首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 870 毫秒
1.
Abstract

The aim of this study was to investigate the possible effects of coppice conversion to high forest on the beech fine-root systems. We compared the seasonal pattern of live and dead fine-root mass (d < 2 mm), production and turnover in three beech stands that differed in management practices. Tree density was higher in the 40-year-old coppice stand than in the stands that were converted from coppice to high forest in 1994 and 2004, respectively. We found that a reduction in tree density reduced the total fine-root biomass (Coppice stand, 353.8 g m?2; Conversion 1994 stand, 203.6 g m?2; Conversion 2004 stand, 176.2 g m?2) which continued to be characterised by a bimodal pattern with two major peaks, one in spring and one in early fall. Conversion to high forest may also affect the fine-root soil depth distribution. Both fine-root production and turnover rate were sensitive to management practices. They were lower in the Coppice stand (production 131.5 g m?2 year?1; turnover rate 0.41 year?1) than in the converted stands (1994 Conversion stand: production 232 g m?2 year?1, turnover rate 1.06 year?1; 2004 Conversion stand: production 164.2 g m?2 year?1, turnover rate 0.79 year?1).  相似文献   

2.
1. We estimated the biomass and production of juvenile anadromous brown trout (Salmo trutta) and Atlantic salmon (Salmo salar) (parr) in 12 streams in the Skagerrak area of Norway to identify controlling environmental factors, such as land‐use and water chemistry. 2. Production estimates correlated positively with fish density in early summer, but not with the size of the catchment. The summer biomass of age‐0 brown trout and Atlantic salmon was smaller than that of age‐1 and constituted 27.4 and 25.7%, respectively, of the total biomass of the two groups. 3. Mean production of brown trout from July to September varied between streams, but in most cases it was below 2 g 100 m?2 day?1. Yearly cohort production from age‐0 in July to age‐1 in July was 10 g m?2 or less, with mean annual production of 1.32 g 100 m?2 day?1, equivalent to 4.8 g m?2 year?1. The corresponding annual cohort production of Atlantic salmon was 0.38 g 100 m?2 day?1 or 1.4 g m?2 year?1. Annual production to biomass ratio (P/B) for brown trout of the same cohort in the various streams was between 1.47 and 4.37; the overall mean (±SD) for all streams was 2.25 ± 0.94. Mean turnover rate of Atlantic salmon was 2.73 ± 0.24. 4. Production of 0+ brown trout during the summer correlated significantly with the percentage of agricultural land and forest/bogs in the catchment, with maxima at 20 and 75%, respectively. Age‐0 brown trout production also correlated with concentration of nitrogen and calcium in the water, with maxima at 2.4 and 14 mg L?1, respectively. 5. The results support the hypothesis that brown trout parr production reflects the quality of their habitat, as indicated by the dome‐shaped relationship between percentage of agricultural land and the concentration of nitrogen and calcium in the water.  相似文献   

3.
Net production of theEcklonia cava community was monitored on a monthly basis for a year, and annual net production was estimated. Growth rate of blades reached a maximum of about 13 g dry wt·m?2·day?1 in spring and a minimum of about 2 g dry wt·m?2·day?1 in late summer. Annual production of blades was calculated to be 2.84 kg dry wt·m?2·year?1. If the growth of stipes is taken into account, annual net production is estimated to be about 2.9 kg dry wt·m?2·year?1. Standing crop was monitored monthly for two and a half years, and a close negative correlation was found between seasonal change in standing crop and net production. Standing crop reached a maximum of about 3 kg dry wt·m?2 in summer and a minimum of about 1 kg dry wt·m?2 in winter. Low productivity in summer at a period of maximum biomass may be explained by the dense canopy and the large area of reproductive portion occupying a blade, which diminish net assimilation.  相似文献   

4.
Growth, productivity and potential for exploitation of the clam Tawera gayi from shallow waters (3–5 m) of Ushuaia Bay, Beagle Channel were investigated. Mean abundance and biomass in the study area were 1091 ± 737 ind. m?2 and 901.83 g SFWM m?2 (shell‐free wet mass), respectively. Individual growth was described best by the von Bertalanffy growth model with the parameter values H = 28.03 mm, K = 0.288 year?1, t0 = ?0.34 (r2 = 0.83). Annual production of the population was estimated to be 120.45 g SFWM m?2 year?1, corresponding to a production‐to‐biomass ratio (P/B) of 0.134 year?1. The single negative exponential mortality model does not fit the population mortality pattern, but predation by gastropods (Xymenopsis muriciformis, Trophon geversianus, Natica sp.) appears to be the major cause of mortality. These highly mobile predators together with the comparatively slow growth and low turnover of T. gayi in Ushuaia Bay limit its potential for sustainable commercial exploitation.  相似文献   

5.
This study investigates aspects of the life history of the polychaete Thoracophelia furcifera on a sandy beach in southern Brazil. Two fixed transects perpendicular to the shoreline in the intertidal zone were sampled fortnightly from May 2008 to April 2009 at low tide. Five T. furcifera samples were collected along each transect and sediment temperature and the salinity of interstitial water were recorded. The material was washed over 0.5- and 0.088-mm sieves, and the width of setiger 8 of each specimen was measured. A total of 5,870 organisms were examined and the estimated parameters of the von Bertalanffy growth curve were L 3.60?mm (Wd8S), K 0.63?year?1, C 0.3 and WP 0.97 (Rn 0.132). Life span was 2.6?years, instantaneous mortality rate Z was 3.8?year?1 and the growth index φ′ 0.91. Mean density ranged from 644.44?±?191.77 to 2,783.33?±?453.64 ind m?2 and mean biomass ranged from 2.52?±?0.55 to 9.52?±?1.83?g?m?2. Recruitment occurred from April to July and ovigerous females were found from June to November. Annual secondary production was 6.582?g?m?2?year?1, mean biomass was 5.638?g?m?2 and turnover rate was 1.167. The high values for density, secondary production and biomass suggest that T. furcifera constitute an important food source. These features of T. furcifera’ life strategy demonstrate the significant role this species plays in ecosystem dynamics.  相似文献   

6.
Pomacea flagellata is a gastropod conspicuous in freshwater environments, and represents a fishing resource. To assess their abundance, distribution, and secondary production, monthly samplings were carried out in Bacalar Lake from June 2012 to May 2013 at 12 sampling sites. In each site, three random transects were marked parallel to the shore. All snails on transect were collected and shell length and wet weight measured. The highest density occurred in September (1.27 ind.m?2), lowest in October (0.47 ind.m?2). Shell lengths ranged from 2 to 56 mm, with recruitment in January–March. Growth parameters were L 59.50 mm, K 0.65.year?1; the lifetime span was 3 years. Average biomass reached 5.57 wet g.m?2 and secondary production was 6.025 wet g.m?2.year-1; annual renewal rate P/B 1.08. Highest abundance and secondary production was contributed by individuals between 31 and 41 mm in length. A potential biomass of 25.06 tons of snails was estimated in the lake. Snail densities, secondary production, and turnover were very low during the year, indicating that it is not viable to consider a commercial catch without affecting the population. A ban of 10 years is proposed, and aquaculture practices of snails are recommended to recover the resource.  相似文献   

7.
《Biomass》1989,18(1):1-14
Papyrus (Cyperus papyrus) standing biomass and the primary productivity of undisturbed and previously harvested areas of papyrus was measured in Lake Naivasha swamp, Kenya. Papyrus culm density in undisturbed swamp was estimated to be 13·1±1·9 culms m−2 and aerial biomass was 3602 g m−2. In undisturbed swamp the aerial productivity was 14·1 g m−2 day−1 while the previously harvested swamp reached a peak of 21·0 g m−2 after 6 months. The annual aerial production rate of papyrus in Lake Naivasha was estimated to be 5150 g m−2 year−1. To sustain yields of regularly harvested papyrus swamps, the harvest intervals should exceed 1 year.  相似文献   

8.
1. Surface ecosystems provide the primary source of organic matter to many cave communities. Variation in the strength of connectivity to the surface suggests that some caves may be more resource‐limited than others. To test this, we examined diet, prey availability and production of an obligate cave salamander Gyrinophilus palleucus (Plethodontidae), a top predator, in two south‐eastern U.S.A. caves with different levels of organic matter (Tony Sinks cave, 165 g AFDM m?2; Bluff River cave, 62 g AFDM m?2). 2. We quantified density, biomass, growth rate, production and diet of G. palleucus monthly for 21 months. Diet composition, differences in prey communities and seasonal patterns in prey consumption were also analysed. 3. Salamander density, biomass and secondary production were significantly greater in the high organic matter cave (0.10 m?2, 0.18 g AFDM m?2, 0.12 g AFDM m?2 year?1) than in the low organic matter cave (0.03 m?2, 0.03 g AFDM m?2, 0.01 g AFDM m?2 year?1). Although growth rates were not statistically different between the two cave salamander populations, low recaptures probably influenced this result. 4. Isopoda prey were the major contributor to salamander production in the high organic matter cave (69%). In the low organic matter cave, production was provided by isopods (41%) and oligochaetes (20%). The lower number of prey taxa contributing to salamander production in the high organic matter cave suggests the ability to forage more selectively. 5. The differences in foraging strategy, density, biomass and secondary production were probably related to differences in the strength of surface connectivity, which controls organic matter supply. Links between basal resource level and top predator performance show the importance of bottom‐up limitation in the food webs of caves and other detritus‐based ecosystems.  相似文献   

9.
Consumption by carnivorous birds was estimated for the Sylt-Rømø tidal inlet in the northern part of the Wadden Sea, as well as the subarea Königshafen, a small, tidal bay. The bird community of the Sylt-Rømø Wadden Sea was dominated by Dunlin (35% of all birds counted), Eider (9%), Oystercatcher (8%), Knot (8%), and Shelduck (7%). The community in the Königshafen was dominated by Eider (20%), Knot (17%), Bar-tailed Godwit (17%), Dunlin (13%), and Oystercatcher (8%). Annual consumption was estimated at 3.4 g AFDW · m?2 · year?1 for the entire Sylt-Rømø Wadden Sea and 19.2 g AFDW · m?2 · year?1 for the Königshafen. Restricting the calculations to the intertidal area resulted in a consumption of 8.7 g AFDW · m?2 · year?1 for the Sylt-Rømø Wadden Sea and 17.6 g AFDW · m?2 · year?1 for the Königshafen. In the two areas, consumption was dominated by the Eider with 37% and 60% of the total consumption, respectively. In comparison to the western parts of the Wadden Sea the seasonal pattern of consumption as well as species composition differed, most probably as an effect of different climatic conditions, whereas annual consumption on intertidal flats seems to be in the same order of magnitude. On average, 15–25% of the mean annual macrozoobenthic biomass seems to be taken by carnivorous birds in the Wadden Sea, which is in the same order of magnitude as in other northern temperate estuarine areas.  相似文献   

10.
Production of Ascophyllum nodosum (L.) LeJolis ecads and Fuscus vesiculosus L. was calculated from measurements of in situ growth, seasonal variations in standing-crops and seasonal variations in photosynthetic capacity. A computer model for predicting daily, monthly and yearly net production from photosynthesis data was constructed. This model used daily irradiation, actual biomass of algae/m2 contributing to production and photosynthesis vs. light intensity relationships as data inputs. Comparison of production estimated from in situ growth, standing-crops and photosynthesis indicated that both marsh fucoids turn over biomass twice per year. Total net production of both fucoids, estimated from photosynthesis data, was ca. 315 g C · m?2· yr?1. On the other hand, production of both fucoids calculated from standing-crop data was only 155 g C · m?2· yr?1.  相似文献   

11.
A typical marl lake of the Upper Great Lakes region has very few quantitatively important aquatic macrophytes. The macrophytes, however, dominate the total primary production of the lake. Submersed vegetation is extremely sparse on the shallow (less than I m) marl bench that characterizes the littoral of these lakes, and is completely dominated by one. little-known species (Scirpus subterminalis Torr.) between 1 and 7 m. A detailed investigation of the spatial and seasonal distribution of macrophytic species and biomass showed that S. subterminalis strongly dominated the lake (79% of total biomass). S. suhterminalis represented an almost pure stand (to 200 g m?2 mean annual ash-free dry weight) at all times of the year at intermediate depths of macrophytic growth (1–6 m). Two species of Chara (of eight varieties and forms) were present in significant quantities (12% of total biomass; to 100 g m?2) but were severely limited to shallow depths (0-S-l m) and protected areas. Several annual submersed angiosperms were present (9% of total biomass), but only two species were quantitatively important. Potamogeton illinoensis Morong. and P. praelongus Wulfen formed brief summer peaks (less than 100 g m?2) at 3 and 4–6 m, respectively. A striking feature of the seasonal biomass distribution of Scirpus subterminalis was the higher, viable biomass (to 150g m?2) throughout the winter under ice cover. Cyclic fluctuations of the S. subterminalis populations were discerned at different depths, each with different periodicities. The population at 2 m exhibited a fall peak; that at 4 m had a summer maximum. The lowest overall biomass of S. subterminalis occurred in the 2 m population in June. Chara populations at 0–2 m also exhibited a relatively constant biomass throughout the year. The appearance of Nitella at 7 m in July-October and of Chara at 5 m in September-October was interpreted as an interaction between light, thermal, and carbon stratification. Estimates of macrophytic productivity of perennial (‘evergreen’) species populations whose biomass remains relatively constant throughout the year were made employing several different methods of calculation and turnover factors. All methods resulted in productivity estimates in good agreement with the conservative value of 178 g m?2 year?1 for the entire lake. In comparison to the other components (phyto-planktonic, epiphytic and epipelic algae) of the primary production of Lawrence Lake, the aquatic macrophytes constituted a major portion (anuual mean 82·77 g C m?2 year?1 or 48·3 %) of the total production of the lake. The low diversity but relatively high quantitative importance of macrophytes in marl lakes is attributed to an adverse dissolved inorganic and organic chemical milieu which inhibits phytoplanktonic production and allows only certain adapted macrophytes to develop strongly. The phenomenon of perennial biomass levels throughout the year is believed to be much more common than previously suspected and has iikely resulted from adaptations of submersed macrophytes to ameliorated conditions of water and temperatures relative to the terrestrial situation in winter.  相似文献   

12.
Regester KJ  Lips KR  Whiles MR 《Oecologia》2006,147(2):303-314
Breeding adults and metamorphosing larval amphibians transfer energy between freshwater and terrestrial ecosystems during seasonal migrations and emergences, although rarely has this been quantified. We intensively sampled ambystomatid salamander assemblages (Ambystoma opacum,A. maculatum, and A. tigrinum) in five forested ponds in southern Illinois to quantify energy flow associated with egg deposition, larval production, and emergence of metamorphosed larvae. Oviposition by female salamanders added 7.0–761.4 g ash-free dry mass (AFDM) year−1 to ponds (up to 5.5 g AFDM m−2 year−1). Larval production ranged from 0.4 to 7.4 g AFDM m−2 year−1 among populations in three ponds that did not dry during larval development, with as much as 7.9 g AFDM m−2 year−1 produced by an entire assemblage. Mean larval biomass during cohort production intervals in these three ponds ranged from 0.1 to 2.3 g AFDM m−2 and annual P/B (production/biomass) ranged from 4 to 21 for individual taxa. Emergent biomass averaged 10% (range=2–35%) of larval production; larval mortality within ponds accounted for the difference. Hydroperiod and intraguild predation limited larval production in some ponds, but emerging metamorphs exported an average of 70.0±33.9 g AFDM year−1 (range=21.0–135.2 g AFDM year−1) from ponds to surrounding forest. For the three ponds where larvae survived to metamorphosis, salamander assemblages provided an average net flux of 349.5±140.8 g AFDM year−1 into pond habitats. Among all ponds, net flux into ponds was highest for the largest pond and decreased for smaller ponds with higher perimeter to surface area ratios (r 2 =0.94, P<0.05, n=5). These results are important in understanding the multiple functional roles of salamanders and the impact of amphibian population declines on ecosystems. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

13.
Fluctuations in plant and frond characteristics are described for Macrocystis pyrifera (L.) C. Agardh (Laminariales, Phaeophyta) forming a fringing zone in the Falkland Islands. Giant kelp plants were sampled along a transect in the austral autumn (May 1986) and late spring (December 1986) which, according to previous frond weight analysis, were the times when extremes in population parameters were expected. Plant density and holdfast wet weights were similar for both seasons, but plants had more fronds and the fronds weighed more in spring than in autumn. Consequently, in autumn the frond biomass (1·1 wet kg m?2) and productivity (34·1 wet g m?2 d?1) were lower than in spring, when a biomass of 5·0 wet kg m?2 and a productivity of 72·4 wet g m?2 d?1 were recorded. Production of new fronds and loss of old fronds were determined at monthly intervals between April 1986 and March 1987. New frond production rates followed fluctuations in the quantity of light and varied between 0·08 and 0·48 fronds per plant per day. Frond loss rates did not show a seasonal pattern and fluctuated between 0·05 and 0·42 fronds per plant per day. It is suggested that the Falkland Islands Macrocystis population is more stable than most other giant kelp beds at high latitudes, because of the absence of winter storms.  相似文献   

14.
An experimental study was carried out to compare the performance of selected anaerobic high rate reactors operated simultaneously at 37?°C. The three reactors, namely upflow anaerobic sludge bed reactor (UASB), hybrid of UASB reactor and anaerobic filter (anaerobic hybrid reactor – AHR) and anaerobic baffled reactor (ABR), were inoculated with the anaerobic digested sludge from municipal wastewater treatment plant and tested with synthetic wastewater. This wastewater contained sodium acetate and glucose with balanced nutrients and trace elements (COD 6000?mg?·?l?1). Organic loading rate (B v ) was increased gradually from an initial 0.5?kg?·?m?3?·?d?1 to 15?kg?·?m?3?·?d?1 in all the reactors. From the comparison of the reactors' performance, the lowest biomass wash-out resulted from ABR. In the UASB, significant biomass wash-out was observed at the B v 6?kg?·?m?3?·?d?1, and in the AHR at the B v 12?kg?·?m?3?·?d?1. The demand of sodium bicarbonate for pH maintenance in ABR was two times higher as for UASB and AHR. The efficiency of COD removal was comparable for all three reactors – 80–90%. A faster biomass granulation was observed in the ABR than in the other two reactors. This fact is explained by the kinetic selection of filamentous bacteria of the Methanotrix sp. under a high (over 1.5?g?·?l?1) acetate concentration.  相似文献   

15.
1. This study quantified patterns of macroinvertebrate secondary production and stored benthic organic matter along a gradient of pollution and habitat channelisation over a 3‐km reach of Goosefare Brook, a first‐order stream in southern Maine (U.S.A.). 2. Whole‐community invertebrate production decreased from 26.4 g ash‐free dry mass (AFDM) m−2 year−1 at the reference station to 1.1 g AFDM m−2 year−1 at stations with the greatest levels of pollution. Production decreased along the pollution gradient for most taxa, although decreases were partly offset by production increases in tolerant taxa. Biomass turnover rates (P/B) were less affected by the stresses than was production. 3. Differences in functional characteristics of the community were evident at stations with channelised habitat, but overall production declined in a linear pattern that mirrored the pollution gradient. Stored organic matter showed a decline along the gradient, but was also lower at channelised stations. Populations of taxa with documented pollution tolerance were more likely to maintain or increase production and P/B. 4. Decreasing biomass because of decreasing stored organic matter and lethal effects of pollutants resulted in shifts in the pathways of energy flow observed at stations exposed to moderate physical or chemical stress, to the loss of most taxa and an extreme (96%) decrease in production at the stations receiving the highest levels of metal pollution. 5. The shifting prominence of different taxa along a continuum of stress in Goosefare Brook shows that describing the nature of an impairment in a functional context requires consideration of chemical stressors, habitat alterations and food resources.  相似文献   

16.
The somatic and gonad productions of the cirolanid isopod Excirolana armata were analyzed by taking monthly samples from December 2003 to November 2005 on Una beach, S?o Paulo state (24°S), southeastern Brazil. Sampling was performed along three fixed transects established from the base of the foredunes to the waterline. Weight-specific growth rate was used to estimate the E. armata somatic production for 2004 and 2005, separately. The gonad production was estimated based on the monthly reproductive potential (mean number of eggs/embryos per female × monthly abundance of ovigerous females with near-release broods) for 2004. The annual somatic production of E. armata population varied from 15.57 to 17.25?g AFDW m?1?year?1 and the somatic production/biomass ratio (P s/B) from 3.55 to 3.14?year?1 for 2004 and 2005, respectively. The P s/B ratios were higher for males (4.02 and 3.19?year?1 for 2004 and 2005) than for females (3.10?year?1 for both years). The annual gonad production (P g?=?1.07?g AFDW m?1?year?1) contributed about 15 and 6% to the total production (P s?+?P g) of females and the population, respectively. The proportion of gonad to somatic production of females (P g/P s) increased with individual size (ca 90% in the 7.5?mm size class), and the annual weight-specific gonad production (P g/B ratio) was estimated to 0.24?year?1. The high P s/B ratios estimated for E. armata derive from the fast growth of individuals and show the importance of this population to the energy flow on Una beach ecosystem. However, the low percentage of juveniles verified in this population and in other studies of populations of the genus Excirolana is discussed as an important source of underestimation of P s/B ratio.  相似文献   

17.
1. We investigated the impacts of saltcedar invasion on organic matter dynamics in a spring‐fed stream (Jackrabbit Spring) in the Mojave Desert of southern Nevada, U.S.A., by experimentally manipulating saltcedar abundance. 2. Saltcedar heavily shaded Jackrabbit Spring and shifted the dominant organic matter inputs from autochthonous production that was available throughout the year to allochthonous saltcedar leaf litter that was strongly pulsed in the autumn. Specifically, reaches dominated by saltcedar had allochthonous litter inputs of 299 g ash free dry mass (AFDM) m?2 year?1, macrophyte production of 15 g AFDM m?2 year?1 and algal production of 400 g AFDM m?2 year?1, while reaches dominated by native riparian vegetation or where saltcedar had been experimentally removed had allochthonous litter inputs of 7–34 g AFDM m?2 year?1, macrophyte production of 118–425 g AFDM m?2 year?1 and algal production of 640–900 g AFDM m?2 year?1. 3. A leaf litter breakdown study indicated that saltcedar also altered decomposition in Jackrabbit Spring, mainly through its influence on litter quality rather than by altering the environment for decomposition. Decomposition rates for saltcedar were lower than for ash (Fraxinus velutina), the dominant native allochthonous litter type, but faster than for bulrush (Scirpus americanus), the dominant macrophyte in this system.  相似文献   

18.
1. Density, biomass, production and growth of a predaceous stonefly, Acroneuria lycorias, were compared between fourth-order hard- and soft-water streams in Michigan's upper peninsula, U.S.A. 2. Mean densities, estimated from Hess samples, were higher (100 ± 17 individuals m?2) at the hard-water site than at the soft-water site (40 ± 9 ind. m?2). Mean dry weight biomass was 4.9 times greater at the hard-water site. 3. Mean annual production, calculated using the size frequency method, was 5.0 times greater at the hard-water site (2.18 ± 0.44 g dry weight m?2yr?1) than at the soft-water site (0.43 ± 0.02g dry weight m?2yr?1). Annual production/mean biomass ratios were similar between sites. 4. Monthly growth rates of naturally occurring nymphs of paired cohorts were similar in both streams. Individual growth rates were similar for nymphs reared in artificial streams at high and low water hardnesses with unlimited food and space. 5. Stonefly production and growth rates were influenced more by indirect physical, biological, or habitat factors than by streamwater cation concentrations.  相似文献   

19.
Growing algae to scrub nutrients from manure presents an alternative to the current practice of land application and provides utilizable algal biomass as an end product. The objective of this study was to assess algal growth, nutrient removal, and nitrification using higher light intensities and manure loading rates than in the previous experiments. Algal turfs, with periphyton mainly composed of green algal species, were grown under two light regimes (270 and 390 μmol photons·m?2· s?1) and anaerobically digested flushed dairy manure wastewater (ADFDMW) loading rates ranging from 0.8 to 3.7 g total N and 0.12 to 0.58 g total P·m?2·d?1. Filamentous cyanobacteria (Oscillatoria spp.) and diatoms (Navicula, Nitzschia, and Cyclotella sp.) partially replaced the filamentous green algae at relatively high ADFDMW loading rates and more prominently under low incident light. Mean algal production increased with loading rate and irradiance from 7.6±2.71 to 19.1±2.73 g dry weight· m?2·d?1. The N and P content of algal biomass generally increased with loading rate and ranged from 2.9%–7.3% and 0.5%–1.3% (by weight), respectively. Carbon content remained relatively constant at all loading rates (42%–47%). The maximum removal rates of N and P per unit algal biomass were 70 and 13 mg·g?1 dry weight·m?2·d?1, respectively. Recovery of nutrients in harvested algal biomass accounted for about 31%–52% for N and 30%–59% for P. Recovery of P appeared to be uncoupled with N at higher loading rates, suggesting that algal potential for accumulation of P may have already been saturated. It appears that higher irradiance level enhancing algal growth was the overriding factor in controlling nitrification in the algal turf scrubber units.  相似文献   

20.
1. In extremely acid mining lakes, benthic filamentous green algae (Zygnemataceae, Chlorophyta) thrive as effective competitors for limited carbon (C). These algae could supply C for microbial‐mediated benthic alkalinity generation. However, biomass, productivity and impact of the acidobiontic filamentous green algae at pH ≤3 have not previously been determined. 2. Periphytic filamentous green algae was mapped by harvesting their biomass from 85 1 × 1 m quadrats in mining lake Grünewalder Lauch. Zygogonium ericetorum colonised water depths between 1.6 and 10.5 m covering 88% of total area. Biomass peaked at 5–6 m depth. Total Zygogonium biomass amounted to 72.2 t dry weight for the whole lake (0.94 km2), which corresponds to 16.1 t C and the accumulation of primary production from 2.2 years. 3. Growth of Zygogonium is moderately N, C and extremely P deficient, and seriously stressed by high rates of Fe deposition during summer. Consequently, net primary production (NPP) of Zygogonium, calculated from measured photosynthesis versus irradiance characteristics and calculated underwater irradiance (0.13 g C m?2 year?1) and in situ oxygen measurements (7.8 g C m?2 year?1), corresponds to only 0.3% and 18.1% of pelagic NPP. 4. Neither pelagic nor benthic Zygogonium primary production can supply enough C for efficient acidity removal. However, at rates of benthic NPP in summer of 21.4 mg C m?2 day?1, Zygogonium contributed 26% of the C equivalents to remove acidity associated with ferric iron, contributing at least seasonally to efficient alkalinity generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号