首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mitochondria can behave as individual oscillators whose dynamics may obey collective, network properties. We have shown that cardiomyocytes exhibit high-amplitude, self-sustained, and synchronous oscillations of bioenergetic parameters when the mitochondrial network is stressed to a critical state. Computational studies suggested that additional low-amplitude, high-frequency oscillations were also possible. Herein, employing power spectral analysis, we show that the temporal behavior of mitochondrial membrane potential (DeltaPsi(m)) in cardiomyocytes under physiological conditions is oscillatory and characterized by a broad frequency distribution that obeys a homogeneous power law (1/f(beta)) with a spectral exponent, beta = 1.74. Additionally, relative dispersional analysis shows that mitochondrial oscillatory dynamics exhibits long-term memory, characterized by an inverse power law that scales with a fractal dimension (D(f)) of 1.008, distinct from random behavior (D(f) = 1.5), over at least three orders of magnitude. Analysis of a computational model of the mitochondrial oscillator suggests that the mechanistic origin of the power law behavior is based on the inverse dependence of amplitude versus frequency of oscillation related to the balance between reactive oxygen species production and scavenging. The results demonstrate that cardiac mitochondria behave as a network of coupled oscillators under both physiological and pathophysiological conditions.  相似文献   

3.
G-protein βγ subunits translocate reversibly from the plasma membrane to internal membranes on receptor activation. Translocation rates differ depending on the γ subunit type. There is limited understanding of the role of the differential rates of Gβγ translocation in modulating signaling dynamics in a cell. Bifurcation analysis of the calcium oscillatory network structure predicts that the translocation rate of a signaling protein can regulate the damping of system oscillation. Here, we examined whether the Gβγ translocation rate regulates calcium oscillations induced by G-protein-coupled receptor activation. Oscillations in HeLa cells expressing γ subunit types with different translocation rates were imaged and quantitated. The results show that differential Gβγ translocation rates can underlie the diversity in damping characteristics of calcium oscillations among cells. Mathematical modeling shows that a translocation embedded motif regulates damping of G-protein-mediated calcium oscillations consistent with experimental data. The current study indicates that such a motif may act as a tuning mechanism to design oscillations with varying damping patterns by using intracellular translocation of a signaling component.  相似文献   

4.
The antihypercholesterolemic drug clofibrate (ethyl-α-p-chlorophenoxyisobutyrate) stimulated the latent ATPase activity and “superstimulated” the uncoupler-induced ATPase activity of rat-liver mitochondria. Addition of clofibrate decreased the turbidity of mitochondrial suspensions and released considerable amount of mitochondrial protein into solution. In these properties it closely resembled detergents like Triton X-100 and deoxycholate. However, unlike the detergents, clofibrate required the presence of a permeant cation for its disruptive action. Also, it was without any such effect on sonic submitochondrial particles. The drug enhanced the uptake of both Mg2 and Cl? by mitochondria suggesting that osmotic swelling precedes lysis. Sonic submitochondrial particles prepared in the presence of clofibrate showed a greater yield and comparable ATPase activity.  相似文献   

5.
G-protein βγ subunits translocate reversibly from the plasma membrane to internal membranes on receptor activation. Translocation rates differ depending on the γ subunit type. There is limited understanding of the role of the differential rates of Gβγ translocation in modulating signaling dynamics in a cell. Bifurcation analysis of the calcium oscillatory network structure predicts that the translocation rate of a signaling protein can regulate the damping of system oscillation. Here, we examined whether the Gβγ translocation rate regulates calcium oscillations induced by G-protein-coupled receptor activation. Oscillations in HeLa cells expressing γ subunit types with different translocation rates were imaged and quantitated. The results show that differential Gβγ translocation rates can underlie the diversity in damping characteristics of calcium oscillations among cells. Mathematical modeling shows that a translocation embedded motif regulates damping of G-protein-mediated calcium oscillations consistent with experimental data. The current study indicates that such a motif may act as a tuning mechanism to design oscillations with varying damping patterns by using intracellular translocation of a signaling component.  相似文献   

6.
Olga Vergun 《BBA》2005,1709(2):127-137
Ca2+-induced mitochondrial depolarization was studied in single isolated rat brain and liver mitochondria. Digital imaging techniques and rhodamine 123 were used for mitochondrial membrane potential measurements. Low Ca2+ concentrations (about 30-100 nM) initiated oscillations of the membrane potential followed by complete depolarization in brain mitochondria. In contrast, liver mitochondria were less sensitive to Ca2+; 20 μM Ca2+ was required to depolarize liver mitochondria. Ca2+ did not initiate oscillatory depolarizations in liver mitochondria, where each individual mitochondrion depolarized abruptly and irreversibly. Adenine nucleotides dramatically reduced the oscillatory depolarization in brain mitochondria and delayed the onset of the depolarization in liver mitochondria. In both type of mitochondria, the stabilizing effect of adenine nucleotides completely abolished by an inhibition of adenine nucleotide translocator function with carboxyatractyloside, but was not sensitive to bongkrekic acid. Inhibitors of mitochondrial permeability transition cyclosporine A and bongkrekic acid also delayed Ca2+-depolarization. We hypothesize that the oscillatory depolarization in brain mitochondria is associated with the transient conformational change of the adenine nucleotide translocator from a specific transporter to a non-specific pore, whereas the non-oscillatory depolarization in liver mitochondria is caused by the irreversible opening of the pore.  相似文献   

7.
Periodic cellwide depolarizations of mitochondrial membrane potential (ΨM) which are triggered by reactive oxygen species (ROS) and propagated by ROS-induced ROS release (RIRR) have been postulated to contribute to cardiac arrhythmogenesis and injury during ischemia/reperfusion. Two different modes of RIRR have been described: ΨM oscillations involving ROS-sensitive mitochondrial inner membrane anion channels (IMAC), and slow depolarization waves related to mitochondrial permeability transition pore (MPTP) opening. In this study, we developed a computational model of mitochondria exhibiting both IMAC-mediated RIRR and MPTP-mediated RIRR, diffusively coupled in a spatially extended network, to study the spatiotemporal dynamics of RIRR on ΨM. Our major findings are: 1), as the rate of ROS production increases, mitochondria can exhibit either oscillatory dynamics facilitated by IMAC opening, or bistable dynamics facilitated by MPTP opening; 2), in a diffusively-coupled mitochondrial network, the oscillatory dynamics of IMAC-mediated RIRR results in rapidly propagating (∼25 μm/s) cellwide ΨM oscillations, whereas the bistable dynamics of MPTP-mediated RIRR results in slow (0.1-2 μm/s) ΨM depolarization waves; and 3), the slow velocity of the MPTP-mediated depolarization wave is related to competition between ROS scavenging systems and ROS diffusion. Our observations provide mechanistic insights into the spatiotemporal dynamics underlying RIRR-induced ΨM oscillations and waves observed experimentally in cardiac myocytes.  相似文献   

8.
Stefano Iotti  Marco Borsari 《BBA》2010,1797(8):1353-1361
Organisation of mitochondrial metabolism is a quintessential example of a complex dissipative system which can display dynamic instabilities. Several findings have indicated that the conditions inducing instabilities are within the physiological range and that mild perturbations could elicit oscillations. Different mathematical models have been put forth in order to explain the genesis of oscillations in energy metabolism. One model considers mitochondria as an organised network of oscillators and indicates that communication between mitochondria involves mitochondrial reactive oxygen species (ROS) production acting as synchronisers of the energy status of the whole population of mitochondria. An alternative model proposes that extramitochondrial pH variations could lead to mitochondrial oscillations. Oscillatory phenomena in energy metabolism have also been investigated in vivo on the basis of 31P magnetic resonance spectroscopy (MRS) measurements of phosphocreatine post-exercise recovery in human and animal skeletal muscle. The corresponding results provide experimental evidences about the role exerted by cytosolic pH on oscillations. Finally a new simple non-linear mathematical model describing the overall chemical reaction of phosphocreatine recovery predicting oscillatory recovery pattern under certain experimental conditions is presented and discussed in the light of the experimental results reported so far.  相似文献   

9.
10.
Vertebrae and ribs arise from embryonic tissues called somites. Somites arise sequentially from the unsegmented embryo tail, called presomitic mesoderm (PSM). The pace of somite formation is controlled by gene products such as hairy and enhancer of split 7 (Hes7) whose expression oscillates in the PSM. In addition to the cyclic genes, there is a gradient of fibroblast growth factor 8 (Fgf8) mRNA from posterior to anterior PSM. Recent experiments have shown that in the absence of Fgf signaling, Hes7 oscillations in the anterior and posterior PSM are lost. On the other hand, Notch mutants reduce the amplitude of posterior Hes7 oscillations and abolish anterior Hes7 oscillations. To understand these phenotypes, we delineated and simulated a logical and a delay differential equation (DDE) model with similar network topology in wild-type and mutant situations. Both models reproduced most wild-type and mutant phenotypes suggesting that the chosen topology is robust to explain these phenotypes. Numerical continuation of the model showed that even in the wild-type situation, the system changed from sustained to damped, i.e. a Hopf bifurcation occurred, when the Fgf concentration decreased in the PSM. This numerical continuation analysis further indicated that the most sensitive parameters for the oscillations are the parameters of Hes7 followed by those of Lunatic fringe (Lfng) and Notch1. In the wild-type, the damping of Hes7 oscillations was not so strong so that cells reached the new somites before they lose Hes7 oscillations. By contrast, in the fibroblast growth factor receptor 1 (Fgfr1) conditional knock-out (cKO) mutant simulation, Notch signaling was not able to maintain sustained Hes7 oscillations. Our analysis suggests that Fgf signaling makes cells enter an oscillatory state of Hes7 expression. After moving to the anterior PSM, where Fgf signaling is missing, Notch signaling compensates the damping of Hes7 oscillations in the anterior PSM.  相似文献   

11.
Volume oscillations of liver mitochondria resulting from valinomycin induced K+ transport, may be represented by the equation At/Am = C'.exp(-beta t).sin(omega 1t+ psi) where At is the oscillation amplitude at time t; Am, the maximal amplitude; beta, the damping coefficient, omega 1 the oscillation frequency, and C' and psi, constants. The kinetic parameters beta and omega 1 increased as a function of valinomycin concentration. Measurement of beta and omega 1 for mitochondria from normal rats (A); diabetic rats (B), and normal rats fed corn oil or lard-supplemented diets (C and D, respectively), yielded an increase in beta (P less than 0.05) in B and D as compared with A, and a decrease in omega 1 in B and D as compared with A and C, respectively. Analysis of mitochondrial lipids revealed significant diminution of arachidonic acid and other polyenoic fatty acids in diabetic and lard-fed rats, as compared with normal rats and corn oil-fed rats, respectively. The conclusion is drawn that the abnormal oscillatory behaviour of diabetic liver mitochondria is related to the alteration of the membrane fatty acid composition.  相似文献   

12.
We propose a model for the segmentation clock in vertebrate somitogenesis, based on the Wnt signaling pathway. The core of the model is a negative feedback loop centered around the Axin2 protein. Axin2 is activated by β-catenin, which in turn is degraded by a complex of GSK3β and Axin2. The model produces oscillatory states of the involved constituents with typical time periods of a few hours (ultradian oscillations). The oscillations are robust to changes in parameter values and are often spiky, where low concentration values of β-catenin are interrupted by sharp peaks. Necessary for the oscillations is the saturated degradation of Axin2. Somite formation in chick and mouse embryos is controlled by a spatial Wnt gradient which we introduce in the model through a time-dependent decrease in Wnt3a ligand level. We find that the oscillations disappear as the ligand concentration decreases, in agreement with observations on embryos.  相似文献   

13.
One month after induction of diabetes in adult white rats with streptozotocin or 4–10 months after its induction by pancreatectomy (in every case glycemia was over 3 g/liter), the following alterations were observed in liver mitochondria: (a) a decrease of amplitude and an increase of the damping factor of volume oscillations induced by potassium ions and valinomycin; (b) a 50% decrease of d-3-hydroxybutyrate dehydrogenase (HBD) activity in mitochondria disrupted by repeated freeze-thawing; (c) a similar decrease in the rate of d-3-hydroxybutyrate oxidation by intact mitochondria; (d) a significant increase of cytochrome oxidase activity and cytochrome aa3 content. Measurement of succinate dehydrogenase and NADH dehydrogenase activity, the cytochrome b, c1, and c content, and the P:O ratio for mitochondria oxidizing d-3-hydroxybutyrate did not reveal significant differences between control and diabetic rat mitochondria. In the streptozotocin-injected rats, the variation of HBD activity and the modification of the mitochondrial oscillation pattern were time-dependent phenomena, both effects reaching their maximal expression about 1 month after the onset of diabetes. The variation of HBD activity followed a biphasic course, since it rose to above the control level during the first 2 weeks of diabetes, then fell progressively to about half the control value after the third week. Treatment of diabetic rats with NPH insulin (5 IU twice daily, for 3 days, reinforced by the same dose 45 min before sacrifice) restored the mitochondrial oscillation pattern, HBD activity, and rate of d-3-hydroxybutyrate oxidation by intact mitochondria to their normal values.  相似文献   

14.
Fluctuations of intracellular Ca2+ ([Ca2+]i) regulate a variety of cellular functions. The classical Ca2+ transport pathways in the endoplasmic reticulum (ER) and plasma membrane are essential to [Ca2+]i oscillations. Although mitochondria have recently been shown to absorb and release Ca2+ during G protein-coupled receptor (GPCR) activation, the role of mitochondria in [Ca2+]i oscillations remains to be elucidated. Using fluo-3-loaded human teratocarcinoma NT2 cells, we investigated the regulation of [Ca2+]i oscillations by mitochondria. Both the muscarinic GPCR agonist carbachol and the ER Ca2+-adenosine triphosphate inhibitor thapsigargin (Tg) induced [Ca2+]i oscillations in NT2 cells. The [Ca2+]i oscillations induced by carbachol were unsynchronized among individual NT2 cells; in contrast, Tg-induced oscillations were synchronized. Inhibition of mitochondrial functions with either mitochondrial blockers or depletion of mitochondrial DNA eliminated carbachol—but not Tg-induced [Ca2+]i oscillations. Furthermore, carbachol-induced [Ca2+]i oscillations were partially restored to mitochondrial DNA-depleted NT2 cells by introduction of exogenous mitochondria. Treatment of NT2 cells with gap junction blockers prevented Tg-induced but not carbachol-induced [Ca2+]i oscillations. These data suggest that the distinct patterns of [Ca2+]i oscillations induced by GPCR and Tg are differentially modulated by mitochondria and gap junctions.  相似文献   

15.
A quantitative study of H+, K+, Sr2+ and succinate fluxes in Sr2+-induced oscillatory state of rat liver mitochondria is presented. It was shown that oscillation of succinate content in mitochondria occurs synchronously with oscillations of the cation fluxes. Total charge transferred across the membrane by the registered cations and the succinate-anion is equal to zero. Passive H+-influx has been calculated at all stages of the oscillatory cycle. The conclusion is made that electroneutral 2 H+/Sr2+ exchange is periodically induced in mitochondria. A value of (2 ± 0.2) · 10-7 mol Sr2+/min per mg protein. has been determined for Sr2+ by this type of exchange.  相似文献   

16.
17.
Many proteins are modified by posttranslational methylation, introduced by a number of methyltransferases (MTases). Protein methylation plays important roles in modulating protein function and thus in optimizing and regulating cellular and physiological processes. Research has mainly focused on nuclear and cytosolic protein methylation, but it has been known for many years that also mitochondrial proteins are methylated. During the last decade, significant progress has been made on identifying the MTases responsible for mitochondrial protein methylation and addressing its functional significance. In particular, several novel human MTases have been uncovered that methylate lysine, arginine, histidine, and glutamine residues in various mitochondrial substrates. Several of these substrates are key components of the bioenergetics machinery, e.g., respiratory Complex I, citrate synthase, and the ATP synthase. In the present review, we report the status of the field of mitochondrial protein methylation, with a particular emphasis on recently discovered human MTases. We also discuss evolutionary aspects and functional significance of mitochondrial protein methylation and present an outlook for this emergent research field.  相似文献   

18.
19.
A tyrosine protein kinase activity has been detected in the mitochondrial fraction purified from human fibroblasts. By enzymatic and sedimentation analysis this activity appeared to be localized in the mitochondrial outer membrane. Mitochondrial tyrosine phosphorylation was strictly dependent on the presence of Mn2+ ions. An inverse relationship between cell proliferation and mitochondrial protein phosphorylation on tyrosine residues has been found: a marked increase in the mitochondrial tyrosine kinase activity occurred when a significant reduction in the growth rate followed serum step-down. In mitochondria purified from resting cells, a protein band with apparent molecular weight of 50 kd appeared to be phosphorylated on tyrosine.  相似文献   

20.
The first sequenced mitochondrial genome of a placozoan, Trichoplax adhaerens, challenged the conventional wisdom that a compact mitochondrial genome is a common feature among all animals. Three additional placozoan mitochondrial genomes representing highly divergent clades have been sequenced to determine whether the large Trichoplax mtDNA is a shared feature among members of the phylum Placozoa or a uniquely derived condition. All three mitochondrial genomes were found to be very large, 32- to 37-kb, circular molecules, having the typical 12 respiratory chain genes, 24 tRNAs, rnS, and rnL. They share with the Trichoplax mitochondrial genome the absence of atp8, atp9, and all ribosomal protein genes, the presence of several cox1 introns, and a large open reading frame containing an intron group I LAGLIDADG endonuclease domain. The differences in mtDNA size within Placozoa are due to variation in intergenic spacer regions and the presence or absence of long open reading frames of unknown function. Phylogenetic analyses of the 12 respiratory chain genes support the monophyly of Placozoa. The similarities in composition and structure between the three mitochondrial genomes reported here and that of Trichoplax's mtDNA suggest that their uncompacted state is a shared ancestral feature to other nonmetazoans while their gene content is a derived feature shared only among the Metazoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号