首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The major laminin-binding integrin of skeletal, smooth, and heart muscle is alpha7beta1-integrin, which is structurally related to alpha6beta1. It occurs in three cytoplasmic splice variants (alpha7A, -B, and -C) and two extracellular forms (X1 and X2) which are developmentally regulated and differentially expressed in skeletal muscle. Previously, we have shown that ectopic expression of the alpha7beta-integrin splice variant in nonmotile HEK293 cells specifically induced cell locomotion on laminin-1 but not on fibronectin. To investigate the specificity and the mechanism of the alpha7-mediated cell motility, we expressed the three alpha7-chain cytoplasmic splice variants, as well as alpha6A- and alpha6B-integrin subunits in HEK293 cells. Here we show that all three alpha7 splice variants (containing the X2 domain), as well as alpha6A and alpha6B, promote cell attachment and stimulate cell motility on laminin-1 and its E8 fragment. Deletion of the cytoplasmic domain (excluding the GFFKR consensus sequence) from alpha7B resulted in a loss of the motility-enhancing effect. On laminin-2/4 (merosin), the predominant isoform in mature skeletal muscle, only alpha7-expressing cells showed enhanced motility, whereas cells transfected with alpha6A and alpha6B neither attached nor migrated on laminin-2. Adhesion of alpha7-expressing cells to both laminin-1 and laminin-2 was specifically inhibited by a new monoclonal antibody (6A11) specific for alpha7. Expression of the two extracellular splice variants alpha7X1 and alpha7X2 in HEK293 cells conferred different motilities on laminin isoforms: Whereas alpha7X2B promoted cell migration on both laminin-1 and laminin-2, alpha7X1B supported motility only on laminin-2 and not on laminin-1, although both X1 and X2 splice variants revealed similar adhesion rates to laminin-1 and -2. Fluorescence-activated cell sorter analysis revealed a dramatic reduction of surface expression of alpha6-integrin subunits after alpha7A or -B transfection; also, surface expression of alpha1-, alpha3-, and alpha5-integrins was significantly reduced. These results demonstrate selective responses of alpha6- and alpha7-integrins and of the alpha7 splice variants to laminin-1 and -2 and indicate differential roles in laminin-controlled cell adhesion and migration.  相似文献   

2.
The integrin alpha(7)beta(1) occurs in several cytoplasmic (alpha(7A), alpha(7B)) and extracellular splice variants (alpha(7X1), alpha(7X2)), which are differentially expressed during development of skeletal and heart muscle. The extracellular variants result from the alternative splicing of exons X1 and X2, corresponding to a segment within the putative ligand binding domain. To study the specificity and affinity of the X1/X2 variants to different laminin isoforms, soluble alpha(7)beta(1) complexes were prepared by recombinant coexpression of the extracellular domains of the alpha- and beta-subunits. The binding of these complexes to purified ligands was measured by solid phase binding assays. Surprisingly, the alternative splice variants revealed different and specific affinities to different laminin isoforms. While the alpha(7X2) variant bound much more strongly to laminin-1 than the alpha(7X1) variant, the latter showed a high affinity binding to laminins-8 and -10/11. Laminin-2, the major laminin isoform in skeletal muscle, was recognized by both variants, whereas none of the two variants were able to interact with laminin-5. A specific blocking antibody inhibited the binding of both variants to all laminins tested, indicating the involvement of common epitopes in alpha(7X1)beta(1) and alpha(7X2)beta(1). Because laminin-8 and -10/11 as well as alpha(7X1) are expressed in developing skeletal and cardiac muscle, these findings suggest that alpha(7X1)beta(1) may represent a physiological receptor with novel specificities for laminin-8 and -10.  相似文献   

3.
The major laminin-binding integrin of skeletal, smooth, and heart muscle is α7β1-integrin, which is structurally related to α6β1. It occurs in three cytoplasmic splice variants (α7A, -B, and -C) and two extracellular forms (X1 and X2) which are developmentally regulated and differentially expressed in skeletal muscle. Previously, we have shown that ectopic expression of the α7β-integrin splice variant in nonmotile HEK293 cells specifically induced cell locomotion on laminin-1 but not on fibronectin. To investigate the specificity and the mechanism of the α7-mediated cell motility, we expressed the three α7-chain cytoplasmic splice variants, as well as α6A- and α6B-integrin subunits in HEK293 cells. Here we show that all three α7 splice variants (containing the X2 domain), as well as α6A and α6B, promote cell attachment and stimulate cell motility on laminin-1 and its E8 fragment. Deletion of the cytoplasmic domain (excluding the GFFKR consensus sequence) from α7B resulted in a loss of the motility-enhancing effect. On laminin-2/4 (merosin), the predominant isoform in mature skeletal muscle, only α7-expressing cells showed enhanced motility, whereas cells transfected with α6A and α6B neither attached nor migrated on laminin-2. Adhesion of α7-expressing cells to both laminin-1 and laminin-2 was specifically inhibited by a new monoclonal antibody (6A11) specific for α7. Expression of the two extracellular splice variants α7X1 and α7X2 in HEK293 cells conferred different motilities on laminin isoforms: Whereas α7X2B promoted cell migration on both laminin-1 and laminin-2, α7X1B supported motility only on laminin-2 and not on laminin-1, although both X1 and X2 splice variants revealed similar adhesion rates to laminin-1 and -2. Fluorescence-activated cell sorter analysis revealed a dramatic reduction of surface expression of α6-integrin subunits after α7A or -B transfection; also, surface expression of α1-, α3-, and α5-integrins was significantly reduced. These results demonstrate selective responses of α6- and α7-integrins and of the α7 splice variants to laminin-1 and -2 and indicate differential roles in laminin-controlled cell adhesion and migration.  相似文献   

4.
The integrin alpha(7)beta(1) is the major laminin-binding integrin in skeletal, heart, and smooth muscle and is a receptor for laminin-1 and -2. It mediates myoblast migration on laminin-1 and -2 and thus might be involved in muscle development and repair. Previously we have shown that alpha(7)B as well as the alpha(7)A and -C splice variants induce cell motility on laminin when transfected into nonmotile HEK293 cells. In this study we have investigated the role of the cytoplasmic domain of alpha(7) in the laminin-induced signal transduction of alpha(7)beta(1) integrin regulating cell adhesion and migration. Deletion of the cytoplasmic domain did not affect assembly of the mutated alpha(7)Deltacyt/beta(1) heterodimer on the cell surface or adhesion of alpha(7)Deltacyt-transfected cells to laminin. The motility of these cells on the laminin-1/E8 fragment, however, was significantly reduced to the level of mock-transfected cells; lamellipodia formation and polarization of the cells were also impaired. Adhesion to the laminin-1/E8 fragment induced tyrosine phosphorylation of the focal adhesion kinase, paxillin, and p130(CAS) as well as the formation of a p130(CAS)-Crk complex in wild-type alpha(7)B-transfected cells. In alpha(7)BDeltacyt cells, however, the extent of p130(CAS) tyrosine formation was reduced and formation of the p130(CAS)-Crk complex was impaired, with unaltered levels of p130(CAS) and Crk protein levels. These findings indicate adhesion-dependent regulation of p130(CAS)/Crk complex formation by the cytoplasmic domain of alpha(7)B integrin after cell adhesion to laminin-1/E8 and imply alpha(7)B-controlled lamellipodia formation and cell migration through the p130(CAS)/Crk protein complex.  相似文献   

5.
The binding specificity of alpha7beta1 integrins for different laminin isoforms is defined by the X1 and X2 splice domains located in the beta-propeller domain of the alpha7 subunit. In order to gain insight into the mechanism of specific laminin-integrin interactions, we defined laminin-binding epitopes of the alpha7X1 and -X2 domains by single amino acid substitutions and domain swapping between X1 and X2. The interaction of mutated, recombinantly prepared alpha7X1beta1 and alpha7X2beta1 heterodimers with various laminin isoforms was studied by surface plasmon resonance and solid phase binding assays. The data show that distinct clusters of surface-exposed acidic residues located in different positions of the X1 and the X2 loops are responsible for the specific recognition of laminins. These residues are conserved between the respective X1 or X2 splice domains of the alpha7 chains of different species, some also in the corresponding X1/X2 splice domains of alpha6 integrin. Interestingly, ligand binding was also modulated by mutating surface-exposed hydrophobic residues (alpha7X1L205, alpha7X2Y208) at positions corresponding to the fibronectin binding synergy site in alpha5beta1 integrin. Mutations in X1 that affected binding to laminin-1 also affected binding to laminin-8 and -10, but not to the same extent, thus allowing conclusions on the specific role of individual surface epitopes in the selective recognition of laminin-1 versus laminins -8 and -10. The role of the identified epitopes was confirmed by molecular dynamics simulations of wild-type integrins and several inactivating mutations. The analysis of laminin isoform interactions with various X1/X2 chimaera lend further support to the key role of negative surface charges and pointed to an essential contribution of the N-terminal TARVEL sequence of the X1 domain for recognition of laminin-8 and -10. In conclusion, specific surface epitopes containing charged and hydrophobic residues are essential for ligand binding and define specific interactions with laminin isoforms.  相似文献   

6.
The expression pattern of the laminin-binding alpha 7 beta 1 integrin is developmentally regulated in skeletal, cardiac, and smooth muscle. The X1/X2 alternative splicing in the extracellular domain of alpha 7 is found in the variable region between conserved alpha-chain homology repeat domains III and IV, a site implicated in ligand binding. To assess differences in X1/X2 isoform activity, we generated MCF-7 cell lines transfected with alpha 7-X1/X2 cDNAs. Transfectants expressing the alpha 7-X2 variant adhered rapidly to laminin 1, whereas those expressing alpha 7-X1 failed to attach. That alpha 7-X1 exists in an inactive state was established in assays using an activating beta 1 antibody that induced X1-dependent cell adhesion and spreading. Furthermore, the activation of alpha 7-X1 was cell type specific, and when expressed in HT1080 cells, the integrin was converted into a fully functional receptor capable of promoting adhesion. Thus, the expression of the alpha 7-X1/X2 integrin is a novel mechanism that regulates receptor affinity states in a cell-specific context and may modulate integrin-dependent events during muscle development and repair.  相似文献   

7.
We describe a novel interaction between the disintegrin and cysteine-rich (DC) domains of ADAM12 and the integrin alpha7beta1. Integrin alpha7beta1 extracted from human embryonic kidney 293 cells transfected with alpha7 cDNA was retained on an affinity column containing immobilized DC domain of ADAM12. 293 cells stably transfected with alpha7 cDNA adhered to DC-coated wells, and this adhesion was partially inhibited by 6A11 integrin alpha7 function-blocking antibody. The X1 and the X2 extracellular splice variants of integrin alpha7 supported equally well adhesion to the DC protein. Integrin alpha7beta1-mediated cell adhesion to DC had different requirements for Mn2+ than adhesion to laminin. Furthermore, integrin alpha7beta1-mediated cell adhesion to laminin, but not to DC, resulted in efficient cell spreading and phosphorylation of focal adhesion kinase (FAK) at Tyr397. We also show that adhesion of L6 myoblasts to DC is mediated in part by the endogenous integrin alpha7beta1 expressed in these cells. Since integrin alpha7 plays an important role in muscle cell growth, stability, and survival, and since ADAM12 has been implicated in muscle development and regeneration, we postulate that the interaction between ADAM12 and integrin alpha7beta1 may be relevant to muscle development, function, and disease. We also conclude that laminin and the DC domain of ADAM12 represent two functional ligands for integrin alpha7beta1, and adhesion to each of these two ligands via integrin alpha7beta1 triggers different cellular responses.  相似文献   

8.
The interactions of cells with basement membranes are primarily mediated via the engagement of laminins by a group of integrin family proteins, including integrins alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4. To explore the ligand-binding specificities of these laminin-binding integrins, we produced these integrins, including two alpha7beta1 splice variants (alpha7X1beta1 and alpha7X2beta1), as soluble recombinant proteins and determined their binding specificities and affinities toward a panel of purified laminin isoforms containing distinct alpha chains. Among the five laminin-binding integrins investigated, alpha3beta1 and alpha6beta4 exhibited a clear specificity for laminin-332 (alpha3beta3gamma2) and laminin-511 (alpha5beta1gamma1)/521 (alpha5beta2gamma1), while integrin alpha6beta1 showed a broad specificity, binding to all laminin isoforms with a preference for laminin-111 (alpha1beta1gamma1), laminin-332 and laminin-511/521. The two alpha7beta1 variants were distinct from alpha3beta1, alpha6beta1 and alpha6beta4 in that they did not bind to laminin-332. alpha7X1beta1 bound to all laminins, except laminin-332, with a preference for laminin-211 (alpha2beta1gamma1)/221 (alpha2beta2gamma1) and laminin-511/521, while alpha7X2beta1 bound preferentially to laminin-111 and laminin-211/221. Laminin-511/521 was the most preferred ligand for all the laminin-binding integrins, except for alpha7X2beta1, whereas laminin-411 was the poorest ligand, capable of binding to alpha6beta1 and alpha7X1beta1 with only modest binding affinities. These comprehensive analyses of the interactions between laminin-binding integrins and a panel of laminins clearly demonstrate that the isoforms of both integrins and laminins differ in their binding specificities and affinities, and provide a molecular basis for better understanding of the adhesive interactions of cells with basement membranes of defined laminin compositions.  相似文献   

9.
Laminin-integrin interactions can in some settings activate the extracellular signal-regulated kinases (ERKs) but the control mechanisms are poorly understood. Herein, we studied ERK activation in response to two laminins isoforms (-1 and -10/11) in two epithelial cell lines. Both cell lines expressed beta1-containing integrins and dystroglycan but lacked integrin alpha6beta4. Antibody perturbation assays showed that both cell lines bound to laminin-10/11 via the alpha3beta1and alpha6beta1 integrins. Although laminin-10/11 was a stronger adhesion complex than laminin-1 for both cell lines, both laminins activated ERK in only one of the two cell lines. The ERK activation was mediated by integrin alpha6beta1 and not by alpha3beta1 or dystroglycan. Instead, we found that dystroglycan-binding domains of both laminin-1 and -10/11 suppressed integrin alpha6beta1-mediated ERK activation. Moreover, the responding cell line expressed the two integrin alpha6 splice variants, alpha6A and alpha6B, whereas the nonresponding cell line expressed only alpha6B. Furthermore, ERK activation was seen in cells transfected with the integrin alpha6A subunit, but not in alpha6B-transfected cells. We conclude that laminin-1 and -10/11 share the ability to induce ERK activation, that this is regulated by integrin alpha6Abeta1, and suggest a novel role for dystroglycan-binding laminin domains as suppressors of this activation.  相似文献   

10.
The presence of many laminin receptors of the beta1 integrin family on most cells makes it difficult to define the biological functions of other major laminin receptors such as integrin alpha6beta4 and dystroglycan. We therefore tested the binding of a beta1 integrin-null cell line GD25 to four different laminin variants. The cells were shown to produce dystroglycan, which based on affinity chromatography bound to laminin-1, -2/4, and -10/11, but not to laminin-5. The cells also expressed the integrin alpha6Abeta4A variant. GD25 beta1 integrin-null cells are known to bind poorly to laminin-1, but we demonstrate here that these cells bind avidly to laminin-2/4, -5, and -10/11. The initial binding at 20 min to each of these laminins could be inhibited by an integrin alpha6 antibody, but not by a dystroglycan antibody. Hence, integrin alpha6Abeta4A of GD25 cells was identified as a major receptor for initial GD25 cell adhesion to three out of four tested laminin isoforms. Remarkably, cell adhesion to laminin-5 failed to promote cell spreading, proliferation, and extracellular signal-regulated kinase (ERK) activation, whereas all these responses occurred in response to adhesion to laminin-2/4 or -10/11. The data establish GD25 cells as useful tools to define the role integrin alpha6Abeta4A and suggest that laminin isoforms have distinctly different capacities to promote cell adhesion and signaling via integrin alpha6Abeta4A.  相似文献   

11.
CD98 is a type II transmembrane protein involved in neutral and basic amino acid transport and in cell fusion events. CD98 was implicated in the function of integrin adhesion receptors by its capacity to reverse suppression of integrin activation by isolated integrin beta(1A) domains. Here we report that CD98 associates with integrin beta cytoplasmic domains with a unique integrin class and splice variant specificity. In particular, CD98 interacted with the ubiquitous beta(1A) but not the muscle-specific splice variant, beta(1D), or leukocyte-specific beta(7) cytoplasmic domains. The ability of CD98 to associate with integrin cytoplasmic domains correlated with its capacity to reverse suppression of integrin activation. The association of CD98 with integrin beta(1A) cytoplasmic domains may regulate the function and localization of these membrane proteins.  相似文献   

12.
We have determined the structure and the exon size pattern of the human integrin alpha7 subunit gene (ITGA7), which has been shown to be affected in a form of congenital myopathy. The gene is composed of at least 27 exons spanning a region of about 22.5 kb. The sequence of all exon/intron boundaries was determined and conforms to the GT/AG splicing consensus. We investigated the different splicing forms previously described in human and rodents. The major cytoplasmic variants alpha7A and alpha7B, which are developmentally regulated and tissue specific, were identified in human tissues, as well as the extracellular isoforms X1 and X2. The recently described D variant was detected in adult tissues by RT-PCR but not the C variant. We localized ITGA7 on chromosome 12q13 by high-resolution radiation hybrid mapping between D12S312 and D12S90 and identified a new CA-repeat microsatellite in intron 1.  相似文献   

13.
Regulation of integrin affinity and clustering plays a key role in the control of cell adhesion and migration. The protein ICAP-1 alpha (integrin cytoplasmic domain-associated protein-1 alpha) binds to the cytoplasmic domain of the beta(1A) integrin and controls cell spreading on fibronectin. Here, we demonstrate that, despite its ability to interact with beta(1A) integrin, ICAP-1 alpha is not recruited in focal adhesions, whereas it is colocalized with the integrin at the ruffling edges of the cells. ICAP-1 alpha induced a rapid disruption of focal adhesions, which may result from the ability of ICAP-1 alpha to inhibit the association of beta(1A) integrin with talin, which is crucial for the assembly of these structures. ICAP-1 alpha-mediated dispersion of beta(1A) integrins is not observed with beta(1D) integrins that do not bind ICAP. This strongly suggests that ICAP-1 alpha action depends on a direct interaction between ICAP-1 alpha and the cytoplasmic domain of the beta(1) chains. Altogether, these results suggest that ICAP-1 alpha plays a key role in cell adhesion by acting as a negative regulator of beta(1) integrin avidity.  相似文献   

14.
The ability of cells to undergo shape changes is essential for diverse cellular functions including cell growth, differentiation, and movement. The present study examines how an integration of the function of alpha2beta1 integrin with that of the receptor for epidermal growth factor (EGFR) modulates EGF-stimulated morphological changes in human rhabdomyosarcoma RD transfectant cells. Upon EGF stimulation, RD transfectant cells that lacked alpha2beta1 integrin expression (RDpF) underwent contraction; in contrast, expression of alpha2beta1 on RD cells (RDX2C2) resulted in transient cell spreading. Integrin alpha2 cytoplasmic domain played a critical role in the observed alpha2beta1-mediated conversion from a cell rounding to a cell spreading phenotype. Thus, the expression of an alpha2 cytoplasmic domain deletion variant (X2C0) or a chimeric alpha2beta1 containing the cytoplasmic domain of alpha4 (X2C4) or alpha5 (X2C5), instead of alpha2, failed to mediate spreading upon EGF stimulation. Using dominant negative (DN) mutants of RhoGTPases, results revealed that RhoA activation was required for both EGF-stimulated responses of cell rounding and spreading, Cdc42 functioned in the re-spreading of cells after undergoing EGF-stimulated contraction, and Rac1 was required in alpha2beta1-mediated RD cell spreading. Therefore, alpha2beta1 integrin function can switch the Rho GTPase-dependent cell shape changes in RD cells from an EGF-stimulated cell contraction to a spreading morphology. Together, results show that integrin alpha2 cytoplasmic domain plays an indispensable role in the ability of integrin alpha2beta1 to modulate EGF stimulation of Rho-GTPase-dependent morphological changes in RD cells.  相似文献   

15.
The invasive and metastatic potentials of hepatocellular carcinoma are positively correlated with the expression level of alpha3beta1 integrin, a high-affinity adhesion receptor for laminin isoforms including laminin-5. In this study, we investigated changes in the adhesive and invasive behaviors of human HCC HepG2 cells after transfection with cDNA for alpha3 integrin in order to elucidate the direct involvement of this integrin in these cellular processes. We introduced cDNA for splice variants of alpha3 integrin (alpha3A and alpha3B) into the cells, and selected two transfectant clones (HepG2-3A and HepG2-3B), which express the alpha3A and alpha3B integrins, respectively. Both transfectant cells adhered almost equally to laminin-5-coated plates in an alpha3 integrin-dependent manner, indicating that transfected alpha3Abeta1 and alpha3Bbeta1 integrins were functionally active in these cells. The migratory and invasive potentials of the transfectant cells were assessed by scratch wound assay and in vitro chemoinvasion assay. The results demonstrated that the migration of HepG2-3A and HepG2-3B cells but not of mock transfectant (HepG2-M) cells was stimulated on the plates coated with laminin-5. Furthermore, HepG2-3A and HepG2-3B cells were found to be more invasive into laminin-5-containing matrices than were HepG2-M cells. These results strongly suggest that enhanced expression of alpha3beta1 integrin on HCC cells is directly involved in their malignant phenotypes such as invasion and metastasis.  相似文献   

16.
《The Journal of cell biology》1993,123(4):1017-1025
The alpha 6 beta 1 integrin is expressed on the macrophage surface in an inactive state and requires cellular activation with PMA or cytokines to function as a laminin receptor (Shaw, L. M., J. M. Messier, and A. M. Mercurio. 1990. J. Cell Biol. 110:2167-2174). In the present study, the role of the alpha 6 subunit cytoplasmic domain in alpha 6 beta 1 integrin activation was examined. The use of P388D1 cells, an alpha 6-integrin deficient macrophage cell line, facilitated this analysis because expression of either the alpha 6A or alpha 6B subunit cDNAs restores their activation responsive laminin adhesion (Shaw, L. S., M. Lotz, and A. M. Mercurio. 1993. J. Biol. Chem. 268:11401-11408). A truncated alpha 6 cDNA, alpha 6-delta CYT, was constructed in which the human cytoplasmic domain sequence was deleted after the GFFKR pentapeptide. Expression of this cDNA in P388D1 cells resulted in the surface expression of a chimeric alpha 6-delta CYT beta 1 integrin that was unable to mediate laminin adhesion or increase this adhesion in response to PMA under normal conditions, i.e., in medium that contained physiological concentrations of Ca++ and Mg++. The alpha 6A-delta CYT transfectants adhered to laminin, however, when Ca++/Mg++ was replaced with 150 microM Mn++. We also assessed the role of serine phosphorylation in the regulation of alpha 6A beta 1 integrin function by site-directed mutagenesis of the two serine residues present in the alpha 6A cytoplasmic domain because this domain is phosphorylated on serine residues in response to stimuli that activate the laminin receptor function of alpha 6 A beta 1. Point mutations were introduced in the alpha 6A cDNA that changed either serine residue #1064 (M1) or serine residue #1071 (M2) to alanine residues. In addition, a double mutant (M3) was constructed in which both serine residues were changed to alanine residues. P388D1 transfectants which expressed these serine mutations adhered to laminin in response to PMA to the same extent as cells transfected with wild-type alpha 6A cDNA. These findings provide evidence for a novel mode of integrin regulation that is distinct from that reported for other regulated integrins (O'Toole, T. E., D. Mandelman, J. Forsyth, S. J. Shattil, E. F. Plow, and M. H. Ginsberg. 1991. Science (Wash. DC). 254:845-847. Hibbs, M. L., H. Xu, S. A. Stacker, and T. A. Springer. 1991. Science (Wash. DC). 251:1611-1613), and they demonstrate that serine phosphorylation of the alpha 6A cytoplasmic domain is not involved in this regulation.  相似文献   

17.
Laminins are a family of extracellular matrix glycoproteins involved in cell adhesion and migration. A major obstacle to understanding their structure-function relationships is the lack of small laminin domains capable of replicating integrin-binding, cell-adhesive, and migratory functions of the intact molecule. Here, we show that the recombinant LG3 (rLG3) module (26 kDa) of laminin-5 (Ln-5) alpha(3) chain replicated key Ln-5 activities. rLG3 but not rLG1 or rLG2 supported cell adhesion and migration of at least two distinct cell lines, in an integrin alpha(3)beta(1)-dependent manner. Cell adhesion to rLG3 was regulated by divalent cations and accompanied by cell spreading and tyrosine phosphorylation of FAK focal adhesion kinase. The integrin binding activity of rLG3 was confirmed by rLG3 affinity chromatography of detergent cell lysates, which resulted in specific purification of integrin alpha(3)beta(1). To our knowledge, this is the first report directly demonstrating that a recombinant laminin LG module is an active domain capable of supporting integrin-dependent cell adhesion and migration.  相似文献   

18.
There is increasing evidence that a fine-tuned integrin cross talk can generate a high degree of specificity in cell adhesion, suggesting that spatially and temporally coordinated expression and activation of integrins are more important for regulated cell adhesive functions than the intrinsic specificity of individual receptors. However, little is known concerning the molecular mechanisms of integrin cross talk. With the use of beta(1)-null GD25 cells ectopically expressing the beta(1)A integrin subunit, we provide evidence for the existence of a cross talk between beta(1) and alpha(V) integrins that affects the ratio of alpha(V)beta(3) and alpha(V)beta(5) integrin cell surface levels. In particular, we demonstrate that a down-regulation of alpha(V)beta(3) and an up-regulation of alpha(V)beta(5) occur as a consequence of beta(1)A expression. Moreover, with the use of GD25 cells expressing the integrin isoforms beta(1)B and beta(1)D, as well as two beta(1) cytoplasmic domain deletion mutants lacking either the entire cytoplasmic domain (beta(1)TR) or only its "variable" region (beta(1)COM), we show that the effects of beta(1) over alpha(V) integrins take place irrespective of the type of beta(1) isoform, but require the presence of the "common" region of the beta(1) cytoplasmic domain. In an attempt to establish the regulatory mechanism(s) whereby beta(1) integrins exert their trans-acting functions, we have found that the down-regulation of alpha(V)beta(3) is due to a decreased beta(3) subunit mRNA stability, whereas the up-regulation of alpha(V)beta(5) is mainly due to translational or posttranslational events. These findings provide the first evidence for an integrin cross talk based on the regulation of mRNA stability.  相似文献   

19.
20.
Mutations in the gene encoding laminin (LM) alpha2 chain cause congenital muscular dystrophy. Here, we show that extraocular muscle (EOM) is spared upon complete LMalpha2 chain absence. The major LM chains in limb muscle basement membranes are alpha2, beta1, beta2 and gamma1 whereas alpha2, alpha4, beta1, beta2 and gamma1 chains are expressed in EOM. Expression of LMalpha4 chain mRNA is further increased in LMalpha2 chain deficient EOM. Mainly integrin alpha7X1 subunit, which binds to laminin-411, is expressed in EOM and in contrast to dystrophic limb muscle, sustained integrin alpha7B expression is seen in LMalpha2 chain deficient EOM. We propose that LMalpha4 chain, possibly by binding to integrin alpha7BX1beta1D, protects EOM in LMalpha2 chain deficient muscular dystrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号