首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.

Background  

Hepatic expression of several gene products involved in glucose metabolism, including phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase) and insulin-like growth factor binding protein-1 (IGFBP-1), is rapidly and completely inhibited by insulin. This inhibition is mediated through the regulation of a DNA element present in each of these gene promoters, that we call the Thymine-rich Insulin Response Element (TIRE). The insulin signalling pathway that results in the inhibition of these gene promoters requires the activation of phosphatidylinositol 3-kinase (PI 3-kinase). However, the molecules that connect PI 3-kinase to these gene promoters are not yet fully defined. Glycogen Synthase Kinase 3 (GSK-3) is inhibited following activation of PI 3-kinase. We have shown previously that inhibitors of GSK-3 reduce the activity of two TIRE-containing gene promoters (PEPCK and G6Pase), whose products are required for gluconeogenesis.  相似文献   

3.
4.
5.
Troglitazone is an oral insulin-sensitizing drug used to treat patients with type 2 diabetes. A major feature of this hyperglycemic state is the presence of increased rates of hepatic gluconeogenesis, which troglitazone is able to ameliorate. In this study, we examined the molecular basis for this property of troglitazone by exploring the effects of this compound on the expression of the two genes encoding the major regulatory enzymes of gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in primary cultures of rat hepatocytes. Insulin is able to inhibit expression of both of these genes, which was verified in our model system. Troglitazone significantly reduced mRNA levels of PEPCK and G6Pase in rat hepatocytes isolated from normal and Zucker-diabetic rats, but to a lesser extent than that observed with insulin. Interestingly, troglitazone was unable to reduce cAMP-induced levels of PEPCK mRNA, suggesting that the molecular mechanism whereby troglitazone exerted its effects on gene expression differed from that of insulin. This was further supported by the observation that troglitazone was able to reduce PEPCK mRNA levels in the presence of the insulin signaling pathway inhibitors wortmannin, rapamycin, and PD98059. These results indicate that troglitazone can regulate the expression of specific genes in an insulin-independent manner, and that genes encoding gluconeogenic enzymes are targets for the inhibitory effects of this drug.  相似文献   

6.
7.
8.
9.
10.
Sodium arsenite has been demonstrated to alter the expression of genes associated with glucose homeostasis in tissues involved in the pathogenesis of type 2 diabetes; however, the underlying molecular mechanism has not been fully elucidated yet. In this study, we report that the sodium arsenite-induced gene expression of the small heterodimer partner (SHP; NR0B2), an atypical orphan nuclear receptor, regulates the expression of hepatic gluconeogenic genes. Sodium arsenite augments hepatic SHP mRNA levels in an AMP-activated protein kinase (AMPK)-dependent manner. Sodium arsenite activated AMPK and was shown to perturb cellular ATP levels. The arsenite-induced SHP mRNA level was blocked by adenoviral overexpression of dominant negative AMPK (Ad-dnAMPKalpha) or by the AMPK inhibitor compound C in hepatic cell lines. We demonstrated the dose-dependent induction of SHP mRNA levels by sodium arsenite and repressed the forskolin/dexamethasone-induced gene expression of the key hepatic gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). Ad-dnAMPKalpha blocked the repressive effects of arsenite-induced SHP on PEPCK and G6Pase. Sodium arsenite inhibited the promoter activity of PEPCK and G6Pase, and this repression was abolished by small interfering (si)RNA SHP treatments. The knockdown of SHP expression by oligonucleotide siRNA SHP or adenoviral siRNA SHP released the sodium arsenite-mediated repression of forskolin/dexamethasone-stimulated PEPCK and G6Pase gene expression in a variety of hepatic cell lines. Results from our study suggest that sodium arsenite induces SHP via AMPK to inhibit the expression of hepatic gluconeogenic genes and also provide us with a novel molecular mechanism of arsenite-mediated regulation of hepatic glucose homeostasis.  相似文献   

11.
12.
13.
Highly related insulin response sequences (IRSs) mediate effects of insulin on the expression of multiple genes in the liver, including insulin-like growth factor binding protein-1 (IGFBP-1) and phosphoenolpyruvate carboxykinase (PEPCK). Gel shift studies reveal that oligonucleotide probes containing an IRS from the IGFBP-1 or PEPCK gene form a similar complex with hepatic nuclear proteins. Unlabeled competitors containing the IGFBP-1 or PEPCK IRS or a binding site for C/EBP proteins inhibit the formation of this complex. Antibody against C/EBPbeta (but not other C/EBP proteins) supershifts this complex, and Western blotting of affinity purified proteins confirms that C/EBPbeta is present in this complex. Studies with affinity purified and recombinant protein indicate that C/EBPbeta does not interact directly with the IRS, but that other factors are required. Gel shift assays and reporter gene studies with constructs containing point mutations within the IRS reveal that the ability to interact with factors required for the formation of this complex correlates well with the ability of insulin to regulate promoter activity via this IRS (r = 0.849, p < 0.01). Replacing the IRS in reporter gene constructs with a C/EBP-binding site (but not an HNF-3/forkhead site or cAMP response element) maintains the effect of insulin on promoter activity. Together, these findings indicate that a nucleoprotein complex containing C/EBPbeta interacts with IRSs from the IGFBP-1 and PEPCK genes in a sequence-specific fashion and may contribute to the ability of insulin to regulate gene expression.  相似文献   

14.
Our objective is to understand the low metabolic utilization of dietary carbohydrates in fish. We compared the regulation of gluconeogenic enzymes at a molecular level in two fish species, the common carp (Cyprinus carpio) and gilthead seabream (Sparus aurata), known to be relatively tolerant to dietary carbohydrates. After cloning of partial cDNA sequences for three key gluconeogenic enzymes (glucose-6-phosphatase (G6Pase), fructose biphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK) in the two species, we analyzed gene expressions of these enzymes 6 and 24 h after feeding with (20%) or without carbohydrates. Our data show that there is at least one gluconeogenic enzyme strongly regulated (decreased expression after feeding) in the two fish species, i.e. the PEPCK for common carp and G6Pase/FBPase for gilthead seabream. In these fish species, the regulation seems to be similar to the mammals at least at the molecular level.  相似文献   

15.
16.
17.
18.
19.

Background  

Glycogen Synthase Kinase-3 (GSK3) activity is repressed following insulin treatment of cells. Pharmacological inhibition of GSK3 mimics the effect of insulin on Phosphoenolpyruvate Carboxykinase (PEPCK), Glucose-6 Phosphatase (G6Pase) and IGF binding protein-1 (IGFBP1) gene expression. CAAT/enhancer binding protein alpha (C/EBPα) regulates these gene promoters in liver and is phosphorylated on two residues (T222/T226) by GSK3, although the functional outcome of the phosphorylation has not been established. We aimed to establish whether CEBPα is a link between GSK3 and these gene promoters.  相似文献   

20.
During a state of fasting, the blood glucose level is maintained by hepatic gluconeogenesis. SIRT1 is an important metabolic regulator during nutrient deprivation and the liver-specific knockdown of SIRT1 resulted in decreased glucose production. We hypothesize that SIRT1 is responsible for the upregulation of insulin-suppressed gluconeogenic genes through the deacetylation of FOXO1. Treatment of primary cultured hepatocytes with resveratrol increased insulin-repressed PEPCK and G6Pase mRNA levels, which depend on SIRT1 activity. We found that the resveratrol treatment resulted in a decrease in the phosphorylation of Akt and FOXO1, which are independent of SIRT1 action. Fluorescence microscopy revealed that resveratrol caused the nuclear localization of FOXO1. In the nucleus, FOXO1 is deacetylated by SIRT1, which might make it more accessible to the IRE of the PEPCK and G6Pase promoter, causing an increase in their gene expression. Our results indicate that resveratrol upregulates the expression of gluconeogenic genes by attenuating insulin signaling and by deacetylating FOXO1, which are SIRT1-independent in the cytosol and SIRT1-dependent in the nucleus, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号