首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we have investigated the effects of the pore-forming toxin aerolysin, produced by Aeromonas hydrophila, on mammalian cells. Our data indicate that the protoxin binds to an 80-kD glycosyl-phosphatidylinositol (GPI)-anchored protein on BHK cells, and that the bound toxin is associated with specialized plasma membrane domains, described as detergent-insoluble microdomains, or cholesterol-glycolipid “rafts.” We show that the protoxin is then processed to its mature form by host cell proteases. We propose that the preferential association of the toxin with rafts, through binding to GPI-anchored proteins, is likely to increase the local toxin concentration and thereby promote oligomerization, a step that it is a prerequisite for channel formation. We show that channel formation does not lead to disruption of the plasma membrane but to the selective permeabilization to small ions such as potassium, which causes plasma membrane depolarization. Next we studied the consequences of channel formation on the organization and dynamics of intracellular membranes. Strikingly, we found that the toxin causes dramatic vacuolation of the ER, but does not affect other intracellular compartments. Concomitantly we find that the COPI coat is released from biosynthetic membranes and that biosynthetic transport of newly synthesized transmembrane G protein of vesicular stomatitis virus is inhibited. Our data indicate that binding of proaerolysin to GPI-anchored proteins and processing of the toxin lead to oligomerization and channel formation in the plasma membrane, which in turn causes selective disorganization of early biosynthetic membrane dynamics.  相似文献   

2.
The role of histidine residues in the formation of channels by the cytolytic toxin aerolysin has been studied in planar lipid bilayers by substituting each of the six histidines in the native protein with asparagine. His341 or His186 mutants had the same channel-forming ability as native toxin, whereas the His332 and His121 mutants were less active. Mutations at His132 and His107, which interfere with the oligomerization of the toxin, drastically reduce pore formation. These findings support the conclusion that oligomerization of the toxin must precede channel formation, and that at least two of the six histidine residues are essential for this to occur. The aerolysin channel is a water-filled pore with an approximate diameter of 9.3 +/- 0.4 A.  相似文献   

3.
The kinetics of single K+ channels were derived for patch-clamp recordings of membrane patches excised from cytoplasmic drops from the plant, Chara australis R. Br. Specifically, the tilt effect model of MacKinnon, Latorre and Miller (1989. Biochemistry 28:8092–8099) has been used to measure the electrostatic potential (surface PD) and fixed charge at the entrances of the channel. The surface PD is derived from the difference between the trans-pore potential difference (PD) and that between the two bulk phases. The trans-pore PD is probed using three voltage-dependent properties of the channel. These are (1) the association and dissociation rates of Ca2+ binding to the channel, from both the cytoplasmic and vacuolar solutions. These were determined from the mean blocked and unblocked durations of the channel in the presence of either 20 mmol liter–1 vacuolar or 1 mmol liter–1 cytoplasmic Ca2+; (2) the closing rate of the channel's intrinsic gating process. This was determined from the mean channel open time in the absence of vacuolar Ca2+ at membrane PDs more negative than –100 mV; and (3) the effect of Mg2+ on channel conductance when added to solutions initially containing 3 mmol liter–1 KCl.The voltage dependence of properties 1 and 2 shifts along the voltage axis according to the ionic strength of the bathing media, consistent with the presence of negative charge in the channel vestibules. Furthermore, the magnitude of this shift depends on the current in a manner consistent with diffusion-limited ion flow in the channel (i.e., the rate of ion diffusion in the external electrolyte limits the channel conductance). Mg2+ on either side of the membrane alters channel conductance in a voltage-dependent way. A novel feature of the Mg2+ effect is that it reverses, from a block to an enhancement, when the membrane PD is more negative than –70 mV. This reversal only appears in solutions of low ionic strength. The attenuating effect is due to voltage-dependent binding of Mg2+ within the pore, which presumably plugs the channel. The enhancing effect is due to screening by Mg2+ of surface potentials arising from diffusion-limited flow of K+.  相似文献   

4.
Summary Cytoplasmic drops, covered by a membrane derived from the tonoplast, were obtained from the internodal cells ofChara australis. Patch-clamp measurements were made on this membrane using the droplet-attached configuration with the membrane patch voltage clamped at values from –250 to 50 mV. Single-channel records, filtered at 5 kHz, were analyzed to elucidate the kinetics of the ion gating reaction of the K+-selective channel. The current-voltage characteristics for single channels exhibit saturation and are shown to be consistent with Läuger's theory of diffusion-limited ion flow through pores (P. Läuger,Biochim. Biophys. Acta 455:493–509, 1976). The time-averaged behavior of the K+ conductance has a maximum at –100 to –150 mV which is produced by the combination of two distinct mechanisms: (1) The channel spending more time in long-lived closed states at positive voltages and (2) a large decrease in the mean open lifetime at more negative voltages. The channel activity shows bursting behavior with opening and closing rates that are voltage-dependent. The mean open time is the kinetic parameter most sensitive to membrane potential, showing a maximum between –100 to –150 mV. The distribution of open times is dominated by one exponential component (time constant 0.3 to 10 msec). In some cases an additional rapidly decaying exponential component was detectable (time constant=0.1 msec). The closed distributions contained were observed to obtain up to four exponential components with time constants over the range 0.1 to 200 msec. However, the voltage dependence of the closed-time distributions suggests an eight-state model for this channel.  相似文献   

5.
Summary Injection of depolarizing current into vegetative cells of the water moldBlastocladiella emersonii elicits a regenerative response that has the electrical characteristics of an action potential. Once they have been taken past a threshold of about –40 mV, cells abruptly depolarize to +20 mV or above; after an interval ranging from several hundred milliseconds to a few seconds, the cells spontaneously return to their resting potential near –100 mV. When the action potential was analyzed with voltage-clamp recording, it proved to be biphasic. The initial phase reflects an influx of calcium ions through voltage-sensitive channels that also carry Sr2+ ions. The delayed, and more extended, phase of inward current results from the efflux of chloride and other anions. The anion channels are broadly selective, passing chloride, nitrate, phosphate, acetate, succinate and even PIPES. The anion channels open in response to the entry of calcium ions, but do not recognize Sr2+. Calcium channels, anion channels and calcium-specific receptors that link the two channels appear to form an ensemble whose physiological function is not known. Action potentials rarely occur spontaneously but can be elicited by osmotic downshock, suggesting that the ion channels may be involved in the regulation of turgor.  相似文献   

6.
Summary The voltage-dependence of channel formation by alamethicin and its natural analogues can be described by a dipole flip-flop gating model, based on electric field-induced transbilayer orientational movements of single molecules. These field-induced changes in orientation result from the large permanent dipole moment of alamethicin, which adopts -helical conformation in hydrophobic medium. It was, therefore, supposed that the only structural requirement for voltage-dependent formation of alamethicin-type channels might be a rigid lipophilic helical segment of minimum length.In order to test this hypothesis we synthesized a family of lipophilic polypeptides—Boc-(Ala-Aib-Ala-Aib-Ala) n -OMe,n=1–4—which adopt -helical conformation forn=2–4 and studied their interaction with planar lipid bilayers. Surprisingly, despite their large difference in chain length, all four polypeptides showed qualitatively similar behavior. At low field strength of the membrane electric field these polypeptides induce a significant, almost voltage-independent increase of the bilayer conductivity. At high field strength, however, a strongly voltage-dependent conductance increase occurs similar to that observed with alamethicin. It results from the opening of a multitude of ion translocating channels within the membrane phase.The steady-state voltage-dependent conductance depends on the 8th–9th power of polypeptide concentration and involves the transfer of 4–5 formal elementary charges. From the power dependences on polypeptide concentration and applied voltage of the time constants in voltage-jump current-relaxation experiments, it is concluded that channels could be formed from preexisting dodecamer aggregates by the simultaneous reorientation of six formal elementary charges. Channels exhibit large conductance values of several nS, which become larger towards shorter polypeptide chain length. A mean channel diameter of 19 Å is estimated corresponding roughly to the lumen diameter of a barrel comprised of 10 -helical staves. Similar to experiments with the N-terminal Boc-derivative of alamethicin we did not observe the burst sequence of nonintegral conductance steps typical of natural (N-terminal Ac-Aib)-alamethicin. Saturation in current/voltage curves as well as current inactivation in voltage-jump current-relaxation experiments are found. This may be understood by assuming that channels are generated as dodecamers but, while reaching the steady state, reduce their size to that of an octamer or nonamer. We conclude that the overall behavior of these synthetic polypeptides is very similar to that of alamethicin. They exhibit the same concentration and voltage-dependences but lack the stabilizing principle of resolved channel states characteristic of alamethicin.  相似文献   

7.
8.
The opening of voltage-gated sodium, potassium, and calcium ion channels has a steep relationship with voltage. In response to changes in the transmembrane voltage, structural movements of an ion channel that precede channel opening generate a capacitative gating current. The net gating charge displacement due to membrane depolarization is an index of the voltage sensitivity of the ion channel activation process. Understanding the molecular basis of voltage-dependent gating of ion channels requires the measurement and computation of the gating charge, Q. We derive a simple and accurate semianalytic approach to computing the voltage dependence of transient gating charge movement (Q–V relationship) of discrete Markov state models of ion channels using matrix methods. This approach allows rapid computation of Q–V curves for finite and infinite length step depolarizations and is consistent with experimentally measured transient gating charge. This computational approach was applied to Shaker potassium channel gating, including the impact of inactivating particles on potassium channel gating currents.  相似文献   

9.
The protein antibiotic colicin N forms ion-permeable channels through planar lipid bilayers. Channels are induced when positive voltages higher than +60 mV are applied. Incorporated channels activate and inactivate in a voltage-dependent fashion. It is shown that colicin N undergoes a transition between an “acidic” and a “basic” channel form which are distinguishable by different voltage dependences. The single-channel conductance is non-ohmic and strongly dependent on pH, indicating that titratable groups control the passage of ions through the channel. The ion selectivity of colicin N channels is influenced by the pH and the lipid composition of the bilayer membrane. In neutral membranes the channel undergoes a transition from slightly cation-selective to slightly anion-selective when the pH is changed from 7 to 5. In lipid membranes bearing a negative surface charge the channel shows a more pronounced cation selectivity which decreases but does not reverse upon lowering the pH from 7 to 5. The high degree of similarity between the channel characteristics of colicin A and N suggests that the channels share common features in their molecular structure. Offprint requests to: F. Pattus  相似文献   

10.
Summary The E1 subgroup (E1, A, Ib, etc.) of antibacterial toxins called colicins are known to form voltage-dependent channels in planar lipid bilayers. The genes for colicins E1, A and Ib have been cloned and sequenced, making these channels interesting models for the widespread phenomenon of voltage dependence in cellular channels. In this paper we investigate ion selectivity and channel size—properties relevant to model building. Our major finding is that the colicin E1 channel is large, having a diameter ofat least 8 Å at its narrowest point. We established this from measurements of reversal potentials for gradients formed by salts of large cations or large anions. In so doing, we exploited the fact that the colicin channel is permeable to both cations and anions, and its relative selectivity to them is a functions and anions, and its relative selectivity to them is a function of pH. The channel is anion selective (Cl over K+) in neutral membranes, and the degree of selectivity is highly dependent on pH. In negatively charged membranes, it becomes cation selective at pH's higher than about 5. Experiments with pH gradients cross the membrane suggest that titratable groups both within the channel lumen and near the channel ends affect the selectivity. Individual E1 channels have more than one open conductance state, all displaying comparable ion selectivity. Colicins A and Ib also exhibit pH-dependent ion selectivity, and appear to have even larger lumens than E1.  相似文献   

11.
Bacterial resistance to conventional antibiotics is a major challenge in controlling infectious diseases and has necessitated the development of novel approaches in antimicrobial therapy. One such approach is the use of antimicrobial peptides, such as the bacterially produced bacteriocins. Carnocyclin A (CclA) is a 60-amino acid circular bacteriocin produced by Carnobacterium maltaromaticum UAL307 that exhibits potent activity against many Gram-positive bacteria. Lipid bilayer and single channel recording techniques were applied to study the molecular mechanisms by which CclA interacts with the lipid membrane and exerts its antimicrobial effects. Here we show that CclA can form ion channels with a conductance of 35 pS in 150 mM NaCl solution. This channel displays a linear current-voltage relationship, is anion-selective, and its activation is strongly voltage-dependent. The formation of ion channels by CclA is driven by the presence of a negative membrane potential and may result in dissipation of membrane potential. Carnocyclin A's unique functional activities as well as its circular structure make it a potential candidate for developing novel antimicrobial drugs.  相似文献   

12.
Four different nucleotide-gated ion channels are discussed in terms of their biophysical properties and their importance in cell physiology. Channels activated directly by cGMP are present in vertebrate and invertebrate photoreceptors. In both cases cGMP increases the fraction of time the channel remains in the open state. At least three cGMP molecules are involved in channel opening in vertebrate photoreceptors and the concentration of the cyclic nucleotide to obtain the half maximal effect is about 15 µM. The light-dependent channel of both vertebrates and invertebrates is poorly cation selective. The vertebrate channel allows divalent cations to pass through 10–15-fold more easily than monovalent ions. In agreement with their preference for divalent cations, this channel is blocked byl-cis Dialtazem, a molecule that blocks certain types of calcium channels. In olfactory neurons a channel activated by both cAMP and cGMP is found and, as in the light-dependent channel, several molecules of the nucleotide are needed to open the channel with a half maximal effect obtained in the range of 1–40 µM. The channel is poorly cationic selective. A K+ channel directly and specifically activated by cAMP is found inDrosophila larval muscle. At least three cAMP molecules are involved in the opening reaction. Half-maximal effect is obtained at about 50 µM. This channel is blocked by micromolar amount of tetraethylammonium applied internally. Interestingly, this channel has a probability of opening 10–20-fold larger in the mutantdunce, a mutant that possesses abnormally elevated intracellular cAMP level, than in the wild type.  相似文献   

13.
Voltage-gated Cl channels belonging to the ClC family appear to function as homomultimers, but the number of subunits needed to form a functional channel is controversial. To determine subunit stoichiometry, we constructed dimeric human skeletal muscle Cl channels in which one subunit was tagged by a mutation (D136G) that causes profound changes in voltage-dependent gating. Sucrose-density gradient centrifugation experiments indicate that both monomeric and dimeric hClC-1 channels in their native configurations exhibit similar sedimentation properties consistent with a multimeric complex having a molecular mass of a dimer. Expression of the heterodimeric channel in a mammalian cell line results in a homogenous population of Cl channels exhibiting novel gating properties that are best explained by the formation of heteromultimeric channels with an even number of subunits. Heteromultimeric channels were not evident in cells cotransfected with homodimeric WT-WT and D136G-D136G constructs excluding the possibility that functional hClC-1 channels are assembled from more than two subunits. These results demonstrate that the functional hClC-1 unit consists of two subunits.  相似文献   

14.
A soluble protein isolated from mitochondria has been found to modulate the voltage-dependent properties of the mitochondrial outer membrane channel, VDAC. This protein, called the VDAC modulator, was first found inNeurospora crassa and then discovered in species from other eukaryotic kingdoms. The modulator-containing fraction (at a crude protein concentration of 20 µg/ml) increases the voltage dependence of VDAC channels over 2–3-fold. At higher protein concentrations (50–100 µg/ml), some channels seem to remain in a closed state or be blocked while others display the higher voltage dependence and are able to close at low membrane potentials. By increasing the steepness of the voltage-dependent properties of VDAC channels, this modulator may serve as an amplifierin vivo to increase the sensitivity of the channels in response to changes in the cell's microenvironment, and consequently, regulate the metabolic flux across the outer mitochondrial membrane by controlling the gating of VDAC channels.  相似文献   

15.
Alonso A  Goñi FM  Buckley JT 《Biochemistry》2000,39(46):14019-14024
Channel formation by the bacterial toxin aerolysin follows oligomerization of the protein to produce heptamers that are capable of inserting into lipid bilayers. How insertion occurs is not understood, not only for aerolysin but also for other proteins that can penetrate membranes. We have studied aerolysin channel formation by measuring dye leakage from large unilamellar egg phosphatidylcholine vesicles containing varying amounts of other lipids. The rate of leakage was enhanced in a dose-dependent manner by the presence of phosphatidylethanolamine, diacylglycerol, cholesterol, or hexadecane, all of which are known to favor a lamellar-to-inverted hexagonal (L-H) phase transition. Phosphatidylethanolamine molecular species with low L-H transition temperatures had the largest effects on aerolysin activity. In contrast, the presence in the egg phosphatidylcholine liposomes of lipids that are known to stabilize the lamellar phase, such as sphingomyelin and saturated phosphatidylcholines, reduced the rate of channel formation, as did the presence of lysophosphatidylcholine, which favors positive membrane curvature. When two different lipids that favor hexagonal phase were present with egg PC in the liposomes, their stimulatory effects were additive. Phosphatidylethanolamine and lysophosphatidylcholine canceled each other's effect on channel formation.  相似文献   

16.
Voltage-dependent calcium channels couple electrical signals to cellular responses in excitable cells. Calcium channels are crucial for excitation–secretion coupling in neurons and endocrine cells, and excitation–contraction coupling in muscle. Several pharmacologically and kinetically distinct calcium channel types have been identified at the electrophysiological and molecular levels. This review summarizes the basic properties of voltage-dependent calcium channels, including mechanisms of ion permeation and block, gating kinetics, and modulation by G proteins and second messengers.  相似文献   

17.
In smooth muscle, the gating of dihydropyridine-sensitive Ca2+ channels may either be stochastic and voltage dependent or coordinated among channels and constitutively active. Each form of gating has been proposed to be largely responsible for Ca2+ influx and determining the bulk average cytoplasmic Ca2+ concentration. Here, the contribution of voltage-dependent and constitutively active channel behavior to Ca2+ signaling has been studied in voltage-clamped single vascular and gastrointestinal smooth muscle cells using wide-field epifluorescence with near simultaneous total internal reflection fluorescence microscopy. Depolarization (−70 to +10 mV) activated a dihydropyridine-sensitive voltage-dependent Ca2+ current (ICa) and evoked a rise in [Ca2+] in each of the subplasma membrane space and bulk cytoplasm. In various regions of the bulk cytoplasm the [Ca2+] increase ([Ca2+]c) was approximately uniform, whereas that of the subplasma membrane space ([Ca2+]PM) had a wide range of amplitudes and time courses. The variations that occurred in the subplasma membrane space presumably reflected an uneven distribution of active Ca2+ channels (clusters) across the sarcolemma, and their activation appeared consistent with normal voltage-dependent behavior. Indeed, in the present study, dihydropyridine-sensitive Ca2+ channels were not normally constitutively active. The repetitive localized [Ca2+]PM rises (“persistent Ca2+ sparklets”) that characterize constitutively active channels were observed rarely (2 of 306 cells). Neither did dihydropyridine-sensitive constitutively active Ca2+ channels regulate the bulk average [Ca2+]c. A dihydropyridine blocker of Ca2+ channels, nimodipine, which blocked ICa and accompanying [Ca2+]c rise, reduced neither the resting bulk average [Ca2+]c (at −70 mV) nor the rise in [Ca2+]c, which accompanied an increased electrochemical driving force on the ion by hyperpolarization (−130 mV). Activation of protein kinase C with indolactam-V did not induce constitutive channel activity. Thus, although voltage-dependent Ca2+ channels appear clustered in certain regions of the plasma membrane, constitutive activity is unlikely to play a major role in [Ca2+]c regulation. The stochastic, voltage-dependent activity of the channel provides the major mechanism to generate rises in [Ca2+].  相似文献   

18.
The properties of kainate receptor/channels were studied in Xenopus oocytes injected with mRNA that was isolated from adult rat striatum and cerebellum and partially purified by sucrose gradient fractionation. Kainate (3–1000 µ.M) induced a smooth inward current that was competitively inhibted by gamma-D-glutamyl-aminomethanesulfonate (GAMS, 300 µM). In striatal mRNA-injected oocytes, the kainate current displayed nearly linear voltage-dependence and mean reversal potential (Er) of -6.1 ± 0.5 mV In cerebellar mRNA-injected oocytes; Er was nearly identical (-5.1 ± 1.2 mV) but there was marked inward rectification of the kainate current. Ion replacement studies reveal that the kainate channel is selective for cations over anions, but relatively non-selective among small monovalent cations. Large monovalent cations such as tetrabutylammonium are impermeant and induce a non-competitive block of kainate current that is strongly voltage-dependent. Divalent cations are relatively impermeant in the kainate channel and Cd++ and other polyvalent metals were shown to block kainate current by a mechanism that is only weakly voltage-dependent. A model of the kainate channel is proposed based upon these observations.  相似文献   

19.
Transpiration, xylem water potential and water channel activity were studied in developing stolons and leaves of strawberry (Fragaria × ananassa Duch.) subjected to drought or flooding, together with morphological studies of their stomata and other surface structures. Stolons had 0.12 stomata mm–2 and a transpiration rate of 0.6 mmol H2O m–2 s–1, while the leaves had 300 stomata mm–2 and a transpiration rate of 5.6 mmol H2O m–2 s–1. Midday water potentials of stolons were always less negative than in leaves enabling nutrient ion and water transport via or to the strawberry stolons. Drought stress, but not flooding, decreased stolon and leaf water potential from –0.7 to –1 MPa and from –1 to –2 MPa, respectively, with a concomitant reduction in stomatal conductance from 75 to 30 mmol H2O m–2 s–1. However, leaf water potentials remained unchanged after flooding. Similarly, membrane vesicles derived from stolons of flooded strawberry plants showed no change in water channel activity. In these stolons, turgor may be preserved by maintaining root pressure, an electrochemical and ion gradient and xylem differentiation, assuming water channels remain open. By contrast, water channel activity was reduced in stolons of drought stressed strawberry plants. In every case, the effect of flooding on water relations of strawberry stolons and leaves was less pronounced than that of drought which cannot be explained by increased ABA. Stomatal closure under drought could be attributed to increased delivery of ABA from roots to the leaves. However, stomata closed more rapidly in leaves of flooded strawberry despite ABA delivery from the roots in the xylem to the leaves being strongly depressed. This stomatal closure under flooding may be due to release of stress ethylene. In the relative absence of stomata from the stolons, cellular (apoplastic) water transport in strawberry stolons was primarily driven by water channel activity with a gradient from the tip of the stolon to the base, concomitant with xylem differentiation and decreased water transport potential from the stolon tip to its base. Reduced water potential in the stolons under drought are discussed with respect to reduced putative water channel activity.  相似文献   

20.
In a neuron–astrocyte adhesion contact the ionic current due to the opening of voltage-dependent potassium channels has to flow along a narrow intercellular cleft, generating there an extracellular voltage. This voltage might be large enough to affect significantly the dependence of channel gating from the intracellular voltage. In order to test this hypothesis, we considered a Xenopus oocyte expressing voltage-dependent potassium channels adhering to a layer of silicon oxide as a simplified model of cell–cell adhesion; here the cell membrane and silicon oxide are separated by a narrow cleft and form a junction of circular shape. We measured directly the extracellular voltage along the diameter of the cleft and investigated its effect on channel gating using a linear array of field effect transistors integrated in the silicon substrate. On this experimental basis we demonstrated that the voltage dependence of potassium channels is strongly affected by adhesion, as can be predicted using a model of a two-dimensional cable and electrodiffusion theory. Computations based on the model showed that along a neuron–astrocyte adhesion contact the opening of voltage-dependent Kv2.1 potassium channels is significantly reduced with respect to identical channels facing an open extracellular space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号