首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Novel statistical methods have been developed and used to quantitate and annotate the sequence diversity within combinatorial peptide libraries on the basis of small numbers (1-200) of sequences selected at random from commercially available M13 p3-based phage display libraries. These libraries behave statistically as though they correspond to populations containing roughly 4.0+/-1.6% of the random dodecapeptides and 7.9+/-2.6% of the random constrained heptapeptides that are theoretically possible within the phage populations. Analysis of amino acid residue occurrence patterns shows no demonstrable influence on sequence censorship by Escherichia coli tRNA isoacceptor profiles or either overall codon or Class II codon usage patterns, suggesting no metabolic constraints on recombinant p3 synthesis. There is an overall depression in the occurrence of cysteine, arginine and glycine residues and an overabundance of proline, threonine and histidine residues. The majority of position-dependent amino acid sequence bias is clustered at three positions within the inserted peptides of the dodecapeptide library, +1, +3 and +12 downstream from the signal peptidase cleavage site. Conformational tendency measures of the peptides indicate a significant preference for inserts favoring a beta-turn conformation. The observed protein sequence limitations can primarily be attributed to genetic codon degeneracy and signal peptidase cleavage preferences. These data suggest that for applications in which maximal sequence diversity is essential, such as epitope mapping or novel receptor identification, combinatorial peptide libraries should be constructed using codon-corrected trinucleotide cassettes within vector-host systems designed to minimize morphogenesis-related censorship.  相似文献   

2.
A peptide sequence that can bind to camptothecin (CPT), a natural cytotoxic compound, was screened for using a T7 phage display system combined with a cuvette type quartz crystal microbalance (QCM) device. In this screen, after only 10 min of monitoring of the interaction between injected T7 phage pool with immobilized C10 biotinylated CPT (CPT-10-B) on a gold electrode surface, six different kinds of phage (A–F) were identified as judged by the size of PCR product on agarose gel electrophoresis. Injection of each single phage (A–E) pool individually caused a frequency decrease, suggesting interaction with the immobilized CPT-10-B. In addition, the peptide sequence displayed on phages A–C is consistent with chemical and biological studies of the interaction of CPTs with topoisomerase I (TopI), human E prostanoid receptor third cytoplasmic polypeptide, and a series of esterases. The efficacy of T7 phage display screening for small molecules on QCM devices, target discovery from primary peptide sequence, and application of this strategy to various drug-like small molecules are discussed.  相似文献   

3.
Cytidine triphosphate synthase 1 (CTPS1) is an enzyme expressed in activated lymphocytes that catalyzes the conversion of uridine triphosphate (UTP) to cytidine triphosphate (CTP) with ATP-dependent amination, using either L-glutamine or ammonia as the nitrogen source. Since CTP plays an important role in DNA/RNA synthesis, phospholipid synthesis, and protein sialyation, CTPS1-inhibition is expected to control lymphocyte proliferation and size expansion in inflammatory diseases. In contrast, CTPS2, an isozyme of CTPS1 possessing 74% amino acid sequence homology, is expressed in normal lymphocytes. Thus, CTPS1-selective inhibition is important to avoid undesirable side effects. Here, we report the discovery of CTpep-3: Ac-FRLGLLKAFRRLF-OH from random peptide libraries displayed on T7 phage, which exhibited CTPS1-selective binding with a KD value of 210 nM in SPR analysis and CTPS1-selective inhibition with an IC50 value of 110 nM in the enzyme assay. Furthermore, two fundamentally different approaches, enzyme inhibition assay and HDX-MS, provided the same conclusion that CTpep-3 acts by binding to the amidoligase (ALase) domain on CTPS1. To our knowledge, CTpep-3 is the first CTPS1-selective inhibitor.  相似文献   

4.
Phage-displayed single chain variable fragment (scFv) libraries are powerful tools in antibody engineering. Disulfide-stabilized scFv (sc-dsFv) with an interface disulfide bond is structure-wise more stable than the corresponding scFv. A set of recently discovered signal sequences replacing the wild type (pelB) signal peptidase cleavage site in the c-region has been shown to be effective in rescuing the expression of sc-dsFv libraries on the phage surface. However, the effects of the other regions of the signal sequence on the expression of the sc-dsFv libraries and on the formation of the interface disulfide bond in the phage-displayed sc-dsFv have not been clear. In this work, selected novel signal sequence variants in the h-region were shown to be equally effective in promoting sc-dsFv library expression on the phage surface; the expression level and complexity of the sc-dsFv libraries were comparable to the corresponding scFv libraries produced with the wild-type (pelB) signal sequence. The interface disulfide bond in the phage-displayed sc-dsFv was proven to form to a large extent in the library variant ensemble generated with signal sequence variants in both the h-region and the c-region. The sc-dsFv engineering platform established in this work can be applied to many of the known scFv molecules which are in need of a more stable version for the applications under harsh conditions or for longer shelf-life.  相似文献   

5.
Engineering a peptide epitope display system on filamentous bacteriophage   总被引:7,自引:0,他引:7  
Abstract: The genome of bacteriophage fd has been engineered to allow foreign amino acid sequences to be displayed in the exposed N-terminal segment of the major coat protein in the virus particle: small peptides can be encoded directly; larger peptides are encoded in hybrid virions, in which wild-type coat protein subunits are interspersed with coat proteins displaying the foreign peptides. Biophysical techniques, such as X-ray diffraction, indicate that the inclusion of the peptides can be achieved without significant disturbance to the helical parameters that define the protein—protein interactions in the assembled virion and the exposure of the peptides can be verified by analysing the susceptibility to attack by proteolytic enzymes. Peptide sequences from the V3 loop of the surface glycoprotein gp120 of HIV-1 strain MN (HIV-1MN) displayed in this way are remarkably effective structural mimics of the natural epitope. They are recognised by human HIV antisera and evoke high titres of virus-neutralizing antibodies in mice. Antibody production is stimulated by simultaneous inoculation with T cell epitopes similarly displayed on filamentous bacteriophage. The bacteriophage display system offers a powerful means of studying the immunological recognition of proteins. The specificity of the immune response, the ability to recruit helper T cells, the lack of need for external adjuvants and the structural mimicry of defined peptide epitopes, suggest that it will also be an inexpensive and simple route to the production of effective vaccines.  相似文献   

6.
7.
Microbial transglutaminase (TGase) from Streptomyces mobaraensis (MTG) has been used in many industrial applications because it effectively catalyzes the formation of covalent cross-linking between glutamine residues in various substrate proteins and lysine residues or primary amines. To better understand the sequence preference around the reactive glutamine residue by this enzymatic reaction, we screened preferred peptide sequences using a phage-displayed random peptide library. Most of the peptides identified contained a consensus sequence, which was different from those previously found for mammalian TGases. Of these, most sequences had a specific reactivity toward MTG when produced as a fusion protein with glutathione-S-transferase. Furthermore, the representative sequence was found to be reactive even in the peptide form. The amino acid residues in the sequence critical for the reactivity were further analyzed, and the possible interaction with the enzyme has been discussed in this paper.  相似文献   

8.
9.
Somers K  Stinissen P  Somers V 《Proteomics》2011,11(12):2550-2554
Phage display is a high-throughput technology used to identify ligands for a given target. A drawback of the approach is the absence of PTMs in phage-displayed peptides. The applicability of phage display could be broadened considerably by the implementation of PTMs in this system. The aim of this study was to investigate the possible application of citrullination, a PTM of an arginine into a citrulline amino acid, in filamentous (M13) and lytic (T7) phage display. After in vitro citrullination of T7 and M13 phages, citrullination was confirmed and the infectivity of both citrullinated and non-citrullinated phage was compared by titer determination. We demonstrated the successful in vitro citrullination of T7 and M13 phage-displayed peptides. This in vitro modification did not affect the viability or infectivity of the T7 virions, a necessary prerequisite for the implementation of this approach in T7 phage display. For M13 phage, however, the infecting phage titer decreased five-fold upon citrullination, limiting the use of this modification in M13 phage display. In conclusion, in vitro citrullination can be applied in T7 phage display giving rise to a high-throughput and sensitive approach to identify citrulline-containing ligands by the use of the strengths of phage display technology.  相似文献   

10.
将编码噬菌体T7RNA聚合酶的基因克隆至噬菌体M13mpl8RFDNA中,置于lac启动子的控制之下,得到了可表达T7 RNA聚合酶的重组噬菌体M13HEP。利用该噬菌体感染含T7启动子表达质粒的宿主菌以提供T7RNA聚合酶,可以诱导T7启动子控制下的外源基因的表达。该噬茵体诱导表达系统已成功地表达了多种外源基因,特别是一些表达产物对宿主菌有毒性的基因。同时,通过细菌接合将F',因子从大脑杆菌XL1-blue转至大肠杆菌HMS174,构建了新的大脑杆菌菌株HMSl74F,,使得T7表达质粒构建、表达及单链制备可以在同一菌株中完成,得到了一个完整的T7表达系统。  相似文献   

11.
12.
The entire T7 bacteriophage genome contains 39937 base pairs (Database NCBI RefSeq N1001604). Here, electrostatic potential distribution around double helical T7 DNA was calculated by Coulomb method using the computer program of Sorokin A.A. (lptolik@gmail.com). Electrostatic profiles of 17 promoters recognized by T7 phage-specific RNA polymerase were analyzed. It was shown that electrostatic profiles of all T7 RNA polymerase-specific promoters can be characterized by distinctive motifs which are specific for each promoter class. Comparative analysis of electrostatic profiles of native T7 promoters of different classes demonstrates that T7 RNA polymerase can differentiate them due to their electrostatic features.  相似文献   

13.
The NANP repeating sequence of the circumsporozoite protein of Plasmodium falciparum was displayed on the surface of fd filamentous bacteriophage as a 12-residue insert (NANP)(3) in the N-terminal region of the major coat protein (pVIII). The structure of the epitope determined by multidimensional solution NMR spectroscopy of the modified pVIII protein in lipid micelles was shown to be a twofold repeat of an extended and non-hydrogen-bonded loop based on the sequence NPNA, demonstrating that the repeating sequence is NPNA, not NANP. Further, high resolution solid-state NMR spectra of intact hybrid virions containing the modified pVIII proteins demonstrate that the peptides displayed on the surface of the virion adopt a single, stable conformation; this is consistent with their pronounced immunogenicity as well as their ability to mimic the antigenicity of their native parent proteins.  相似文献   

14.
Transglutaminase (TGase) is a family of enzymes that catalyzes cross-linking reaction between glutamine- and lysine residue of substrate proteins in several mammalian biological events. Substrate proteins for TGase and their physiological relevance have been still in research, continuously expanding. In this study, we have established a novel screening system that enables identification of cDNA sequence encoding favorable primary structure as a substrate for tissue-type transglutaminase (TGase 2), a multifunctional and ubiquitously expressing isozyme. By the screening, we identified several T7 phage clones that displayed substrate peptides for TGase 2 as a translated product from human brain cDNA library. Among the selected clones, the C-terminal region of IKAP, IkappaB kinase complex associated protein, appeared as a highly reactive substrate sequence for TGase 2. This system will open possibility of rapid identification of substrate sequences for transglutaminases at a genetic level.  相似文献   

15.
噬菌体和细菌互相作用的研究,是分子生物学的重要内容,在细菌感染性疾病的治疗等方面有重要的应用价值。噬菌体的感染从噬菌体吸附于宿主菌表面并将核酸注入开始。介绍了T7家族代表株T7噬菌体在吸附和穿入阶段需要的结构和具体过程,并简要综述了T7家族3个亚群的特征。  相似文献   

16.
Chicken egg yolk immunoglobulin (IgY) is a functional substitute for mammalian IgG for antigen detection. Traditional IgY purification methods involve multi‐step procedures resulting in low purity and recovery of IgY. In this study, we developed a simple IgY purification system using IgY‐specific peptides identified by T7 phage display technology. From disulfide‐constrained random peptide libraries constructed on a T7 phage, we identified three specific binding clones (Y4‐4, Y5‐14, and Y5‐55) through repeated biopanning. The synthetic peptides showed high binding specificity to IgY‐Fc and moderate affinity for IgY‐Fc (Kd: Y4‐4 = 7.3 ± 0.2 μM and Y5‐55 = 4.4 ± 0.1 μM) by surface plasmon resonance analysis. To evaluate the ability to purify IgY, we performed immunoprecipitation and affinity high‐performance liquid chromatography using IgY‐binding peptides; the result indicated that these peptides can be used as affinity ligands for IgY purification. We then used a peptide‐conjugated column to purify IgY from egg yolks pre‐treated using an optimized delipidation technique. Here, we report the construction of a cost‐effective, one‐step IgY purification system, with high purity and recovery. © 2017 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.  相似文献   

17.
Summary We determined the nucleotide sequence of gene 1 of Klebsiella phage K11, which is a member of the T7 group of phages. The largest open reading frame corresponds to a polypeptide with 906 amino acids and a molecular weight of 100383 daltons. The deduced amino acid sequence of this polypeptide shows 71% homology to the T7 RNA polymerase (the product of T7 gene 1), 72% homology to the T3 RNA polymerase and 27% homology to the SP6 RNA polymerase. Divergent evolution was clearly most pronounced in the amino-terminal portion.  相似文献   

18.
构建T7噬菌体单链抗体(scFv)库筛选抗乙型肝炎病毒表面抗原抗体.从抗-HBs阳性患者外周血淋巴细胞中提取总RNA,反转录合成cDNA第1条链,PCR分别扩增抗体重链可变区基因(VH)和轻链可变区基因(VL),经重叠延伸拼接(SOE)PCR组成scFv基因,并将其与T7噬菌体载体的2个臂相连接.体外包装后,在宿主菌BLT5403中,扩增重组噬菌体抗体库.以乙型肝炎病毒表面抗原进行4轮“吸附-洗脱-扩增”的筛选,酶免疫实验检测抗体活性.所建抗体库库容为1.53×107,扩增后初级库滴度为2.42×1010pfu/mL.以乙型肝炎病毒表面抗原筛选后抗体出现特异性富集,经酶免疫实验鉴定,得到2株与HBsAg抗原特异结合的噬菌体抗体,成功构建了抗HBsAg蛋白T7噬菌体抗体库.  相似文献   

19.
[目的]构建携带锚定序列的真核表达载体,研究T7噬菌体识别、包裹和转运真核表达载体进入细胞实现蛋白表达的可行性,为DNA疫苗研发建立新的技术平台.[方法]本研究通过重叠延伸PCR方法获得候选锚定序列并插入真核表达载体;建立荧光定量PCR方法比较T7噬菌体识别、包裹真核表达载体的效率;激光共聚焦显微镜观察T7噬菌体转运真...  相似文献   

20.
Mutation in the tubby gene causes adult‐onset obesity, progressive retinal, and cochlear degeneration with unknown mechanism. In contrast, mutations in tubby‐like protein 1 (Tulp1), whose C‐terminus is highly homologous to tubby, only lead to retinal degeneration. We speculate that their diverse N‐terminus may define their distinct disease profile. To elucidate the binding partners of tubby, we used tubby N‐terminus (tubby‐N) as bait to identify unknown binding proteins with open‐reading‐frame (ORF) phage display. T7 phage display was engineered with three improvements: high‐quality ORF phage display cDNA library, specific phage elution by protease cleavage, and dual phage display for sensitive high throughput screening. The new system is capable of identifying unknown bait‐binding proteins in as fast as ~4–7 days. While phage display with conventional cDNA libraries identifies high percentage of out‐of‐frame unnatural short peptides, all 28 tubby‐N‐binding clones identified by ORF phage display were ORFs. They encode 16 proteins, including 8 nuclear proteins. Fourteen proteins were analyzed by yeast two‐hybrid assay and protein pull‐down assay with ten of them independently verified. Comparative binding analyses revealed several proteins binding to both tubby and Tulp1 as well as one tubby‐specific binding protein. These data suggest that tubby‐N is capable of interacting with multiple nuclear and cytoplasmic protein binding partners. These results demonstrated that the newly‐engineered ORF phage display is a powerful technology to identify unknown protein–protein interactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号