首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contamination of aquifers by organic pollutants threatens groundwater supplies and the environment. In situ biodegradation of organic pollutants by microbial communities is important for the remediation of contaminated sites, but our understanding of the relationship between microbial development and pollutant biodegradation is poor. A particular challenge is understanding the in situ status of microorganisms attached to solid surfaces, but not accessible via conventional sampling of groundwater. We have developed novel flow-through microcosms and examined dynamic changes in microbial community structure and function in a phenol-degrading system. Inoculation of these microcosms with a complex microbial community from a plume in a phenol-contaminated aquifer led to the initial establishment of a population dominated by a few species, most attached to the solid substratum. Initially, phenol biodegradation was incomplete, but as the microbial community structure became more complex, phenol biodegradation was more extensive and complete. These results were replicated between independent microcosms, indicating a deterministic succession of species. This work demonstrates the importance of examining community dynamics when assessing the potential for microbial biodegradation of organic pollutants. It provides a novel system in which such measurements can be made readily and reproducibly to study the temporal development and spatial succession of microbial communities during biodegradation of organic pollutants at interfaces within such environments.  相似文献   

2.
Marine harbor sediments are frequently polluted with significant amount of polycyclic aromatic hydrocarbons (PAHs) some of which are naturally toxic, recalcitrant, mutagenic, and carcinogenic. To stimulate biodegradation of PAHs in PAH-contaminated sediments collected from near Gwangyang Bay, Korea, lactate was chosen as a supplementary carbonaceous substrate. Sediment packed into 600 ml air-tight jar was either under no treatment condition or lactate amended condition (1%, w/v). Microbial community composition was monitored by bacteria-specific and archaea-specific PCR-terminal restriction fragment length polymorphism (T-RFLP), in addition to measuring the residual PAH concentration. Results showed that lactate amendment enhanced biodegradation rate of PAHs in the sediment by 4 to 8 times, and caused a significant shift in archaebacterial community in terms of structure and diversity with time. Phylogenetic analysis of 23 archaeal clones with distinctive RFLP patterns among 288 archaeal clones indicated that majority of the archaeal members were closest to unculturable environmental rDNA clones from hydrocarbon-contaminated and/or methanogenesis-bearing sediments. Lactate amendment led to the enrichment of some clones that were most closely related to PAH-degrading Methanosarcina species. These results suggest a possible contribution of methanogenic community to PAH degradation and give us more insights on how to effectively remediate PAH-contaminated sediments.  相似文献   

3.
AIMS: To investigate the distribution of a polymicrobial community of biodegradative bacteria in (i) soil and groundwater at a former manufactured gas plant (FMGP) site and (ii) in a novel SEquential REactive BARrier (SEREBAR) bioremediation process designed to bioremediate the contaminated groundwater. METHODS AND RESULTS: Culture-dependent and culture-independent analyses using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR) for the detection of 16S ribosomal RNA gene and naphthalene dioxygenase (NDO) genes of free-living (planktonic groundwater) and attached (soil biofilm) samples from across the site and from the SEREBAR process was applied. Naphthalene arising from groundwater was effectively degraded early in the process and the microbiological analysis indicated a dominant role for Pseudomonas and Comamonas in its degradation. The microbial communities appeared highly complex and diverse across both the sites and in the SEREBAR process. An increased population of naphthalene degraders was associated with naphthalene removal. CONCLUSION: The distribution of micro-organisms in general and naphthalene degraders across the site was highly heterogeneous. Comparisons made between areas contaminated with polycyclic aromatic hydrocarbons (PAH) and those not contaminated, revealed differences in the microbial community profile. The likelihood of noncultured bacteria being dominant in mediating naphthalene removal was evident. SIGNIFICANCE AND IMPACT OF THE STUDY: This work further emphasizes the importance of both traditional and molecular-based tools in determining the microbial ecology of contaminated sites and highlights the role of noncultured bacteria in the process.  相似文献   

4.
球形红细菌厌氧降解2,4-二硝基甲苯   总被引:2,自引:0,他引:2  
【目的】研究不同环境条件对2,4-二硝基甲苯(2,4-DNT)生物降解的影响。【方法】采用光合细菌球形红细菌在温度为30 °C的光照培养箱中厌氧降解2,4-DNT,并用高效液相色谱仪测定其浓度。【结果】去除2,4-DNT的最佳条件是初始浓度40 mg/L、初始pH 7.0和接种量15%。另外,2,4-DNT在菌体延滞期被细胞吸收,然后在指数期作为碳源被降解。2,4-DNT的去除率在72 h达到98.8%。从液相色谱图中观察到有2种中间代谢产物,但在120 h内产物被逐渐降解。2,4-DNT的去除动力学符合一级速率模型。【结论】不同条件下2,4-DNT的去除率表明球形红细菌能有效降解2,4-DNT。  相似文献   

5.
The removal of 2,4-dinitrotoluene (2,4-DNT) by simultaneous UV-photo(cata)lysis and biodegradation was explored using intimately coupled photolysis/photocatalysis and biodegradation (ICPB) with two novel porous carriers. First, a porous ceramic carrier was used to attach the photocatalyst (TiO?) on its exterior and accumulate biomass in its interior. UV irradiation alone decomposed 71% of the 2,4-DNT in 60 h, and TiO? catalyst improved the photolysis to 77%. Second, a macroporous sponge carrier was used to strongly adsorb 2,4-DNT and protect microorganisms from 2,4-DNT inhibition and UV irradiation. The main photolytic reactions were reduction of the nitryl to amino and hydrolysis of the amino to release NH??. The main biodegradation reactions were oxidative release of NO?? and accelerated reductive release of NH??. ICPB more thoroughly released inorganic N, with nearly equal amounts being oxidized to nitrate and reduced to ammonium. The genera Burkholderia and Bacillus were found inside the sponge carriers, and they are associated with biodegradation of DNT and its photolysis intermediates. Therefore, using an adsorbent and macroporous biofilm carrier enabled the effective removal of 2,4-DNT by ICPB.  相似文献   

6.
Abstract Successful stimulation of N2 fixation and petroleum hydrocarbon degradation in indigenous microbial consortia may decrease exogenous N requirements and reduce environmental impacts of bioremediation following petroleum pollution. This study explored the biodegradation of petroleum pollution by indigenous N2 fixing marine microbial consortia. Particulate organic carbon (POC) in the form of ground, sterile corn-slash (post-harvest leaves and stems) was added to diesel fuel amended coastal water samples to stimulate biodegradation of petroleum hydrocarbons by native microorganisms capable of supplying a portion of their own N. It was hypothesized that addition of POC to petroleum amended water samples from N-limited coastal waters would promote the growth of N2 fixing consortia and enhance biodegradation of petroleum. Manipulative experiments were conducted using samples from coastal waters (marinas and less polluted control site) to determine the effects of POC amendment on biodegradation of petroleum pollution by native microbial consortia. Structure and function of the microbial consortia were determined by measurement of N2 fixation (acetylene reduction), hydrocarbon biodegradation (14C hexadecane mineralization), bacterial biomass (AODC), number of hydrocarbon degrading bacteria (MPN), and bacterial productivity (3H-thymidine incorporation). Throughout this study there was a consistent enhancement of petroleum hydrocarbon degradation in response to the addition of POC. Stimulation of diesel fuel biodegradation following the addition of POC was likely attributable to increases in bacterial N2 fixation, diesel fuel bioavailability, bacterial biomass, and metabolic activity. Toxicity of the bulk phase water did not appear to be a factor affecting biodegradation of diesel fuel following POC addition. These results indicate that the addition of POC to diesel-fuel-polluted systems stimulated indigenous N2 fixing microbial consortia to degrade petroleum hydrocarbons. Received: 29 December 1998; Accepted: 6 April 1999  相似文献   

7.
The effect of microbial inoculation on the mineralization of naphthalene in a bioslurry treatment was evaluated in soil slurry microcosms. Inoculation by Pseudomonas putida G7 carrying the naphthalene dioxygenase (nahA) gene resulted in rapid mineralization of naphthalene, whereas indigenous microorganisms in the PAH-contaminated soil required a 28 h adaptation period before significant mineralization occurred. The number of nahA-like gene copies increased in both the inoculated and non-inoculated soil as mineralization proceeded, indicating selection towards naphthalene dioxygenase producing bacteria in the microbial community. In addition, 16S rRNA analysis by denaturing gradient gel electrophoresis (DGGE) analysis showed that significant selection occurred in the microbial community as a result of biodegradation. However, the indigenous soil bacteria were not able to compete with the P. putida G7 inoculum adapted to naphthalene biodegradation, even though the soil microbial community slightly suppressed naphthalene mineralization by P. putida G7.  相似文献   

8.
A continuous-flow column study was conducted to evaluate the long-term effects of in situ biostimulation on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in soil from a manufactured gas plant site. Simulated groundwater amended with oxygen and inorganic nutrients was introduced into one column, while a second column receiving unamended groundwater served as a control. PAH and dissolved oxygen (DO) concentrations, as well as microbial community profiles, were monitored along the column length immediately before and at selected intervals up to 534?days after biostimulation commenced. Biostimulation resulted in significantly greater PAH removal than in the control condition (73% of total measured PAHs vs. 34%, respectively), with dissolution accounting for a minor amount of the total mass loss (~6%) in both columns. Dissolution was most significant for naphthalene, acenaphthene, and fluorene, accounting for >20% of the total mass removed for each. A known group of PAH-degrading bacteria, 'Pyrene Group 2' (PG2), was identified as a dominant member of the microbial community and responded favorably to biostimulation. Spatial and temporal variations in soil PAH concentration and PG2 abundance were strongly correlated to DO advancement, although there appeared to be transport of PG2 organisms ahead of the oxygen front. At an estimated oxygen demand of 6.2?mg O(2)/g dry soil and a porewater velocity of 0.8?m/day, it took between 374 and 466?days for oxygen breakthrough from the 1-m soil bed in the biostimulated column. This study demonstrated that the presence of oxygen was the limiting factor in PAH removal, as opposed to the abundance and/or activity of PAH-degrading bacteria once oxygen reached a previously anoxic zone.  相似文献   

9.
Growth and degradation of 2,4-dinitrotoluene (2,4-DNT) were compared in liquid cultures in shake flasks for Burkholderia sp. strain DNT and strain DNT engineered to produce Vitreoscilla (bacterial) hemoglobin (strain YV1). Parameters varied included aeration rate, initial 2,4-DNT concentration (50 and 200 ppm), and concentration and type of cosubstrate (yeast extract, succinate, casamino acids, and tryptic soy broth). 2,4-DNT degradation increased with increasing cosubstrate concentration and was greater for strain YV1 than strain DNT under most conditions tested; the greatest advantages of YV1 (up to 3.5-fold) occurred under limited aeration. A third strain (YV1m), derived from YV1 by repeated growth on 2,4-DNT-containing medium, demonstrated increased 2,4-DNT degradation (up to 1.3-fold compared to YV1) at 200 ppm 2,4-DNT. The growth profiles of the three strains with respect to each other were in general similar to those of the degradation patterns of 2,4-DNT.  相似文献   

10.
Flow-through aquifer columns were operated for 12 weeks to evaluate the benefits of aerobic biostimulation for the bioremediation of source-zone soil contaminated with chlorobenzenes (CBs). Quantitative Polymerase Chain Reaction (qPCR) was used to measure the concentration of total bacteria (16S rRNA gene) and oxygenase genes involved in the biodegradation of aromatic compounds (i.e., toluene dioxygenase, ring hydroxylating monooxygenase, naphthalene dioxygenase, phenol hydroxylase, and biphenyl dioxygenase). Monochlorobenzene, which is much more soluble than dichlorobenzenes, was primarily removed by flushing, and biostimulation showed little benefit. In contrast, dichlorobenzene removal was primarily due to biodegradation, and the removal efficiency was much higher in oxygen-amended columns compared to a control column. To our knowledge, this is the first report that oxygen addition can enhance CB source-zone soil bioremediation. Analysis by qPCR showed that whereas the biphenyl and toluene dioxygenase biomarkers were most abundant, increases in the concentration of the phenol hydroxylase gene reflected best the higher dichlorobenzene removal due to aerobic biostimulation. This suggests that quantitative molecular microbial ecology techniques could be useful to assess CB source-zone bioremediation performance.  相似文献   

11.
Prokaryotes represent one-half of the living biomass on Earth, with the vast majority remaining elusive to culture and study within the laboratory. As a result, we lack a basic understanding of the functions that many species perform in the natural world. To address this issue, we developed complementary population and single-cell stable isotope (13C)-linked analyses to determine microbial identity and function in situ. We demonstrated that the use of rRNA/mRNA stable isotope probing (SIP) recovered the key phylogenetic and functional RNAs. This was followed by single-cell physiological analyses of these populations to determine and quantify in situ functions within an aerobic naphthalene-degrading groundwater microbial community. Using these culture-independent approaches, we identified three prokaryote species capable of naphthalene biodegradation within the groundwater system: two taxa were isolated in the laboratory (Pseudomonas fluorescens and Pseudomonas putida), whereas the third eluded culture (an Acidovorax sp.). Using parallel population and single-cell stable isotope technologies, we were able to identify an unculturable Acidovorax sp. which played the key role in naphthalene biodegradation in situ, rather than the culturable naphthalene-biodegrading Pseudomonas sp. isolated from the same groundwater. The Pseudomonas isolates actively degraded naphthalene only at naphthalene concentrations higher than 30 μM. This study demonstrated that unculturable microorganisms could play important roles in biodegradation in the ecosystem. It also showed that the combined RNA SIP-Raman-fluorescence in situ hybridization approach may be a significant tool in resolving ecology, functionality, and niche specialization within the unculturable fraction of organisms residing in the natural environment.  相似文献   

12.
2,4,6-Trinitrotoluene (TNT) is a toxic and persistent explosive compound occurring as a contaminant at numerous sites worldwide. Knowledge of the microbial dynamics driving TNT biodegradation is limited, particularly in native aquifer sediments where it poses a threat to water resources. The purpose of this study was to quantify the effect of organic amendments on anaerobic TNT biodegradation rate and pathway in an enrichment culture obtained from historically contaminated aquifer sediment and to compare the bacterial community dynamics. TNT readily biodegraded in all microcosms, with the highest biodegradation rate obtained under the lactate amended condition followed by ethanol amended and naturally occurring organic matter (extracted from site sediment) amended conditions. Although a reductive pathway of TNT degradation was observed across all conditions, denaturing gradient gel electrophoresis (DGGE) analysis revealed distinct bacterial community compositions. In all microcosms, Gram-negative γ- or β-Proteobacteria and Gram-positive Negativicutes or Clostridia were observed. A Pseudomonas sp. in particular was observed to be stimulated under all conditions. According to non-metric multidimensional scaling analysis of DGGE profiles, the microcosm communities were most similar to heavily TNT-contaminated field site sediment, relative to moderately and uncontaminated sediments, suggesting that TNT contamination itself is a major driver of microbial community structure. Overall these results provide a new line of evidence of the key bacteria driving TNT degradation in aquifer sediments and their dynamics in response to organic carbon amendment, supporting this approach as a promising technology for stimulating in situ TNT bioremediation in the subsurface.  相似文献   

13.
Trichloroethylene (TCE) is a prevalent contaminant of groundwater that can be cometabolically degraded by indigenous microbes. Groundwater contaminated with TCE from a US Department of Energy site in Ohio was used to characterize the site-specific impact of phenol on the indigenous bacterial community for use as a possible remedial strategy. Incubations of 14C-TCE-spiked groundwater amended with phenol showed increased TCE mineralization compared with unamended groundwater. Community structure was determined using DNA directly extracted from groundwater samples. This DNA was then analyzed by amplified ribosomal DNA restriction analysis. Unique restriction fragment length polymorphisms defined operational taxonomic units that were sequenced to determine phylogeny. DNA sequence data indicated that known TCE-degrading bacteria including relatives of Variovorax and Burkholderia were present in site water. Diversity of the amplified microbial rDNA clone library was lower in phenol-amended communities than in unamended groundwater (i.e., having Shannon-Weaver diversity indices of 2.0 and 2.2, respectively). Microbial activity was higher in phenol-amended ground water as determined by measuring the reduction of 2-(p-iodophenyl)-3(p-nitrophenyl)-5-phenyl tetrazolium chloride. Thus phenol amendments to groundwater correlated with increased TCE mineralization, a decrease in diversity of the amplified microbial rDNA clone library, and increased microbial activity.  相似文献   

14.
Laboratory batch experiments were performed with contaminated aquifer sediments and four soluble aromatic components of jet fuel to assess their biodegradation under anaerobic conditions. The biodegradation of four aromatic compounds, toluene, o-xylene, 1,2,4-trimethylbenzene (TMB), and naphthalene, separately or together, was investigated under strictly anaerobic conditions in the dark for a period of 160 days. Of the aromatic compounds, toluene and o-xylene were degraded both as a single substrate and in a mixture with the other aromatic compounds, while TMB was not biodegraded as a single substrate, but was biodegraded in the presence of the other aromatic hydrocarbons. Substrate interaction is thus significant in the biodegradation of TMB. Biodegradation of naphthalene was not observed, either as a single substrate or in a mixture of other aromatic hydrocarbons. Although redox conditions were dominated by iron reduction, a clear relation between degradation and sulfate reduction was observed. Methanogenesis took place during the later stages of incubation. However, the large background of Fe(II) masked the increase of Fe(II) concentration due to iron reduction. Thus, although microbial reduction of Fe(III) is an important process, the evidence is not conclusive. Our results have shown that a better understanding of the degradation of complex mixtures of hydrocarbons under anaerobic conditions is important in the application of natural attenuation as a remedial method for soil and groundwater contamination.  相似文献   

15.
The anaerobic degradation of phenol was studied in a fed-batch culture. Nitrate was added as electron acceptor and phenol was provided three times, to a final concentration of 200 mg/l. Randomly amplified polymorphic DNA (RAPD) and terminal fraction fragment length polymorphism (T-RFLP) were used and compared in order to monitor the microbial succession in the reactor. Phenol degradation started after an initial lag phase of 14 days and was then completed within a few days. In addition, the duration of the lag phase was shortened and the degradation rate was increased after each phenol amendment. Nitrate reduction correlated with microbial growth and phenol depletion, confirming that the degradation was carried out anaerobically. Results from the DNA analysis showed that the structure of the microbial community changed after each phenol amendment. This study confirms the potential for anaerobic degradation of environmental pollutants and also confirms that microbial acclimation towards faster degradation rates occurred upon repeated substrate amendments. Furthermore, both of the DNA-based techniques described the phenol degradation-linked community shifts with similar general results. RAPD is a faster, simpler technique that gives a higher resolution and consequently reflects the shifts in the microbial community structure better, whereas T-RFLP is more suitable for phylogenetic studies.  相似文献   

16.
Petroleum pollution is a global problem that requires effective and accessible remediation strategies that takes ecosystem functioning into serious consideration. Bioremediation can be an effective tool to address the challenge. In this study, we used a mesocosm experiment to evaluate the effects of locally sourced and community produced biochar and compost amendments on diesel-contaminated soil. At the end of the 90-day experiment, we quantified the effects of the amendments on total petroleum hydrocarbons (C9-C40) (TPH) and soil pH, organic matter, aggregate stability, soil respiration, extractable phosphorus, extractable potassium, and micronutrients (Mg, Fe, Mn, and Zn). We observed significantly higher TPH degradation in compost-amended soils than in controls and soils amended with biochar. We propose that the addition of compost improved TPH biodegradation by augmenting soil nutrient content and microbial activity. Our results suggest that community-accessible compost can improve TPH biodegradation, and that implementation is possible at the community level.  相似文献   

17.
The phytogenotoxicity of 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) was assessed using the Tradescantia micronucleus (Trad-MCN) bioassay. Tradescantia cuttings bearing young inflorescences were exposed for 6h to 2,4- or 2,6-DNT amended water solutions up to their respective solubilities. The nominal concentrations were 0, 1.9, 3.8, 7.5, 15, 30, 60, 100, 150, 200mg/l of 2,4-DNT, and 0, 7.5, 15, 30, 60, 90, 120, 180mg/l of 2,6-DNT. Each treatment was repeated three or four times. Chemical concentrations in test solutions were analyzed prior to and after the exposure. Cadmium chloride (0-20mM) was used as the positive control. Micronuclei (MCN) were scored in the tetrad-stage pollen mother cells. The MCN frequency (%), i.e. the number of micronuclei scored in 100 tetrads, was the measurement endpoint. Results indicated that both 2,4-DNT and 2,6-DNT were genotoxic with the minimum effective dose (MED) of 30 and 135mg/l, respectively. Longer exposure (30h) without recovery time at 150mg/l of 2,4-DNT and 180mg/l of 2,6-DNT did not induce significantly higher MCN frequencies.  相似文献   

18.
Periodic perturbations were used to evaluate the system stability and robustness of naphthalene biodegradation in a continuous flow stirred tank reactor (CSTR) containing a soil slurry. The experimental design involved perturbing the test system using a sinusoidal input either of naphthalene or non-naphthalene organic carbon at different frequencies during steady state operation of the reactors. The response of the test system was determined by using time series off-gas analysis for naphthalene liquid phase concentration and degradation, total viable cell counts, and gene probe analysis of naphthalene degradative genotype, and by batch mineralization assays.Naphthalene biodegradation rates were very high throughout the experimental run (95 to >99% removed) resulting in very low or undetectable levels of naphthalene in the off-gas and reactor effluent. Attempts to reduce the rate of naphthalene biotransformation by either reducing the reactor temperature from 20°C to 10°C or the dissolved oxygen level (>1 mg/L) were unsuccessful. Significant naphthalene biodegradation was observed at 4°C. While variable, the microbial community as measured by population densities was not significantly affected by temperature changes. In terms of naphthalene biotransformation, the system was able to adapt readily to all perturbations in the reactor.Department of Chemical EngineeringDepartment of Microbiology and The Graduate Program in EcologyDepartment of Civil Engineering, New Orleans University  相似文献   

19.
20.
Hydrocarbon-contaminated superficial sediments collected from the Harbor of Milazzo (Tirrenean Sea, northern Sicily), a zone strongly affected by anthropogenic activities, were examined for in situ biodegradative capacities. A culture-independent molecular phylogenetic approach was used to study the influence of hydrocarbon and nutrient addition on the activity and diversity of the indigenous microbiota during a microcosm evaluation. The autochthonous microbial community in non-polluted sediments was represented by eubacterial phylotypes grouped within Proteobacteria, CFB and Firmicutes. The archaeal domain was represented by members of Marine Group I of Crenarchaeota. The majority of recovered sequences was affiliated with heterotrophic genera Clostridium and Vibrio, typical members of eutrophic coastal environments. Amendments of hydrocarbons and mineral nutrients to microcosms dramatically changed the initial diversity of the microbial community. Only bacterial phylotypes affiliated with Proteobacteria and CFB division were detected. The decrease in diversity observed in several microcosms could be explained by the strong selection for microorganisms belonging to group of marine hydrocarbonoclastic gamma-Proteobacteria, namely Alcanivorax, Cycloclasticus, Marinobacter, Marinobacterium/Neptunomonas and Thalassolituus. This study demonstrated that nutrient amendment to hydrocarbon-contaminated superficial sediments enhanced the indigenous microbial biodegradation activity and that highly specialized marine hydrocarbonoclastic bacteria, representing a minor fraction in the natural microbial community, play an important role in the biodegradation of petroleum hydrocarbons accidentally entering the coastal environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号