such as primer degeneracy and multiple gene copies of the amoA gene, were investigated to evaluate and minimize their possible impact on the outcome of a DGGE analysis. amoA and 16S rDNA amplicons were cloned, and a number of clones screened by DGGE to determine the abundance of different motility types in the clone library. The abundance of clones was compared to the relative intensity of bands emerging in the band pattern produced by direct amplification of the genes from the environmental sample. Selected clones were sequenced to evaluate the specificity of the respective primers. The 16S rDNA primer pair, reported to be specific for ammonia-oxidizing bacteria (AOB), generated several sequences that were not related to the known Nitrosospira-Nitrosomonas group and, thus, not likely to be ammonia oxidizers. However, no false positives were found among the sequences retrieved with the modified amoA primers. Some phylogenetic information could be deduced from the position of amoA bands in DGGE gels. The Nitrosomonas-like sequences were found within a denaturant range from 30% to 46%, whereas the Nitrosospira-like sequences migrated to 50% to 60% denaturant. The majority of retrieved sequences from all four habitats with high ammonia loads were Nitrosomonas-like and only few Nitrosospira-like sequences were detected.  相似文献   

18.
The abundance of genes related to the nitrogen biogeochemical cycle and the microbial community in forest soils (bacteria, archaea, fungi) were quantitatively analyzed via real-time PCR using 11 sets of specific primers amplifying nifH, bacterial amoA, archaeal amoA, narG, nirS, nirK, norB, nosZ, bacterial 16S rRNA gene, archaeal 16S rRNA gene, and the ITS sequence of fungi. Soils were sampled from Bukhan Mountain from September of 2010 to July of 2011 (7 times). Bacteria were the predominant microbial community in all samples. However, the abundance of archaeal amoA was greater than bacterial amoA throughout the year. The abundances of nifH, nirS, nirK, and norB genes changed in a similar pattern, while narG and nosZ appeared in sensitive to the environmental changes. Clone libraries of bacterial 16S rRNA genes were constructed from summer and winter soil samples and these revealed that Acidobacteria was the most predominant phylum in acidic forest soil environments in both samples. Although a specific correlation of environmental factor and gene abundance was not verified by principle component analysis, our data suggested that the combination of biological, physical, and chemical characteristics of forest soils created distinct conditions favoring the nitrogen biogeochemical cycle and that bacterial communities in undisturbed acidic forest soils were quite stable during seasonal change.  相似文献   

19.
Here we report on the biodiversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in sediment samples from the Xinyi River, Jinagsu Province (China). The biodiversity of aerobic ammonium-oxidizing bacteria in the sediment was assessed using the amoA gene as functional marker. The retrieved amoA clones were affiliated to environmental sequences from freshwater habitats. The closest cultivated relative was Nitrosomonas urea. Anaerobic ammonium-oxidizing (anammox) bacteria were studied using anammox and planctomycete-specific 16S rRNA gene primers. The sediments contained 16S rRNA genes and bacterial cells closely related to the known anammox bacterium Candidatus'Brocadia anammoxidans'. Anaerobic continuous flow reactors were set up to enrich anammox organisms from the sediments. After an adaptation period of about 25 days the reactors started to consume ammonium and nitrite, indicating that the anammox reaction was occurring with a rate of 41-58 nmol cm(-3) h(-1). Community analysis of the enrichments by quantitative fluorescence in situ hybridization showed an increase in the abundance of anammox bacteria from < 1% to 6 +/- 2% of the total population. Analysis of the 16S rRNA genes showed that the enriched anammox organisms were related to the Candidatus'Scalindua' genus.  相似文献   

20.
The presence of a copper-containing dissimilatory nitrite reductase gene (nirK) was discovered in several isolates of beta-subdivision ammonia-oxidizing bacteria using PCR and DNA sequencing. PCR primers Cunir3 and Cunir4 were designed based on published nirK sequences from denitrifying bacteria and used to amplify a 540-bp fragment of the nirK gene from Nitrosomonas marina and five additional isolates of ammonia-oxidizing bacteria. Amplification products of the expected size were cloned and sequenced. Alignment of the nucleic acid and deduced amino acid (AA) sequences shows significant similarity (62 to 75% DNA, 58 to 76% AA) between nitrite reductases present in these nitrifiers and the copper-containing nitrite reductase found in classic heterotrophic denitrifiers. While the presence of a nitrite reductase in Nitrosomonas europaea is known from early biochemical work, preliminary sequence data from its genome indicate a rather low similarity to the denitrifier nirKs. Phylogenetic analysis of the partial nitrifier nirK sequences indicates that the topology of the nirK tree corresponds to the 16S rRNA and amoA trees. While the role of nitrite reduction in the metabolism of nitrifying bacteria is still uncertain, these data show that the nirK gene is present in closely related nitrifying isolates from many oceanographic regions and suggest that nirK sequences retrieved from the environment may include sequences from ammonia-oxidizing bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号