首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Two patch reefs which predominately consist of the oysterNanogyra nana (Sowerby 1822) are exposed in Lower Kimmeridigian strata of the Langenberg hillrange, central Germany. Left oyster valves making up the frame-work of the reefs formed small abundant cavities that were inhabited by a unique sponge community. The excellent preservation of non-rigid sponges was related to early organomineralization within the decaying sponge tissue. As a process of sponge taphonomy, different types of microbially induced carbonates precipitated preserving spicule aggregates. Organomineralization within sponge soft tissues is especially favored with the Langenberg patch reefs due to the closed or semi-closed system conditions with the cavities. The δ13C values ofin situ formed microbialities reveal that carbonate precipitation was in equilibrium with Jurassic seawater. The carbon of the microbialites does not derive from the bacterial remineralization of organic matter, but is of a marine source. Likewise, organomineralization is probably related to bacterial EPS or decaying sponge tissues providing an organic matrix for initial carbonate precipitation. Biomarker analyses revealed, that the patch reef microbialites contain terminally branched fatty acids (iso-andanteiso-pentadecanoic acid) in significant concentrations. These fatty acids, like hopanoid hydrocarbons, are most likely of a bacterial source. This is in agreement with sulfate-reducing bacteria remineralizing the decaying sponges as further indicated by the occurrence of framboidal pyrite in sponge microbialites.  相似文献   

2.
Reefs in the Cannindah Limestone at Old Cannindah Homestead, Monto region, Queensland, are exceptional in Eastern Australian Mississippian (Carboniferous) build-ups because of their largest dimension and differentiated microbial fabrics. Calcimicrobes and microbial carbonates, which represent a marine reefal environment occupied by both corals and sponges, are particularly abundant in the reef framework fabrics compared to other Mississippian build-ups in the world. They contributed significantly to the rigidity of the reefs on a crinoidal bank setting. Metazoans and calcimicrobes coexisted and played different roles in reef construction. Reef-building and cavity-dwelling microbes include Renalcis, Palaeomicrocodium, Girvanella, problematic Aphralysia, Ortonella, Shamovella-like, Rothpletzella-like, Wetheredella-like, and some problematic calcimicrobes, which occur in inter-corallite infillings of fasciculate rugose corals, in thrombolitic textures, in or within deposits between microdigitate stromatolite and laminated microbialites, and in reef cavities. Some reef intervals are entirely formed by Renalcis, Palaeomicrocodium, problematic calcimicrobes, and cement. Girvanella, as an encrusting calcimicrobe, generally bound bioclasts and micrite, or together with cement, formed boundstone. Microbial carbonates, including thrombolites, microencrusters, microdigitate stromatolite, laminated and tabular microbialite, irregular layers of self-encrusting vesicles, and microbial micrite, occur commonly in reef framestone and boundstone. The role of microbes and relevant microbial carbonates in the Cannindah reef limestone highlighted a significant account of microbial facies complexes associated with the Mississippian reefs.  相似文献   

3.
Microhermal nodules very similar to those from the Oxfordian Smackover Formation are volumetrically important constituents of the Novillo Formation exposed in eastern Central Mexico. The nodules occur within a micritic limestone succession (Novillo Limestone). Coalescence of adjacent nodules leads to a delicate self-supported frame. Microhermal nodules consist of both microbial carbonate and clustered digitate and branching chambered microfossils. The latter occur in the form of crust-like agglomerations or bushy growth habit in small growth-framework cavities created by accretionary microbialites. Main growth patterns are branching upward, downward facing and pendant. Like Renalcis, the microfossils apparently resulted from the activity of calcimicrobes. Terebella, encrusting foraminifers, and Tubiphytes form part of the microhermal biota and occur as subordinate faunal components. The association developed on the floor of a calm, shallow-marine lagoon with restricted water interchange and reduced oxygenation at the sediment–water interface.  相似文献   

4.
The Middle Albian sequence from the western marginal area of the Vasco-Cantabrian Basin contains calcified microbialites in different marine depositional environments, individually well defined by microstructure, lamina characteristics and mode of formation. Microbialites may form the primary framework of reefs, which occur as composite stacks in mid to lower slope environments or as isolated bodies in small intraplatform basins. In most areas microbialite reef growth was initiated below the photic zone. Stratiform intercalations of microbialites and composite microbialite/foraminifer oncoids are restricted to well bedded carbonate platform deposits (Urgonian). Three basis types of microbialites are recognized:
(i)  Dense micritic/fenestral microbialites corresponding to laterally linked, stacked stromatolitic hemispheroids. The development and preservation of stromatolitic structure is a function of sediment supply and secondary obliteration by succesive boring activities. They were calcified in situ at the surface with irregularly curved linings of microcrystalline carbonate. Dense micritic/ fenestral microbialites, variously developed and preserved, are the main contributors to microbialite reefs. Microbialites form hard substrates bored by lithophagous pelecypods and boring sponges (Aka sp.). The main associated faunal elements include lithistid and coralline demosponges, hexactinellid sponges, encrusting foraminifera, brachiopods, polychaetes, and bryozoans.
(ii)  Dense micritic/peloidal microbialites with subplanar, arhythmic lamination (binding habit). They were calcified in situ below the surface in conjunction with decaying organic matter. At large scale, they occur in shallow water, i.e. within the photic zone. They cover earlier microbialite reefs or occur on and in episodic deposits of coarse biodebris. At small scale they occur in protected microenvironments (e.g. intraparticle space, boring cavities).
(iii)  Peloidal/in situ ooid microbialites with subplanar/ wavy lamination occur as small-scale stratiform intercalations in carbonate platform deposits, episodically revealing physical reworking. Other features are very similar to dense micritic/peloidal microbialites.
The results of geochemical analyses indicate a rock-buffered diagenetic system during early diagenetic and burial history of microbialite reefs. Independent of microbialite type residual MgCO3-contents are in the range of 1.20 to 3.57 mole %, agreeing well with those from isopachous rim cements and indicating a high Mg-calcite precursor of microbialite micrites. Stable isotope values (δ13C) are in the range of 3.13 to 3.80 (permil, vs PDB), close to the internal standard, the coralline spongeAcanthochaetetes (Albian species=2.93; Recent species=3.27) and comparable with inorganically precipitated Mg-calcite.  相似文献   

5.
Da Silva, A.‐C., Kershaw, S. & Boulvain, F. 2011: Sedimentology and stromatoporoid palaeoecology of Frasnian (Upper Devonian) carbonate mounds in southern Belgium. Lethaia, Vol. 44, pp. 255–274. Stromatoporoids are the most abundant large skeletal organisms in middle Frasnian carbonate mound environments of southern Belgium. They occur in environments ranging from flank and off‐mound, mound core, shallow mound and restricted mound. A detailed log and comprehensive sampling of stromatoporoids in a single section cutting through all middle Frasnian mound levels in La Boverie–Rochefort Quarry, near Rochefort and Dinant reveals a stromatoporoid assemblage comprising 10 genera; 472 samples, containing an overall total of 3079 stromatoporoids (including complete and fragmented specimens) have been studied. The following list gives abundance using numbers of specimens and areas of total stromatoporoid area on outcrop surfaces (% number; % area in cm2): Actinostroma (0.4; 9.2), Amphipora (15.5; 1.7), Atelodictyon (0.2; 4.4), Clathrocoilona (0.3; 0.5), Euryamphipora (13.7; 0.7), Idiostroma (2; 1.9), Salairella (1.2; 9.6), branching Stachyodes (43.2; 59.1), laminar Stachyodes australe (1.9; 1.3), Stictostroma (4.8; 13.1) and Trupetostroma (0.2; 0.8), showing that Stachyodes is approximately half of the total assemblage. Deeper environments contain more abundant low profile forms, shallow water facies contain more domical and bulbous forms; branching forms are ubiquitous. Low profile stromatoporoids are likely to have been important sediment stabilizers that may have led to expansion of the carbonate factory, and they may have therefore contributed to the structural building of the mounds. Stromatoporoid‐coral intergrowths are observed in only Stictostroma suggesting that there is a close biological relationship between them; however, stromatoporoid skeletons in almost all cases appear to be unaffected by the presence of intergrown corals, suggesting they were commensals. □Frasnian, Late Devonian, mounds, palaeoecology, stromatoporoid.  相似文献   

6.
Offshore facies of the Mesoproterozoic Sulky Formation, Dismal Lakes Group, arctic Canada, preserve microbialites with unusual morphology. These microbialites grew in water depths greater than several tens of meters and correlate with high‐relief conical stromatolites of the more proximal September Lake reef complex. The gross morphology of these microbial facies consists of ridge‐like vertical supports draped by concave‐upward, subhorizontal elements, resulting in tent‐shaped cuspate microbialites with substantial primary void space. Morphological and petrographic analyses suggest a model wherein penecontemporaneous upward growth of ridge elements and development of subhorizontal draping elements initially resulted in a buoyantly supported, unlithified microbial form. Lithification began via precipitation within organic elements during microbialite growth. Mineralization either stabilized or facilitated collapse of initially neutrally buoyant microbialite forms. Microbial structures and breccias were then further stabilized by precipitation of marine herringbone cement. During late‐stage diagenesis, remaining void space was occluded by ferroan dolomite cement. Cuspate microbialites are most similar to those found in offshore facies of Neoarchean carbonate platforms and to unlithified, buoyantly supported microbial mats in modern ice‐covered Antarctic lakes. We suggest that such unusual microbialite morphologies are a product of the interaction between motile and non‐motile communities under nutrient‐limiting conditions, followed by early lithification, which served to preserve the resultant microbial form. The presence of marine herringbone cement, commonly associated with high dissolved inorganic carbon (DIC), low O2 conditions, also suggests growth in association with reducing environments at or near the seafloor or in conjunction with a geochemical interface. Predominance of coniform stromatolite forms in the Proterozoic—across a variety of depositional environments—may thus reflect a combination of heterogeneous nutrient distribution, potentially driven by variable redox conditions, and an elevated carbonate saturation state, which permits preservation of these unusual microbialite forms.  相似文献   

7.
Early Ordovician (early Floian) reefs of South China include lithistid sponge–Calathium reefs with a three‐dimensional skeletal framework. These structures are among the first post‐Cambrian skeletal‐dominated reef structures and provides an opportunity to test how the novel metazoan builders changed the environments and increased topographic complexity within benthic communities. We document the oldest labechiid stromatoporoid (Cystostroma) in a lithistid sponge–Calathium reef of the Hunghuayuan Formation in southeastern Guizhou, South China. These earliest stromatoporoids may have originated in reefs, and we argue that the complex topography created by the hypercalcified sponge Calathium facilitated the emergence of stromatoporoids. Beyond Cystostroma, keratose sponges, Pulchrilamina (hypercalcified sponge) and bryozoans have also inhabited in the micro‐habitats (cavities and hard substrates) provided by Calathium. These findings suggest that ecosystem engineering by Calathium played an important role in the further diversification of reefs during the Ordovician.  相似文献   

8.
Abstract: Stromatoporoid faunas in the Frasnian of southern Belgium are abundant in the carbonate platform environments present in this area. Stromatoporoids dominate the large skeletal organisms and occur principally in biostromes. The stromatoporoid assemblage is represented by a small number of taxa. Stromatoporoid genera include Actinostroma, Amphipora, Atelodictyon, Clathrocoilona, Salairella, Stachyodes, Stictostroma, Stromatopora and Trupetostroma which are present in environments ranging from the outer, outer intermediate, inner intermediate and inner zones and associated biostromes. Most large skeletal stromatoporoids are low profile, which reinforces the conclusions of previous studies that low‐profile growth forms were the most successful stromatoporoid forms. These low‐profile forms are likely to have been important sediment stabilisers that may have led to expansion of the carbonate factory. Growth forms vary between facies, indicating some degree of environmental control on form; for example, laminar in the intermediate zone, bulbous and domical in the inner and outer zones. Stromatoporoid taxa vary in occurrence across the environmental gradient from shallow to deep. There is some taxonomic control on growth forms, with some taxa showing more variability than others in different environments.  相似文献   

9.
Rachel Wood 《Palaeontology》2000,43(4):671-703
Back‐reef ecologies within the celebrated mixed carbonate‐siliciclastic Late Devonian (late Frasnian) Pillara Limestone of Windjana Gorge, in the Canning Basin, Western Australia, are re‐interpreted as being dominated by microbial communities. Proposed microbialites are expressed as weakly‐laminated, fenestral micrite, that show unsupported primary voids, peloidal textures, disseminated bioclastic debris, and traces of microfilaments. These grew as either extensive free‐standing mounds or columns, often intergrown with encrusting metazoans, or thick post‐mortem encrustations upon skeletal benthos. In some cases, microbial encrustations are inferred to have developed in protected cavities formed by progressive burial of the reef. The calcimicrobe Shuguria also shows a preferentially cryptic habit, encrusting either primary cavities formed by skeletal benthos, microbialite, or the ceilings of mm‐sized fenestrae within microbialite. A further calcimicrobe, Rothpletzella, formed columns up to 0.3 m high in areas enriched by very coarse siliciclastic sediment. Stromatoporoid sponges with a diverse range of morphologies also formed in situ growth fabrics. Monospecific thickets of closely‐aggregating dendroid stromatoporoid sponges (Stachyodes costulata), and platy‐laminar forms (?Hermatostroma spp.) were common, as were remarkably large stromatoporoids (Actinostroma spp.) that grew as isolated individuals up to 5 m in diameter. Such sponges showed impressive powers of regeneration from partial mortality, and individual clones may have been capable of substantial longevities of up to 500 years. Actinostroma spp. showed highly complex growth forms including platy‐multicolumnar (A. windjanicum), and a hitherto undescribed inferred whorl‐forming foliaceous morphology (Actinostroma sp.) reminiscent of the modern photosymbiotic coral Acropora palmata. These complex morphologies formed abundant primary cavities, previously thought to be only rarely developed in association with stromatoporoids.key words : Late Devonian, Canning Basin, reefs, palaeoecology, microbialite.  相似文献   

10.
In the Upper Jurassic reef successions of the Crimean Peninsula (Sudak and Jalta areas), the microencruster Crescentiella morronensis (Crescenti), microbialites, and multiple generations of cements, form microframeworks. They were observed in two stages of the carbonate platform evolution, in the Middle–Upper Oxfordian, and in the Upper Kimmeridgian–Tithonian. Generally, in both stages, the features of the microframeworks are similar and consist of densely packed Crescentiella associated with microbialites and branched colonies of the sclerosponge Neuropora lusitanica Termier. The difference between the occurrences of the two stages is the variable amount of nubecularid foraminifera and enigmatic tube-shaped structures forming the central cavities of Crescentiella. The Crescentiella-microbial-cement microframeworks formed under phreatic conditions in the upper slope and seaward marginal depositional settings where intensive synsedimentary cementation took place. They formed in the initial stages of long cycles of restoration and blooming of the reefs. The late Jurassic examples resemble the Permian algae-microbial-cement reefs as well as the Triassic Tubiphytes and cement crust-dominated reefs. Concurrently, all these examples formed a transitional facies zone between typical slope facies to shallow subtidal platform margin facies characterized by high taxonomic diversity of calcified sponges, corals, and microencrusters forming the principal part of the reefs.  相似文献   

11.
Wood, Rachel, Reitner, Joachim & West, Ronald R. 1989 01 15: Systematics and phylogenetic implications of the haploslerid stromatoporoid Newellia mira nov. gen. Lethaia, Vol. 22, pp. 85–93. Oslo. ISSN 0024–1164. The presence of spicules in a Palaeozoic stromatoporoid is here confirmed. Parallelopora mira Newell, 1935 from the Upper Carboniferous of the U.S.A. is redescribed as a calcified haplosclerid sponge with a primary siliceous spicule framework of isodictyally arranged styles, sub-tylostyles and strongyles and a secondary calcareous skeleton of stromatoporoid grade and probable aragonitic original mineralogy. P. mira is placed within a new genus Newellia, and family, the Newellidae. This form is postulated to have possessed large amounts of collagenous organic material which enveloped and bound the spicular framework in place. By the draping outline of the calcareous skeleton around the spicule framework and by analogy with the Recent demosponge genus Vaceletia, the calcareous skeleton is suggested to have formed by the direct mineralization of this collagenous template. Newellia mira nov. gen. is further proposed to constitute a member of a new clack of haplosclerid stromatoporoids, together with Euz-Miella erenoensis (Lower Cretaceous); a clade with some similarity to Recent non-calcified forms, e.g. Adocia. Most notably, the presence of different calcareous skeleton mineralogies and possibly microstructures in these two forms suggests the independent development of a calcareous skeleton at different times within this spicule clade. Demosponges appear to have produced calcareous skeletons independently in many different spicule clades. Calcified demosponges are now known from the Hadro-merida (Lower carboniferous; Upper Cretaceous - Recent), Axinellida (Upper Triassic - Lower Cretaceous; Upper Cretaceous; Recent), Poecilosclerida (Recent) as well as the Haplosclerida (Upper Carboniferous - Lower Cretaceous; Recent).□Upper Carboniferous, stromatoporoid, spicules, haplosclerid demosponges, calcareous skeleton biomineralization, demosponge clades, polyphyly.  相似文献   

12.
Late Jurassic–Early Cretaceous ?tramberk-type reef limestones are known from some parts of the Southern Carpathians in Romania. The Upper Jurassic deposits mainly consist of massif reef limestones including a variety of microbialites associated with micro-encrusters. They played an important role in the formation and evolution of the reef frameworks and thus are of significant importance for deciphering the depositional environments. For our study, the most important encrusting organisms are Crescentiella morronensis, Koskinobullina socialis, Lithocodium aggregatum, Bacinella-type structures, Radiomura cautica, Perturbatacrusta leini, Coscinophragma sp., and crust-forming coralline sponges such as Calcistella. Based on microscopic observations, microbial contribution to reef construction is documented by the abundance of dense micrite, laminate structures, clotted, thrombolithic or peloidal microfabrics, constructive micritic cortices, biogenic encrustations and cement crusts, as well as by other types of microbial structures and crusts. Most of the investigated carbonate deposits can be classified as “coral-microbial-microencruster boundstones” which are characteristic for the Intra-Tethyan domain. Their paleogeographical significance is indicated by the presence of many features comparable with carbonate deposits of rimmed platform systems from the Northern Calcareous Alps or Central Apennines. Based on the distribution of the facies and facies associations within the carbonate sequences under study we can distinguish slope and external shelf margin environments. The microbial crusts, the encrusting micro-organisms, and in some cases the syndepositional cements have stabilized and bound the carbonates of the slope facies types. Subsequently, the stable substrate favored the installation of coral-microbial bioconstruction levels.  相似文献   

13.
The horizontal and vertical transitions of a wide range of bioconstructions are documented from the shallow domains of a Kimmeridgian carbonate ramp (Upper Jurassic) in the Jabaloyas area of NE Spain. The bioconstructions include microbial buildups, coral-bearing thrombolite buildups, coral-microbial buildups, branching coral patches, oyster patches, and stromatoporoid carpets. Buildups form stacked pinnacles up to 19 m thick, within a broad spectrum of coeval inter-buildup carbonate facies. Coral-bearing thrombolites are coincident with shallow-marine oolitic sands, indicating development during the initial platform flooding (unit 1). During the continued sea-level rise (units 2 and 3), coral-microbial buildups [encrusted by Crescentiella (Tubiphytes) and serpulids] were established from proximal to distal mid-ramp domains, and these showed an increasing proportion of microbial crust in distal domains. Inter-buildup oolitic facies sharply grade down-dip to hummocky cross-stratified intraclastic, peloidal, and skeletal deposits, mostly sourced from the coral-microbial buildups. The lower part of unit 4 was dominated by microbialites in the proximal areas, related to local fresh-water input causing seawater stratification and oxygen depletion. The upper part of unit 4 indicates an initial recovery of metazoan frame builders, with abundant branching corals. During the late regression (units 5 and 6), Marinella lugeoni red algae, oyster patches, and stromatoporoid boulders developed close to the shoreline in well-oxygenated waters with high nutrient content. The reported data contribute to the discussion of the optimal environmental conditions for each “bioconstruction window” in Jabaloyas, namely sediment and nutrient supply, water depth, water oxygenation, wave energy and light availability.  相似文献   

14.
Microbialites are mineral formations formed by microbial communities that are often dominated by cyanobacteria. Carbonate microbialites, known from Proterozoic times through the present, are recognized for sequestering globally significant amounts of inorganic carbon. Recent ecological work has focused on microbial communities dominated by cyanobacteria that produce microbial mats and laminate microbialites (stromatolites). However, the taxonomic composition and functions of microbial communities that generate distinctive clotted microbialites (thrombolites) are less well understood. Here, microscopy and deep shotgun sequencing were used to characterize the microbiome (microbial taxa and their genomes) associated with a single cyanobacterial host linked by 16S sequences to Nostoc commune Vaucher ex Bornet & Flahault, which dominates abundant littoral clotted microbialites in shallow, subpolar, freshwater Laguna Larga in southern Chile. Microscopy and energy‐dispersive X‐ray spectroscopy suggested the hypothesis that adherent hollow carbonate spheres typical of the clotted microbialite begin development on the rigid curved outer surfaces of the Nostoc balls. A surface biofilm included >50 nonoxygenic bacterial genera (taxa other than Nostoc) that indicate diverse ecological functions. The Laguna Larga Nostoc microbiome included the sulfate reducers Desulfomicrobium and Sulfospirillum and genes encoding all known proteins specific to sulfate reduction, a process known to facilitate carbonate deposition by increasing pH. Sequences indicating presence of nostocalean and other types of nifH, nostocalean sulfide:ferredoxin oxidoreductase (indicating anoxygenic photosynthesis), and biosynthetic pathways for the secondary products scytonemin, mycosporine, and microviridin toxin were identified. These results allow comparisons with microbiota and microbiomes of other algae and illuminate biogeochemical roles of ancient microbialites.  相似文献   

15.
Four stromatoporoid species from a stromatoporoid biostrome in the middle Ludlow Hemse Beds, Gotland, Sweden, show intergrowths with syringoporid tabulate and rugose corals, and indicate close relationships between particular coral and stromatoporoid species. The stromatoporoid Clathrodictyon convictum always contains ?Syringopora and this tabulate is rarely found in the other stromatoporoids. C. convictum is also closely associated with Tryplasma flexuosum (rugosa) while Petrozium pelagicum (rugosa) occurs only in the stromatoporoids Plectostroma intermedium and Parallelostroma typicum. The microstructure of ?Syringopora within the stromatoporoids is composed of an inner lamellar layer and an outer radial layer of calcite crystals. Diagenetic alteration has affected the microstructure which differs from recently described Devonian forms having only a radial layer. This shows variability in the structure of the tabulates within stromatoporoids. Information is sparse on the range of such variation and assessment of the relative importance of taxonomic, palaeoenvironmental and diagenetic effects is not possible in the present sample. No evidence is found to prove the precise nature of the relationships; they were not parasitic but may have been mutually symbiotic, or (most probably) commensal. The results suggest that the corals selected the most suitable stromatoporoid species for their requirements. Stromatoporoid morphology may have had an important influence on the association, where corals are more abundantly associated with those stromatoporoid species which adopted a high profile. Overall the associations appear to have allowed the corals to explore higher energy habitats otherwise unavailable to their delicate branching structure.  相似文献   

16.
Mud mounds: A polygenetic spectrum of fine-grained carbonate buildups   总被引:2,自引:0,他引:2  
Summary This research report contains nine case studies (part II to X) dealing with Palaeozoic and Mesozoic mud mounds, microbial reefs, and modern zones of active micrite production, and two parts (I and XI) summarizing the major questions and results. The formation of different types ofin situ formed micrites (automicrites) in close association with siliceous sponges is documented in Devonian, Carboniferous, Triassic, Jurassic and Cretaceous mounds and suggests a common origin with a modern facies found within reef caves. Processes involved in the formation of autochthonous micrites comprise: (i) calcifying mucus enriched in Asp and Glu, this type presumably is linked to the formation of stromatolites, thrombolites and massive fabrics; (ii) protein-rich substances within confined spaces (e.g. microcavities) result in peloidal pockets, peloidal coatings and peloidal stromatolites, and (iii) decay of sponge soft tissues, presumably enriched with symbiotic bacteria, lead to the micropeloidal preservation of parts of former sponge bodies. As a consequence, there is strong evidence that the primary production of micrite in place represents the initial cause for buildup development. The mode of precipitation corresponds to biologically-induced, matrix-mediated mineralization which results in high-Mg-calcites, isotopically balanced with inorganic cements or equilibrium skeletal carbonates, respectively. If distinct automicritic fabrics are absent, the source or origin of micrite remains questionable. However, the co-occurring identifiable components are inadequate, by quantity and physiology, to explain the enhanced accumulation of fine-grained calcium carbonate. The stromatolite reefs from the Permian Zechstein Basin are regarded as reminiscent of ancestral (Precambrian) reef facies, considered the precursor of automicrite/sponge buildups. Automicrite/sponge buildups represent the basic Phanerozoic reef type. Analogous facies are still present within modern cryptic reef habitats, where the biocalcifying carbonate factory is restricted in space.  相似文献   

17.
Culturable heterotrophic bacterial composition of marine sponge Dendrilla nigra was analysed using different enrichments. Five media compositions including without enrichment (control), enriched with sponge extract, with growth regulator (antibiotics), with autoinducers, and complete enrichment containing sponge extract, antibiotics, and autoinducers were developed. DNA hybridization assay was performed to explore host specific bacteria and ecotypes of culturable sponge-associated bacteria. Enrichment with selective inducers (AHLs and sponge extract) and regulators (antibiotics) considerably enhanced the cultivation potential of sponge-associated bacteria. It was found that Marinobacter (MSI032), Micromonospora (MSI033), Streptomyces (MSI051), and Pseudomonas (MSI057) were sponge-associated obligate symbionts. The present findings envisaged that “Micromonospora–Saccharomonospora–Streptomyces” group was the major culturable actinobacteria in the marine sponge D. nigra. The DNA hybridization assay was a reliable method for the analysis of culturable bacterial community in marine sponges. Based on the culturable community structure, the sponge-associated bacteria can be grouped (ecotypes) as general symbionts, specific symbionts, habitat flora, and antagonists.  相似文献   

18.
Werner Buggisch  Stefan Krumm 《Facies》2005,51(1-4):566-583
In this paper, we report the highest and lowest carbon isotope values known from Palaeozoic carbonate rocks. These unusual δ13C values (−50 to +23.5‰) are due to microbial methanogenesis and methanotrophy in Silurian to Carboniferous carbonates. Trace elements were used to decipher the primary mineralogy of the carbonate cements. Very high Sr values and low amounts of Mg, Fe and Mn point toward aragonite precursors, whereas high Fe and Mn values are indicative of primary calcites and allow reconstruction of the redox conditions. Four carbonate deposits are described from the Meseta and the Antiatlas of Morocco, the Pyrenees (France) and the Harz mountains (Germany). The highest δ13C values in concretion below the uppermost Silurian Spinatrypa Mound (Moroccan Meseta) give evidence, that CO2 was produced during methanogenesis. δ13C values between −10 and −32‰indicate that the formation of microbial carbonates and cements in the Middle Devonian Hollard Mound (Antiatlas) and in the Lower Carboniferous sediments of the Iberg (Harz) formed at thermogenetic methane or petroleum seeps. The Late Bashkirian carbonate mound of the High Pyrenees (Tantes Mound) is the first Palaeozoic carbonate with seepage fluids being dominated by biogenic methane. Matrix carbonates exhibit δ13C values as low as −34‰. In some parts, voids make up more than 50 vol% of the mound. They are filled with several generations of cement. The earliest void filling is isopachous fibrous cement, which represents former aragonite. Most negative δ13C values of −50‰were measured in these isopachous fibrous cements. The difference of 55‰in δ13C values between normal sediments and early aragonite cements can only be explained by the contribution of CO2 from anaerobic oxidation of biogenic methane in a cold seep setting.  相似文献   

19.
Earliest Triassic microbialites (ETMs) and inorganic carbonate crystal fans formed after the end-Permian mass extinction (ca. 251.4 Ma) within the basal Triassic Hindeodus parvus conodont zone. ETMs are distinguished from rarer, and more regional, subsequent Triassic microbialites. Large differences in ETMs between northern and southern areas of the South China block suggest geographic provinces, and ETMs are most abundant throughout the equatorial Tethys Ocean with further geographic variation. ETMs occur in shallow-marine shelves in a superanoxic stratified ocean and form the only widespread Phanerozoic microbialites with structures similar to those of the Cambro-Ordovician, and briefly after the latest Ordovician, Late Silurian and Late Devonian extinctions. ETMs disappeared long before the mid-Triassic biotic recovery, but it is not clear why, if they are interpreted as disaster taxa. In general, ETM occurrence suggests that microbially mediated calcification occurred where upwelled carbonate-rich anoxic waters mixed with warm aerated surface waters, forming regional dysoxia, so that extreme carbonate supersaturation and dysoxic conditions were both required for their growth. Long-term oceanic and atmospheric changes may have contributed to a trigger for ETM formation. In equatorial western Pangea, the earliest microbialites are late Early Triassic, but it is possible that ETMs could exist in western Pangea, if well-preserved earliest Triassic facies are discovered in future work.  相似文献   

20.
Summary A benthic community of sessile metazoans dominated by coralline sponges (e.g.Acanthochaetetes andVaceletia) is found within a Cenomanian-Turonian deep water hardground succession cropping out at the coastal area of the Bay of Biscay near Santander. The characteristic K-strategic community exhibits a very close taxonomic relationship with modern communities from the Pacific realm, which allows for a comparison with Recent environmental conditions. The sponge community was associated with automicrites, microbialites, and thin mineralized limonitic biofilms. This biofacies is typically found in cryptic niches of reefal buildups (“telescoping”). The iron-rich biofilms had a strong electrochemical corrosive ability which explains the distinct submarine dissolution patterns. The hardground conditions are controlled, in part, by strong contour current regimes linked with extremely oligotrophic water masses. This system was established during the drowning of a distal carbonate ramp during the early Middle Cenomanian (A.rhotomagenese zone). In the uppermost portion of the hardground (Late Cenomaian, upperR. cushmani zone) the coralline sponge community was replaced by thick limonitic stromatolites with numerous encrusting foraminifera (Miniacina-type) and by colonies of the problematic iron bacteriumFrutexites. This event is accompanied by an increase of terrigenous influx and detrital glauconite, indicating a fundamental change in food web, and terminates the sponge dominated basal hardground interval. Thehardground was buried by hemipelagic sediments during the Middle Turonian (upperR. kallesi zone). Dedicated to the memory of Prof. Dr. JostWiedmann  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号