首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gastropoda is morphologically highly variable and broadly distributed group of mollusks. Due to the high morphological and functional diversity of the feeding apparatus gastropods follow a broad range of feeding strategies: from detritivory to highly specialized predation. The feeding apparatus includes the buccal armaments: jaw(s) and radula. The radula comprises a chitinous ribbon with teeth arranged in transverse and longitudinal rows. A unique characteristic of the radula is its continuous renewal during the entire life of a mollusk. The teeth and the membrane are continuously synthesized in the blind end of the radular sac and are shifted forward to the working zone, while the teeth harden and are mineralized on the way. Despite the similarity of the general mechanism of the radula formation in gastropods, some phylogenetically determined features can be identified in different phylogenetic lineages. These mainly concern shape, size, and number of the odontoblasts forming a single tooth. The radular morphology depends on the shape of the formation zone and the morphology of the subradular epithelium. The radula first appears at the pre- and posttorsional veliger stages as an invagination of the buccal epithelium of the larval anterior gut. The larval radular sac is lined with uniform undifferentiated cells. Each major phylogenetic lineage is characterized by a specific larval radula type. Thus, the docoglossan radula of Patellogastropoda is characterized by initially three and then five teeth in a transverse row. The larval rhipidoglossan radula has seven teeth in a row with differentiation into central, lateral, and marginal teeth and later is transformed into the adult radula morphology by the addition of lateral and especially marginal teeth. The taenioglossan radula of Caenogastropoda is nearly immediately formed in adult configuration with seven teeth in a row.  相似文献   

2.
The radula is the ingesta-gathering structure in Mollusca. As interface, it has to perform various tasks without functional deterioration caused by wear. Wear prevention is well investigated in mollusks that forage on rocks and that generate high punctual pressure with their hard teeth, which contain high inorganic contents at their tips. In mollusks that forage on softer substrate, such as sand surfaces, and have relatively soft teeth, wear prevention has not been a focus of study before. Here, we studied the teeth of Limnotrochus thomsoni, which are used for raking algae from sand. For comparison, we investigated the soft outer teeth of Lavigeria grandis, which are used in gathering particles after the ingesta is loosed from the rock surface. SEM revealed scratches on all surfaces of the teeth and suggests that every tooth side interacts with abrasive particles during foraging. Analysis of stomach content revealed that sand particles of 10–20 μm diameter are ingested. By EDX/EDS, we studied the composition of the teeth and determined that high proportions of Ca are present on all surfaces, which could be an adaptation to reduce abrasion. Finally, we here present evidence for the existence of a canal within the teeth, which could potentially serve as delivery pathway of minerals during tooth maturation and has not been previously detected in Gastropoda.  相似文献   

3.
In many mammalian species, the progressive wearing down of the teeth that occurs over an individual's lifetime has the potential to change dental function, jaw movements, or even feeding habits. The orientation of phase-I wear facets on molars reveals the direction of jaw movement during the power stroke of mastication. We investigated if and how molar wear facets change with increasing wear and/or age by examining a mixed longitudinal dataset of mandibular tooth molds from wild Propithecus edwardsi (N = 32 individuals, 86 samples). Measurements of the verticality of wear facets were obtained from three-dimensional digital models generated from μCT scans. Results show that verticality decreases over the lifetime of P. edwardsi, a change that implies an increasingly lateral translation of the jaw as the teeth move into occlusion. A more transverse phase-I power stroke supports the hypothesis that these animals chew to maximize longevity and functionality of their teeth, minimizing the "waste" of enamel, while maintaining sharp shearing crests. Results of this study indicate that wear facet verticality is more closely correlated with age than overall amount of tooth wear, measured as area of exposed dentin, suggesting that age-related changes in cranial morphology may be more responsible for adjustments in jaw motion over the lifetimes of Propithecus than wear-related changes inthe shape of occluding teeth. Finally, the rate of decrease in wear facet verticality with age is greater in males than in females suggesting differences in development and/or access to resources between the sexes in this species.  相似文献   

4.
In fabrosaurids the upper jaw is flat and the lower jaw is slender so the ’cheek’ teeth are marginal and not inset as is the case in all other ornithischian dinosaurs. The ’cheek’ teeth of fabrosaurids have anteroposteriorly expanded crowns but lack wear surfaces formed by tooth to tooth contact. Two genera are recognized from the Triassic-Jurassic boundary of Lesotho with good material previously referred toFabrosaurus as a new genus that represents the most conservative ornithopod described to date. The anatomy ofNanosaurus (Upper Jurassic, U.S.A.) andEchinodon (Jurassic-Cretaceous boundary, England) is redescribed; in both genera the tooth bearing bone of the lower jaw is deepened posteriorly and inEchinodon there is a true canine tooth in the upper jaw.  相似文献   

5.
Morphology, occlusal surface topography, macrowear, and microwear features of parrotfish pharyngeal teeth were investigated to relate microstructural characteristics to the function of the pharyngeal mill using scanning electron microscopy of whole and sectioned pharyngeal jaws and teeth. Pharyngeal tooth migration is anterior in the lower jaw (fifth ceratobranchial) and posterior in the upper jaw (paired third pharyngobranchials), making the interaction of occlusal surfaces and wear-generating forces complex. The extent of wear can be used to define three regions through which teeth migrate: a region containing newly erupted teeth showing little or no wear; a midregion in which the apical enameloid is swiftly worn; and a region containing teeth with only basal enameloid remaining, which shows low to moderate wear. The shape of the occlusal surface alters as the teeth progress along the pharyngeal jaw, generating conditions that appear suited to the reduction of coral particles. It is likely that the interaction between these particles and algal cells during the process of the rendering of the former is responsible for the rupture of the latter, with the consequent liberation of cell contents from which parrotfish obtain their nutrients.  相似文献   

6.
Abstract: Radular teeth occur between the jaws in two specimens of the Late Cretaceous scaphitid ammonite Rhaeboceras halli (Meek and Hayden, 1856) from the Western Interior of the United States. The detailed morphology of the teeth has been revealed by propagation phase contrast X‐ray synchrotron microtomography. Each row of the radula of R. halli consists of a total of seven teeth (a central rachidian, two pairs of lateral and one pair of marginal teeth), as in other known ammonoid radulae, although the central tooth could not be confirmed in the specimens examined. The lateral teeth are multicuspid and robust, and the marginal teeth are long (4.6 mm) and slender. In overall morphology, the heterodont and ctenoglossan radula of R. halli is similar that of Jurassic and Cretaceous ammonites with the same aptychus‐type lower jaw, that is, the Aptychophora. This discovery reveals the range of variation in radular morphology, which could be related to ecological or phylogenetic factors. It also invalidates the hypothesis that the hook‐like structures in R. halli previously described are radular elements.  相似文献   

7.
A nearly complete radula with seven elements per row preserved inside of an isolated, bivalved, calcitic lower jaw (= aptychus) of the Late Jurassic ammonite Aspidoceras is described from the Fossillagerstätte Painten (Bavaria, southern Germany). It is the largest known ammonite radula and the first record for the Perisphinctoidea. The multicuspidate tooth elements (ctenodont type of radula) present short cusps. Owing to significant morphological differences between known aptychophoran ammonoid radulae, their possible function is discussed, partly in comparison with modern cephalopod and gastropod radulae. Analogies between the evolution of the pharyngeal jaws of cichlid fishes and the ammonoid buccal apparatus raise the possibility that the evolution of a multicuspidate radula allowed for a functional decoupling of the aptychophoran ammonoid jaw. The radula, therefore, represents a key innovation which allowed for the evolution of the calcified lower jaws in Jurassic and Cretaceous aptychophoran ammonites. Possible triggers for this morphological change during the early Toarcian are discussed. Finally, we hypothesize potential adaptations of ammonoids to different feeding niches based on radular tooth morphologies.  相似文献   

8.
第四纪响蜥(Tinosaurus)化石的首次发现   总被引:2,自引:0,他引:2  
在陕西洛南张坪洞穴的第四系中采得一些响蜥类(Tinosaurus)化石,有保存相当完好的上下齿骨和齿列,这是响蜥在第四纪的首次报道,使该属化石的地史分布从早第三纪延伸到第四纪。新材料下颌骨较粗壮,但个体很小,有齿间沟,同时兼具亚洲种及北美种的某些特征,因此建立一新种Tinosaurus luonanensis sp.nov.。  相似文献   

9.
A nomenclature for the teeth of the radula of fossil and living Cephalopoda is proposed. The names suggested can be used for the 13 elements (teeth and plates) across each transverse row of the radula of Nautiloidea (fossil and extant), and, by retaining the names for all except the two outer elements on either side, for the nine elements in Ammonoidea (fossil) and Coleoidea (fossil and extant). One transverse row of the radula has a central rhachidian tooth, and on either side lateral tooth 1, lateral tooth 2, marginal tooth 1, marginal plate 1, marginal tooth 2, marginal plate 2, the last two being present only in the Nautiloidea.  相似文献   

10.
Elemental composition and distribution in individual teeth of the whole radula of the chiton Cryptoplax striata were analyzed using energy-dispersive spectroscopy. Both the element deposited and its position within the tooth vary according to the stage of mineralization. The initial site of mineralization is the junction zone, the region between the tooth cusp and base. In this region, the first element to be deposited is iron, followed by phosphorus and then calcium. Iron deposition next commences in the tooth cusp cap, where it proceeds rapidly, being virtually complete within 12 tooth rows. By contrast, mineralization in the core of the tooth cusp does not commence until well down the radula and consists initially of iron and phosphorus with the addition of a small amount of calcium 6 rows later. While mineralization in the tooth base commences early in radula development, it continues right through to the fully mature end of the radula. A number of minor elements are also found at various stages of mineralization. The data obtained have been used to construct a schematic of the progression of mineralization along the length of the radula. © 1996 Wiley-Liss, Inc.  相似文献   

11.
In Hemiphractus fang–like teeth are ankylosed to the premaxilla, maxilla and prevomer, and bony odontoids are found on the dentary, angular and palatine bones. The odontoids are small, but a larger pair at the front of the lower jaw project upwards and backwards into the mouth and fit into a diastema between the anterior premaxillary teeth when the mouth is closed.
The teeth are unipartite and monocuspid, and each consists of a strongly recurved and elongated cone of orthodentine, capped at the tip by a thin layer of enamel. The inner circumpulpal layer of the dentine is tubular, but no tubules are present in the outer pallial layer. During tooth development, dentine is formed before the enamel matrix is produced, and the tooth germs lie horizontally beneath the ventral surface of each dentigerous bone. On eruption, the tooth germs migrate horizontally and become ankylosed to the outer edge of the jaw bone by a layer of cellular cementum.
During tooth replacement, the vast majority of the dentine of each tooth, and the cementum at the tooth base, are resorbed by osteoclasts. It is not clear whether the tips of the teeth are shed or not.  相似文献   

12.
Interproximal wear facets were examined on hominoid teeth from the middle Miocene site at Pa?alar, Turkey. The aim was to find matches between adjacent premolar and molar teeth from single individuals that were collected in the field as isolated teeth and use them to reconstruct tooth rows. These were then used to investigate: (1) the wear gradient on the molar teeth; (2) the dispersal of teeth from single mandibles and maxillae; (3) the size ratios among the molars; and (4) the number of individuals represented by the hominoid sample. Facets were scored for size and shape and were assessed visually using photographs and superimposed outline drawings on acetate transparencies. Out of a sample of approximately 1,500 teeth collected between 1983 and 1996, 532 molars and 258 premolars produced apparent matches making up 160 tooth rows. These were then examined rigorously for morphological consistency and state of wear, and, employing the criterion that only the most unequivocal associations should be used, the final number was reduced to 48 tooth rows-31 mandibular and 17 maxillary. The tooth associations represent a minimum of 21 individuals and probably as many as 34. Molar wear was rapid, with M1s having almost twice as much wear as M3s, as measured by a wear-gradient index. The M2s are intermediate but generally closer to M1s in degree of wear, as are P4s. This wear pattern suggests either delayed eruption of M3s or extremely abrasive diets causing rapid, heavy wear. There is some indication that the wear patterns in Griphopithecus alpani and Kenyapithecus kizili are different, with the latter perhaps having a lower wear gradient, but the K. kizili sample is very small. In both species, the M2 is the largest molar and the M1 is the smallest. Separation of individual teeth in the 48 tooth associations varied from widely separated-up to 8.5m apart-to within a few centimeters of each other. One tooth row (D922) was found with the teeth in contact but the maxillary bone had dissolved away. Two dispersal mechanisms have been identified from earlier taphonomic work: transport of disarticulated elements to the fossil site and reworking of sediments by spring action.  相似文献   

13.
对汪沟遗址出土的174例仰韶文化居民的2816枚牙齿进行统计与分析,计算出牙齿的平均磨耗等级和前后部牙齿磨耗差别指数,统计特殊磨耗、龋齿、骨质隆起在样本中的出现率。结果显示,汪沟组牙齿平均磨耗等级为3.403262级,男性牙齿平均磨耗等级为3.63级,女性为3.61级;男女两性牙齿磨耗差异不显著(p>0.05);前后部牙齿磨耗差别指数比达到1:1;出现26例由于深覆■导致的特殊磨耗;臼齿咬合面凹坑式磨耗出现率为2.50%;龋齿患病率68.97%,龋齿率26.56%,龋均4.30;骨质隆起的出现率为5.20%,颌骨粗壮程度不显著。汪沟人群的牙齿磨耗程度总体偏轻,牙齿磨耗程度与河南下王岗组居民接近。基于以上特点,我们认为中原地区仰韶文化人群在饮食结构和用牙习惯上存在一定的共性。  相似文献   

14.
A new marine gastropod species of the genus Trapania Pruvot-Fol, 1931, is described from Cabo Blanco, Puntarenas, Costa Rica and from Islas Secas, Panamá. Trapania inbiotica sp. nov. has a white body with red patches, white rhinophores with some little red patches, yellow appendages with partially red bases. The radula is composed of 28 rows of teeth. Each tooth has a large conical cusp with 21-24 denticles. Two or three of those denticles on the inner side of the cusp are smaller than the others. There are also 1-3 small denticles on the outside of the cusp. The jaw elements are very irregular.  相似文献   

15.
The structure of ankylotic teeth in Xenopus laevis was studied by light, transmission, and scanning electron microscopy as well as by microradiography in decalcified and undecalcified specimens. The mature teeth of Xenopus laevis are calcified from the crown to the base, fused to the jaw bone, and have no uncalcified area, such as a fibrous ring separating the tooth into the crown and pedicle. Microradiography shows that the mature tooth and jaw bone appear as an X-ray opaque area, except for the basal region of the dentine. This region is composed of an X-ray translucent area and an X-ray opaque thin layer on the lingual side of the translucent area. The mature tooth is composed of two differently calcified areas: (1) a highly calcified area, which makes up almost all of the tooth and contains a thin layer of the basal dentine on the lingual side, and (2) a lowly calcified basal dentine, which is fused to the jaw bone. Therefore, the lowly calcified area does not completely separate the dentine and jaw bone. Repeating banding patterns among the collagen fibrils differ among the dentine-forming area and the matrices of dentine and jaw bone. During the formation of ankylosis of the tooth germ, collagen bundles in the dentine-forming area accumulate directly on the surface of the jaw bone. Consequently, the mature teeth of Xenopus laevis fuse to the jaw bone directly without the mediation of the other structures.  相似文献   

16.
The teeth of white-spotted bamboo sharks (Chiloscyllium plagiosum) are used to clutch soft-bodied prey and crush hard prey; however, the dual function is not evident from tooth morphology alone. Teeth exhibit characteristics that are in agreement with a clutching-type tooth morphology that is well suited for grasping and holding soft-bodied prey, but not for crushing hard prey. The dual role of this single tooth morphology is facilitated by features of the dental ligament and jaw joint. Tooth attachment is flexible and elastic, allowing movement in both sagittal and frontal planes. During prey capture spike-like tooth cusps pierce the flesh of soft prey, thereby preventing escape. When processing prey harder than the teeth can pierce the teeth passively depress, rotating inward towards the oral cavity such that the broader labial faces of the teeth are nearly parallel to the surface of the jaws and form a crushing surface. Movement into the depressed position increases the tooth surface area contacting prey and decreases the total stress applied to the tooth, thereby decreasing the risk of structural failure. This action is aided by a jaw joint that is ventrally offset from the occlusal planes of the jaws. The offset joint position allows many teeth to contact prey simultaneously and orients force vectors at contact points between the jaws and prey in a manner that shears or rolls prey between the jaws during a bite, thus, aiding in processing while reducing forward slip of hard prey from the mouth. Together the teeth, dental ligament, and jaws form an integrated system that may be beneficial to the feeding ecology of C. plagiosum, allowing for a diet that includes prey of varying hardness and elusiveness.  相似文献   

17.
As the original molluscan radula is not known from direct observation, we consider what the form of the original radula may have been from evidence provided by neomenioid Aplacophora (Solenogastres), Gastropoda, Polyplacophora, and the Cambrian fossil Wiwaxia corrugata (Matthews). Conclusions are based on direct observation of radula morphology and its accessory structures (salivary gland ducts, radular sac, anteroventral radular pocket) in 25 species and 16 genera of Aplacophora; radula morphogenesis in Aplacophora; earliest tooth formation in Gastropoda (14 species among Prosobranchia, Opisthobranchia, and Pulmonata); earliest tooth formation in four species of Polyplacophora; and the morphology of the feeding apparatus in W. corrugata. The existence of a true radula membrane and of membranoblasts and odontoblasts in neomenioids indicates that morphogenesis of the aplacophoran radula is homologous to that in other radulate Mollusca. We conclude from p redness of salivary gland ducts, a divided radular sac, and a pair of anteroventral pockets that the plesiomorphic state in neomenioids is bipartite, formed of denticulate bars that are distichous (two teeth per row) on a partially divided or fused radula membrane with the largest denticles lateral, as occurs in the genus Helicoradomenia. The tooth morphology in Helicoradomenia is similar to the feeding apparatus in W. corrugata. We show that distichy also occurs during early development in several species of gastropods and polyplacophorans. Through the rejection of the null hypothesis that the earliest radula was unipartite and had no radula membrane, we conclude that the original molluscan radula was similar to the radula found in Helicoradomena species.  相似文献   

18.
19.
The orientation of striated wear facets on primate teeth serves as a useful guide for reconstructing jaw movements during mastication. Most wear facets on the molars are formed during one of the two well-documented movements, Phase I or Phase II, of the power stroke. Another jaw movement direction, “orthal retraction” (OR) has been proposed to account for a third set of facets occasionally present on the pointed tips of premolars and molars. Evidence advanced here indicates that OR facets on pointed anterior premolars (P3) of cercopithecoids are actually Phase I facets that have become reoriented as a result of a rotation of this tooth during its eruption. “Orthal retraction” probably does not exist as a discrete masticatory phase.  相似文献   

20.
Development of the upper dentition in Alligator mississippiensis was investigated using a close series of accurately staged and aged embryos, hatchlings, and young juveniles up to 11 days posthatching, as well as some young and old adult specimens. Studies from scanning electron microscopy, light microscopy, acetate and computer reconstructions, radiography and macroscopy were combined to elucidate the details of embryonic dental development, tooth initiation pattern, dentitional growth, and erupted functional dentition. The results were compared with those from the lower jaw and related to the development of other craniofacial structures. Approximately 17 early teeth in each jaw half develop as surface teeth, of which 13 project for 1 to 12 days before sinking into the mesenchyme. The first three teeth initiate directly from the oral epithelium at Ferguson stages 14-15 (days 15-19 after egg laying), before there is any local trace of dental lamina formation. All other teeth develop from a dental prolamina or lamina; and with progressive lamina development, submerged teeth initiate from the aboral end leading to the formation of replacement teeth. All teeth form dentin matrix, but 12 early teeth do not form enamel. Approximately 20 embryonic teeth are resorbed, 6 are transitional, and 42 function for longer periods after hatching. The embryonic tooth initiation pattern (illustrated by defining a tooth position formula) does not support the previous models of Odontostichi, Zahnreihen, and Tooth Families, each of which postulates perfect regularity. Up to three interstitial tooth positions develop between sites of primary tooth initiation, and families with up to five generations at hatching are at first arbitrarily defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号