首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Cisplatin binds to cellular macromolecules (DNA, RNA and protein) to the same extent in wild-type Walker rat carcinoma cells and a variant sub-line of these cells resistant to cisplatin and to other difunctional, but not monofunctional cytotoxic agents. Wild-type Walker cells exhibit a unique sensitivity to DNA-bound cisplatin, while the resistant cells have a sensitivity that approximates to that of many normal and other tumour cell lines. Total DNA-bound adducts were lost from both sensitive and resistant Walker cells at similar rates. Equal numbers of DNA interstrand crosslinks and DNA-protein crosslinks were formed in both cell lines, and the rate of loss of both types of crosslinks was similar in the two lines. Therefore the unusual sensitivity of Walker cells to cisplatin is not due to a defect in their ability to remove these platinum-DNA adducts.  相似文献   

2.
5-Aziridinyl-2,4-Dinitrobenzamide (CB 1954) has been reported to be a highly selective inhibitor of the Walker tumour, with a therapeutic index of 60 (refs. 1 and 2). This compound, however, differs from other tumour inhibitory alkylating agents in that it is monofunctional and fails to inhibit the growth of several animal tumours which respond to difunctional alkylating agents. Compounds closely related in structure to CB 1954 are either much less active or inactive against the Walker tumour3. The structural specificity and biological properties of CB 1954 indicate that its mechanism of action is different from that of the tumour inhibitory difunctional alkylating agents. Whereas the latter are thought to be cytotoxic primarily as a result of their reaction with DNA, CB 1954 may interfere with a specific stage of purine biosynthesis2. We have shown by cell hybridization that, unlike resistance to a difunctional alkylating agent, cellular resistance to CB 1954 is lost on fusion with a sensitive cell.  相似文献   

3.
The Walker 256 rat tumour has been maintained in vivo for over 60 years and until recently was used as a primary screen for new antitumour agents. This screen was particularly useful in identifying difunctional alkylating agents as potentially useful anticancer agents and it would seem that the Walker tumour is composed of cells sensitive towards this type of agent. A cell line (WS) established from the Walker tumour retained the sensitivity of the tumour towards difunctional agents and we have examined its phenotype in comparison to a derived, resistant, cell line (WR). The response of WR cells to a range of cytotoxic agents was similar to other established cell lines whilst WS cells were much more sensitive only towards difunctional reacting agents. There were no significant differences in the binding of these agents to the DNA of WS or WR cells. All the agents towards which WS cells showed sensitivity were, without exception, capable of reacting with DNA in Walker cells and forming DNA-DNA interstrand crosslinks. WS cells were not sensitive to busulphan, BCNU, CCNU or Me-CCNU but these agents did not produce interstrand crosslinks in the DNA of either WS or WR cells. Thus WS cells are intrinsically sensitive to specific DNA damage and this is probably a DNA interstrand crosslink. Hybrid cells produced by fusion of WS with WR cells lacked the inherent sensitivity of the WS cells towards cisplatin; sensitivity was therefore a recessive characteristic. Transfection of WS cells with human DNA also gave rise to 2 cisplatin-resistant clones, although it could not be ascertained if these clones were true transfectants or revertants. The survival of these resistant clones, after treatment with cisplatin, was about the same as WR cells a finding which would be consistent with complementation by a transferred gene or reversion of a single gene defect in WS cells. In their sensitivity only to difunctional compounds and lack of an apparent DNA excision repair defect the phenotype of Walker cells strongly resembles those cells from human patients suffering from Fanconi's anaemia and also of yeast snm1 mutant cells. The mechanisms giving rise to this failure to tolerate specific DNA damage (which seems to involve the inability to recover from the initial inhibition of DNA synthesis and may involve a single defect of a gene involved in the late steps of crosslink repair), do not involve drug uptake, drug binding to DNA, cell size, cell doubling time or DNA excision repair.  相似文献   

4.
In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks (ICLs). Ectopic expression of wild-type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.  相似文献   

5.
The mutagenicity and cytotoxicity of cis- and trans-Pt(II) diamminedichloride (PDD) were examined in V79 Chinese hamster lung cells and compared with effects on DNA measured by alkaline elution. DNA--protein crosslinks and DNA interstrand crosslinks were detected following doses of cis-PDD which reduced cell survival 80--90% and which produced a mutant frequency of 3 X 10(-4) at the HGPRT locus. Equitoxic doses of trans-PDD were much less mutagenic than cis-PDD. At equitoxic doses, trans-PDD produced more DNA-protein crosslinking than did cis-PDD, but interstrand crosslinking for the two isomers was comparable. Hence, the interstrand crosslink could be the cytotoxic lesion produced by these Pt compounds whereas neither of these DNA lesions are necessarily mutagenic. The mutagenesis produced by cis-PDD could be due to crosslinks of a different type than those produced by trans-PDD or it may be due to monofunctional damage.  相似文献   

6.
We have recently developed a mammalian cell free assay in which interstrand crosslinks induce DNA synthesis in both damaged and undamaged plasmids co-incubated in the same extract. We have also shown using hamster mutants that both ERCC1 and XPF are required for the observed incorporation. Here, we show that extracts from an XPF patient cell line differentially process UV mimetic damage and interstrand crosslinks in vitro. XPF extracts are highly defective in the stimulation of repair synthesis by N-acetoxy-N- acetylaminofluorene, but are proficient in the stimulation of DNA synthesis by psoralen interstrand crosslinks. In addition, we show that extracts from the hamster UV140 mutant, which has high UV sensitivity, but moderate mitomycin C sensitivity, are similar in both assays to XPF cell extracts. These findings support the hypothesis that the activities of XPF in nucleotide excision repair (NER) and crosslink repair are separable, and that mutations in XPF patients result in the abolition of NER, but not recombinational repair pathways, which are likely to be essential as has been observed in ERCC1 homozygous –/– mice.  相似文献   

7.
8.
The feasibility of ablating differentiated adipocytes and the mechanism of cell ablation with a suitable prodrug activating system is described. The system is based on the use of E. coli nitroreductase (NTR) enzyme that activates certain nitro compounds, such as the antitumor drug CB1954, into cytotoxic DNA interstrand cross-linking agents. Differentiated preadipocyte cells (3T3L1) transfected with an aP2 driven nitroreductase construct were efficiently killed after incubation with medium containing the prodrug CB1954, while untransfected cells were not affected. It was demonstrated that the mechanism of cell ablation is apoptosis and that the system has a bystander effect mediated by a toxic metabolite of the prodrug. The described system should provide a good alternative approach for gene therapy studies and a new inducible approach to manipulating the number of cells in tissues of transgenic animals and the ability to study the recovery of the tissue from cell damage or loss.  相似文献   

9.
Potential of chlorpyrifos and cypermethrin forming DNA adducts   总被引:1,自引:0,他引:1  
Cui Y  Guo J  Xu B  Chen Z 《Mutation research》2006,604(1-2):36-41
DNA adducts consist of DNA monoadducts, DNA intrastrand crosslinks, DNA interstrand crosslinks, and DNA-protein crosslinks. If not repaired or mistakenly repaired, DNA adducts may lead to gene mutations and initiate carcinogenesis. Two insecticides, chlorpyrifos and cypermethrin, were studied for their potential of forming DNA monoadducts, DNA interstrand crosslinks, and DNA-protein crosslinks in primary mouse hepatocytes via the assays of bioluminescence, ethidium bromide fluorescence, and K+-SDS precipitation. DNA interstrand crosslinks were also measured on calf thymus DNA. It was shown that chlorpyrifos could not form DNA adducts. Cypermethrin formed DNA monoadducts and DNA interstrand crosslinks in hepatocytes. However, cypermethrin didn't form DNA interstrand crosslinks on calf thymus DNA and in hepatocytes treated with SKF-525A, a cytochrome P450 inhibitor, which suggests that active metabolites of cypermethrin instead of cypermethrin itself caused DNA interstrand crosslinks and that cytochrome P450 may be involved in the activation of cypermethrin.  相似文献   

10.
Dictamnine, a naturally occurring furoquinoline, produces bacterial frameshift mutations in the dark. It does not form DNA interstrand crosslinks in bacterial cells in the presence of near-ultraviolet light (300-380 nm). It is more active than angelicin but slightly less active than 8-MOP as a phototoxic agent with E. coli. It is however a more active mutagen than 8-MOP at equivalent concentration. Dictamnine is slightly more potent than the same concentration of angelicin in producing photosensitized lethality in Chinese hamster cells. It does, however, produce almost twice as many sister-chromatid exchanges per lethal event than angelicin. The concept of 'unit dose' relating the observable photoinduced damage by the photosensitizer and the total irradiation appears to apply reasonably well to the actions of dictamnine in killing bacterial and mammalian cells, in the formation of sister-chromatid exchanges, but not to the induction of bacterial mutations.  相似文献   

11.
Recent studies with the anthracycline Adriamycin have demonstrated its activation by formaldehyde and subsequent binding to DNA in vitro. Since formaldehyde levels are known to be higher in cells of myeloid origin and the structurally related drug mitoxantrone is most effective against cancers of myeloid origin, this indicates a possible role of formaldehyde in the activation of mitoxantrone. In vitro studies revealed that the activation of mitoxantrone by formaldehyde leads to the formation of drug-DNA adducts. These adducts stabilised DNA such that they functioned as virtual interstrand crosslinks. The interstrand crosslinks were formed in the presence of mitoxantrone and formaldehyde in a time- and concentration-dependent manner. In the absence of formaldehyde no crosslinks were formed, indicating a key role in drug activation and DNA binding. The adducts (virtual crosslinks) were relatively unstable with 50% crosslinks remaining after 10 min at 60 degrees C in 45% formamide. Like Adriamycin, the mitoxantrone-formaldehyde-DNA crosslinks are heat labile and do not display the stability associated with covalent interstrand crosslinks.  相似文献   

12.
13.
The human excision repair gene ERCC-1 gene restores normal resistance to UV and mitomycin C in excision repair deficient chinese hamster ovary cells of complementation group 1. To investigate the involvement of the ERCC-1 gene in gene-specific repair of bulky lesions, we have studied the removal of damage induced by the antitumor agent cisplatin in CHO mutant 43-3B cells of group 1, with or without transfection with the ERCC-1 gene. Firstly, we determined the contribution of the ERCC-1 gene to the repair of interstrand crosslinks (ICL) induced by cisplatin and found efficient removal of ICLs from the dihydrofolate reductase (DHFR) gene in the ERCC-1 transfected 43-3B cells. We then assessed the contribution of ERCC-1 to the repair of intrastrand adducts (IA) induced by cisplatin. Compared to the wild-type parental cell line, the ERCC-1 transfected 43-3B cells repaired the IAs in the DHFR gene inefficiently. Thus, our data suggest that the ERCC-1 gene is more involved in the repair of interstrand crosslinks than in the removal of intrastrand adducts.  相似文献   

14.
By using a new mild procedure for detecting DNA crosslinks it has been shown that adriamycin and daunomycin are able to form interstrand DNA crosslinks in HeLa cells. This effect seems to be preceded by transformation of the parent antibiotics in the cell to active forms. In addition, interstrand DNA crosslinks formed by adriamycin and daunomycin were found to be temperature- and alkali-labile.  相似文献   

15.
A method for the determination of DNA monoadducts capable of forming interstrand crosslinks in mammalian cells is described. Such monoadducts were produced by brief treatment of cells with cis-diamminedichloro-Pt(II) (cis-DDP), 1-(2-chloroethyl)-1-nitrosourea (ClEtNU), L-phenylalanine mustard (L-PAM), or diaziridinylbenzoquinone (AZQ). The method is an alkaline elution procedure in which the DNA from lysed cells is incubated on polycarbonate filters at pH 10 and 37 degrees C. During this incubation, the progressive formation of interstrand crosslinking was observed in drug-treated cells. In the case of ClEtNU and AZQ, DNA strand breaks also formed, due to the presence of labile lesions in the DNA. This made quantitation of interstrand crosslinks difficult for these drugs. For cis-DDP and L-PAM, however, there was no significant production of strand breaks and the assay for interstrand crosslinks was quantifiable.  相似文献   

16.
Particulate hexavalent chromium (Cr(VI)) is a known human lung carcinogen. Cr(VI)-induced tumors exhibit chromosome instability (CIN), but the mechanisms underlying these effects are unknown. We investigated a possible role for the Fanconi anemia (FA) pathway in particulate Cr(VI)-induced chromosomal damage by focusing on the Fancg gene, which plays an important role in cellular resistance to DNA interstrand crosslinks. We used the isogenic Chinese hamster ovary (CHO) KO40 fancg mutant compared with parental and gene-complemented cells. We found that fancg cells treated with lead chromate had lower intracellular Cr ion levels than control cell lines. Accounting for differences of Cr ion levels between cell lines, we discovered that fancg cells treated with lead chromate had increased cytotoxicity and chromosomal aberrations, which was not observed after restoring the Fancg gene. Chromosomal damage was manifest as increased total chromosome damage and percent metaphases with damage, specifically an increase in chromatid and isochromatid breaks. We conclude that Fancg protects cells from particulate Cr(VI)-induced cytotoxicity and chromosome damage, which is consistent with the known sensitivity of fancg cells to crosslinking damage and the ability of Cr(VI) to produce crosslinks.  相似文献   

17.
The intracellular level of guanosine 3',5'-monophosphate (cGMP) has been measured in Walker carcinoma cells in tissue culture after treatment with various alkylating agents. At concentrations which caused a rise in the level of adenosine 3',5'-monophosphate (cAMP) chlorambucil and 5-(1-aziridinyl)-2,4-dinitrobenzamide (CB 1954) produced only a small (35%) elevation of cGMP, while merophan had no such effect. This suggests that any effect of cAMP will not be outweighed by an equivalent rise in cGMP. Sepcific cytosolic binding of cGMP decreased with increasing resistance of Walker cells to alkylating agents, while the dissociation constant, KD, for binding increased. This was also observed with cAMP binding which suggests that the same protein in responsible for binding both nucleotides.  相似文献   

18.
Bizelesin is a bifunctional AT-specific DNA alkylating drug. Our study characterized the ability of bizelesin to induce interstrand crosslinks, a potential lethal lesion. In genomic DNA of BSC-1 cells, bizelesin formed from approx. 0.3 to 6.03+/-0.85 interstrand crosslinks per 106 base pairs, at 5-100 nM drug concentration, respectively, comparable to the number of total adducts previously determined in the same system (J.M. Woynarowski, M.M. McHugh, L.S. Gawron, T.A. Beerman, Biochemistry 34 (1995) 13042-13050). Bizelesin did not induce DNA-protein crosslinks or strand breaks. A model defined target, intracellular simian virus 40 (SV40) DNA, was employed to map at the nucleotide level sites of bizelesin adducts, including potential interstrand crosslinks. Preferential adduct formation was observed at AT tracts which are abundant in the SV40 matrix associated region and the origin of replication. Many sites, including each occurrence of 5'-T(A/T)4A-3', co-mapped on both DNA strands suggesting interstrand crosslinks, although monoadducts were also formed. Bizelesin adducts in naked SV40 DNA were found at similar sites. The localization of bizelesin-induced crosslinks in AT-rich tracts of replication-related regions is consistent with the potent anti-replicative properties of bizelesin. Given the apparent lack of other types of lesions in genomic DNA, interstrand crosslinks localized in AT-rich tracts, and to some extent perhaps also monoadducts, are likely to be lethal effects of bizelesin.  相似文献   

19.
20.
The rat form of DT-diaphorase (NAD(P)H: quinone acceptor oxidoreductase; EC 1.6.99.2) is more effective than the human form in activating prodrugs such as CB 1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide). Our site-directed mutagenesis study has revealed that residue 104 (Tyr in the rat enzyme and Gln in the human enzyme) is an important residue responsible for the catalytic differences between the rat and the human enzymes in the activation of CB 1954 (S. Chen et al., 1997, J. Biol. Chem. 272, 1437-1439). The human mutant Q104Y is capable of reducing CB 1954 at a rate identical to that of the wild-type rat DT-diaphorase. In the present study, we prepared both the wild-type human DT-diaphorase- and the mutant Q104Y-expressing MDA-MB-231 breast cancer cell lines using the cDNA transfection method. The MDA-MB-231 cell line is homozygous for a P187S mutation in the DT-diaphorase gene and has no detectable DT-diaphorase activity. Stable clones for the wild-type transfected cells had the DT-diaphorase activity ranged from 0.1 to 3.8 micromol of DCIP reduced/min/mg of protein and the clones for Q104Y transfected cells had the activity ranged from 0.06 to 1.58 micromol of DCIP reduced/min/mg of protein. Furthermore, in contrast to the cells transfected with only expression vector that were not sensitive to CB 1954 treatment, the wild-type and Q104Y-expressing cells were capable of the reductive activation of CB 1954, resulting in cell eradication. Our data showed that cell killing by CB 1954 followed a dose and incubation-time dependent manner. It was also found that the cell survival upon the treatment of CB 1954 was related to the expressed DT-diaphorase activity in these cells. In the presence of 75 microM CB 1954, a 50% cell killing was achieved in cells containing Q104Y and the wild-type DT-diaphorase with the activity at approximately 0.67 and 3.8 micromol of DCIP reduced/min/mg of protein, respectively. These results agree well with those of the in vitro enzyme assays that show that Q104Y is significantly more active than the wild-type DT-diaphorase in the activation of CB 1954. Finally, the in vivo activation of CB 1954 was demonstrated with a nude mouse model using Q104Y-transfected MDA-MB-231 cells. These studies reveal that DT-diaphorase can activate CB 1954, and human Q104Y mutant enzyme is more active than the wild-type enzyme in the intracellular reductive activation of CB 1954.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号