共查询到20条相似文献,搜索用时 15 毫秒
1.
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is a neurotoxin, which can damage dopaminergic neurons. It causes symptoms resembling those observed in patients suffering from Parkinson's disease, and hence this toxin is widely used in studies on animal models of this disorder. Mutagenicity of MPTP was also reported by some authors, but results obtained by others suggested that this compound is not mutagenic. Interestingly, those contrasting results were based on the same assay (the Ames test). Therefore, we aimed to test MPTP mutagenicity by employing a recently developed Vibrio harveyi assay, which was demonstrated previously to be more sensitive than the Ames test, at least for some mutagens. We found that MPTP showed a significant mutagenic activity. Moreover, MPTP mutagenicity was attenuated by methylxanthines, compounds that are known to form complexes with aromatic mutagens. 相似文献
2.
G N Kryzhanovski? M A Atadzhanov V A Zagorevski? L M Sharkova T A Voronina 《Biulleten' eksperimental'no? biologii i meditsiny》1988,105(4):397-401
Systemic administration of high doses of MPTP caused transient bradykinesia, "freezing" episodes, head tremors, hunching of the back and peripheral autonomic effects. Neurological syndrome was clearly dose-dependent. It has been established that Parkinson's syndrome is caused by high-amplitude paroxysmal discharges in the nucleus caudatis. It is concluded that the nucleus caudatis plays the role of a pathological determinant structure in the development of Parkinson's syndrome induced by MPTP. 相似文献
3.
S Szabo A Brown G Pihan H Dali J L Neumeyer 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1985,180(3):567-571
Experiments in rats revealed that the parkinsonian drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) given in multiple daily doses either per os (p.o.) or subcutaneously (s.c.) induced in a dose-dependent manner solitary or double ("kissing") duodenal ulcers in the rat. MPTP also diminished cerebral concentrations of DOPAC and the duodenal ulcers were prevented by pretreatment with dopamine agonists (e.g., bromocriptine, lergotrile) or monoamine oxidase inhibitors (e.g., pargyline, 1-deprenyl). High doses of MPTP also caused gastric erosions and motility changes resembling parkinsonism (e.g., akinesia, rigidity, forward bending of trunk). This chemical decreased gastric secretion of acid and pepsin, as well as pancreatic bicarbonate, trypsin and amylase. Thus, MPTP causes duodenal ulcers that are possibly associated with impaired defense in the duodenal bulb (e.g., decreased availability of duodenal and pancreatic bicarbonate). 相似文献
4.
D Di Monte G Ekstr?m T Shinka M T Smith A J Trevor N Castagnoli 《Chemico-biological interactions》1987,62(2):105-116
The parkinsonian-inducing compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is converted by isolated hepatocytes to its primary metabolite, the 1-methyl-4-phenyl-2,3-dihydropyridinium ion (MPDP+), and to its fully oxidized derivative, 1-methyl-4-phenylpyridinium ion (MPP+). Only the latter, however, accumulates in the cells. Incubation of hepatocytes in the presence of MPDP+ also results in the selective intracellular accumulation of MPP+. Conversion to MPP+ is more rapid and extensive after exposure to MPDP+, than with MPTP and the former is also more toxic. Addition of MPP+ itself is toxic to hepatocytes but only after a long lag period, which presumably reflects its limited access to the cell and its relatively slow intracellular accumulation. As previously shown with MPTP and MPP+, the cytotoxicity of MPDP+ is dose-dependent and is consistently preceeded by complete depletion of intracellular ATP. Similar to MPP+ but not MPTP, MPDP+ causes a comparable rate and extent of cytotoxicity and ATP loss in hepatocytes pretreated with the monoamine oxidase inhibitor pargyline. Pargyline blocks hepatocyte biotransformation of MPTP to MPP+, but it has no significant effect on MPP+ accumulation after exposure to either MPDP+ or MPP+. It is concluded that MPTP is toxic to hepatocytes via its monoamine oxidase-dependent metabolism and that MPP+ is likely to be the ultimate toxic metabolite which accumulates in the cell, causing ATP depletion and eventual cell death. 相似文献
5.
The neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to reversibly inhibit the activity of acetylcholinesterase. The inactivation of the enzyme was detected by monitoring the accumulation of yellow color produced from the reaction between thiocholine and dithiobisnitrobenzoate ion. The kinetic parameter, K
m for the substrate (acetylthiocholine), was found to be 0.216 mM and K
i for MPTP inactivation of acetylcholinesterase was found to be 2.14 mM. The inactivation of enzyme by MPTP was found to be dose-dependent. It was found that MPTP is neither a substrate of AChE nor the time-dependent inactivator. The studies of reaction kinetics indicate the inactivation of AChE to be a linear mixed-type inhibition. The dilution assays indicate that MPTP is a reversible inhibitor for AChE. These data suggest that once MPTP enters the basal ganglia of the brain, it can inactivate the acetylcholinesterase enzyme and thereby increase the acetylcholine level in the basal ganglia of brain, leading to potential cell dysfunction. It appears that the nigrostriatal toxicity by MPTP leading to Parkinson's disease-like syndrome may, in part, be mediated via the acetylcholinesterase inactivation. 相似文献
6.
Parkinson disease (PD) involves the specific degeneration of dopaminergic neurons of the pars compacta of the substantia nigra. Although the cause of the degeneration of nigrostriatal dopaminergic neurons in PD is unknown, there is significant evidence to suggest that oxidative stress may be involved in this process. This review specifically examines the current status of evidence suggesting iron may contribute to oxidative damage associated with PD. 相似文献
7.
Przedborski S Chen Q Vila M Giasson BI Djaldatti R Vukosavic S Souza JM Jackson-Lewis V Lee VM Ischiropoulos H 《Journal of neurochemistry》2001,76(2):637-640
Structural and functional alterations of alpha-synuclein is a presumed culprit in the demise of dopaminergic neurons in Parkinson's disease (PD). Alpha-synuclein mutations are found in familial but not in sporadic PD, raising the hypothesis that effects similar to those of familial PD-linked alpha-synuclein mutations may be achieved by oxidative post-translational modifications. Here, we show that wild-type alpha-synuclein is a selective target for nitration following peroxynitrite exposure of stably transfected HEK293 cells. Nitration of alpha-synuclein also occurs in the mouse striatum and ventral midbrain following administration of the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Conversely, beta-synuclein and synaptophysin were not nitrated in MPTP-intoxicated mice. Our data demonstrate that alpha-synuclein is a target for tyrosine nitration, which, by disrupting its biophysical properties, may be relevant to the putative role of alpha-synuclein in the neurodegeneration associated with MPTP toxicity and with PD. 相似文献
8.
Currently, obesity is considered a systemic inflammation; however, the effects of obesity on the vulnerability of dopaminergic neurons to oxidative stress are not fully defined. We evaluated the effects of high-fat diet-induced obesity (HF DIO) on neurotoxicity in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Eight weeks after a HF or matched normal diet, a severe decrease in the levels of striatal dopamine and of nigral microtubule-associated protein 2, manganese superoxide dismutase, and tyrosine hydroxylase was observed in obese mice treated with subtoxic doses of MPTP (20 mg/kg) compared with the matched lean group. In addition, the levels of nitrate/nitrite and thiobarbituric acid-malondialdehyde adducts in the substantia nigra of obese mice were reciprocally elevated or suppressed by MPTP. Interestingly, striatal nNOS phosphorylation and dopamine turnover were elevated in obese mice after MPTP treatment, but were not observed in lean mice. The nitrotyrosine immunoreactivity for evaluation of nigral nitrogenous stress in obese mice with MPTP was higher than that in matched lean mice. At higher doses of MPTP (60 mg/kg), the mortality was higher in obese mice than in lean mice. These results suggest that DIO may increase the vulnerability of dopaminergic neurons to MPTP via increased levels of reactive oxygen and nitrogen species, and the role of nNOS phosphorylation in the MPTP toxicities and dopamine homeostasis should be further evaluated. 相似文献
9.
J N Chacón M R Chedekel E J Land T G Truscott 《Biochemical and biophysical research communications》1989,158(1):63-71
The one-electron reduction product of 1-methyl-4-phenyl-2,3-dihydropyridinium ion has been generated by pulse radiolysis and its absorption spectrum recorded. This radical was found to decay by second-order kinetics (2k = 9.5 x 10(8) M-1 s-1) to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenyl-2,3-dihydropyridinium ion. Reactions of the above radical species and that formed by one-electron reduction of 1-methyl-4-phenylpyridinium ion, which can also be generated by one-electron oxidation of 1-methyl-4-phenyl-1,2-dihydropyridine, with a number of molecules of biochemical interest have been studied. The one-electron reduction product of oxidised nicotinamide adenine dinucleotide efficiently reduced 1-methyl-4-phenyl-2,3-dihydropyridinium ion (k = 2.2 x 10(9) M-1 s-1). The relevance of these results in relation to redox cycling, a possible mechanism for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity, is discussed. 相似文献
10.
11.
12.
The role of fatty acid metabolism in chemical-dependent cell injury is poorly understood. Addition of L-carnitine to the incubation medium of cultured hepatocytes delayed cell killing initiated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Protection by L-carnitine was stereospecific and observed as late as 1 h following addition of MPTP. D-Carnitine, but not iodoacetate, reversed the L-carnitine effect. Monoamine oxidase A and B activities, MPTP/N-methyl-4-phenyl-pyridinium levels, and MPTP-dependent loss of mitochondrial membrane potential measured by release of [3H]triphenylmethylphosphonium were not altered by addition of L-carnitine. Significant changes in MPTP-induced depletion of total cellular ATP did not occur with excess L-carnitine. Although the mechanism of cytoprotection exerted by L-carnitine remains unresolved, the data suggest that L-carnitine does not significantly alter: (i) mitochondrial-dependent bioactivation of MPTP; (ii) MPTP-dependent loss of mitochondrial membrane potential; or (iii) MPTP-mediated depletion of total cellular ATP content. We conclude that alterations of fatty acid metabolism may contribute to the toxic consequences of exposure to MPTP. Moreover, the lack of L-carnitine-mediated cytoprotection of monolayers incubated with 4-phenylpyridine or potassium cyanide suggests: (i) a link between fatty acid metabolism and mitochondrial membrane-mediated, bioactivation-dependent cell killing; and (ii) that inhibition of NADH dehydrogenase may not totally explain the mechanism of MPTP cytotoxicity. 相似文献
13.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that induces parkinsonism in human and non-human primates. Its mechanism of action is not fully elucidated.Recently, the participation of trace metals, such as manganese, on its neurotoxic action has been postulatted. In this work, we studied the effect of manganese administration on the neurochemical consequences of MPTP neurotoxic action. Male Swiss albino mice were treated with manganese chloride (MnCl2 ·4H2O; 0.5 mg/ml or 1.0 mg/ml of drinking water) for 7 days, followed by three MPTP administrations (30 mg/Kg, intraperitoneally). Seven days after the last MPTP administration, mice were sacrificed and dopamine and homovanillic acid contents in corpus striatum were analyzed. Striatal concentration of dopamine was found increased by 60% in mice pretreated with 0.5 mg/ml and 52% in the group treated of 1.0 mg/ml as compared versus animals treated with MPTP only. Hornovanillic acid content in both groups treated with manganese was the same as those in control animals. The results indicate that manganese may interact with MPTP, producing an enhancement of striatal dopamine turnover, as the protective effect of manganese was more pronounced in the metabolite than in the neurotransmitter. 相似文献
14.
《Journal of Physiology》1999,93(6):505
The effect of a stomach pentadecapeptide, BPC 157, on Parkinson's disease in mice was investigated, along with its salutary activity on stomach lesions induced by parkinsongenic agents. Parkinsongenic agents, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (30.0 mg.kg–1 b.w. i.p. once daily for 6 d, and after 4 d once 50.0 mg.kg–1 b.w. i.p.) or reserpine (5.0 mg.kg–1 b.w. i.p.) were applied i.p. BPC 157 (1.50 μg or 15.0 ng.kg–1 b.w. i.p.) was applied 15 min before or alternatively 15 min after each MPTP administration. In reserpine studies, BPC 157 (10.0 μg or 10.0 ng.kg–1 b.w. i.p.) was given either 15 min before reserpine or in the already established complete catalepsy 24 h thereafter. BPC 157 strongly improved the MPTP-impaired somatosensory orientation and reduced the MPTP-induced hyperactivity, and most importantly, MPTP-motor abnormalities (tremor, akinesia, catalepsy – otherwise very prominent in saline control), leading to almost complete abolition of otherwise regularly lethal course of MPTP treatment in controls. Likewise, in reserpine experiments, BPC 157 strongly prevented the development of otherwise very prominent catalepsy and when applied 24 h thereafter reversed the established catalepsy. In addition, a reduction of reserpine-hypothermy (BPC 157 pre-treatment) and reversal of further prominent temperature fall (BPC 157 post-treatment) have been consistently observed. Taking together these data, as the two most suitable animal models were consistently used and since the high effectiveness was demonstrated in pre- and post-treatment, μg and ng regimens, BPC 157 as an organoprotector should be further therapeutically investigated. Additionally, given in either regimen, pentadecapeptide BPC 157 strongly attenuated the stomach lesions in mice that otherwise consistently appeared in mice treated with the parkinsogenic neurotoxin MPTP. 相似文献
15.
Oxidative stress and covalent binding have been proposed as possible mechanisms involved in the cytotoxic effects of the parkinsonism-causing compound 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, the toxicity induced by MPTP in isolated rat hepatocytes seems to be relatively independent of oxygen radical-induced oxidative stress. Here we demonstrate that MPTP cytotoxicity is not potentiated by pretreatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), an inhibitor of glutathione reductase, nor prevented by the antioxidant N,N'-diphenyl-p-phenylenediamine (DPPD) or the iron-chelating agent desferrioxamine. Moreover, preincubation of hepatocytes with diethylmaleate to lower the level of intracellular reduced glutathione (to 20% of the initial value) did not affect either the rate or extent of MPTP cytotoxicity. Thus, nucleophilic soluble thiols do not seem to play a protective role against MPTP-induced cell damage, in contrast to what one would have expected if covalent protein binding and oxidative stress were involved as toxic mechanisms. On the other hand, MPTP cytotoxicity was potentiated by pretreatment of hepatocytes with cytochrome P-450 inhibitors (e.g., SKF 525A and metyrapone) and a more rapid depletion of ATP was observed in these experimental conditions. We conclude that mitochondrial damage and subsequent ATP depletion are likely to play a critical role in the toxicity of MPTP to isolated hepatocytes and that the metabolism of MPTP via the cytochrome P-450 monooxygenase system can be considered to be a detoxifying pathway. 相似文献
16.
G E Kass J M Wright P Nicotera S Orrenius 《Archives of biochemistry and biophysics》1988,260(2):789-797
The mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity to isolated hepatocytes was studied. MPTP was more toxic to hepatocytes than its major metabolite, 1-methyl-4-phenylpyridine (MPP+); this may, in part, be explained by the lesser permeability of the hepatocyte plasma membrane to the cation compared to its parent compound, MPTP. Loss of cell viability was preceded by plasma membrane bleb formation and disturbance of intracellular Ca2+ homeostasis. MPTP caused a rapid depletion of the mitochondrial Ca2+ pool which was followed by a marked and sustained elevation of cytosolic free Ca2+ concentration. This increase of cytosolic Ca2+ level appeared to be associated with the impairment of the cell's Ca2+ extrusion system since the plasma membrane Ca2+-ATPase was markedly inhibited in MPTP-treated hepatocytes. Preincubation of hepatocytes with inhibitors of monoamine oxidase type B, but not A, protected the cells from MPTP-induced cytotoxicity. Moreover, the monoamine oxidase B inhibitor, pargyline, prevented the rise in cytosolic free Ca2+ concentration and partially protected the plasma membrane Ca2+-ATPase from inhibition by MPTP. As observed with MPTP, MPP+ caused an extensive loss of mitochondrial Ca2+ and significantly decreased the rate of Ca2+ efflux from hepatocytes. However, MPP+ was without effect on the plasma membrane Ca2+-ATPase. In conclusion, our studies demonstrate that MPTP caused a substantial elevation of cytosolic Ca2+ which preceded loss of cell viability and we propose that calcium ions are of major importance in the mechanism of MPTP- and MPP+-induced toxicity in hepatocytes. 相似文献
17.
Kyota Fujita Toshihiro Seike Noriko Yutsudo Mizuki Ohno Hidetaka Yamada Hiroo Yamaguchi Kunihiko Sakumi Yukiko Yamakawa Mizuho A. Kido Atsushi Takaki Toshihiko Katafuchi Yoshinori Tanaka Yusaku Nakabeppu Mami Noda 《PloS one》2009,4(9)
It has been shown that molecular hydrogen (H2) acts as a therapeutic antioxidant and suppresses brain injury by buffering the effects of oxidative stress. Chronic oxidative stress causes neurodegenerative diseases such as Parkinson''s disease (PD). Here, we show that drinking H2-containing water significantly reduced the loss of dopaminergic neurons in PD model mice using both acute and chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The concentration-dependency of H2 showed that H2 as low as 0.08 ppm had almost the same effect as saturated H2 water (1.5 ppm). MPTP-induced accumulation of cellular 8-oxoguanine (8-oxoG), a marker of DNA damage, and 4-hydroxynonenal (4-HNE), a marker of lipid peroxidation were significantly decreased in the nigro-striatal dopaminergic pathway in mice drinking H2-containing water, whereas production of superoxide (O2•−) detected by intravascular injection of dihydroethidium (DHE) was not reduced significantly. Our results indicated that low concentration of H2 in drinking water can reduce oxidative stress in the brain. Thus, drinking H2-containing water may be useful in daily life to prevent or minimize the risk of life style-related oxidative stress and neurodegeneration. 相似文献
18.
Photoinactivation of B-type monoamine oxidase by a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine metabolite 总被引:1,自引:0,他引:1
The reaction of the neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) with monoamine oxidase from a variety of tissues including rat and monkey brain, bovine liver, and human placenta and platelets was found to yield, as a primary product, a reactive photosensitive substance with an absorbance maximum at 345 nm which is not the cation 1-methyl-4-phenylpyridinium ion previously reported as a monoamine oxidase-MPTP metabolite in vivo and in vitro. Our results suggest that the 1-methyl-4-phenyl-pyridinium ion is probably only generated in subsequent nonenzymatic transformations of this reactive monoamine oxidase metabolite. This substance was found to specifically inactivate the B-form of monoamine oxidase by a photo-induced mechanism and to react directly with NADPH and dopamine. Properties of the metabolite and potential significance of its reactions to MPTP neurotoxicity are discussed. 相似文献
19.
Interactions of the neurotoxic amine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine with monoamine oxidases. 总被引:5,自引:2,他引:3 下载免费PDF全文
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a thermal breakdown product of a meperidine-like narcotic used by drug abusers as a heroin substitute, produces Parkinsonian symptoms in humans and primates. The nigrostriatal toxicity is not due to MPTP itself but to one or more oxidation products resulting from the action of monoamine oxidase (MAO) on this tertiary allylamine. Both MAO A and B catalyse the oxidation of MPTP to the 1-methyl-4-phenyl-2,3-dihydropyridinium species (MPDP+), which undergoes further oxidation to the fully aromatic 1-methyl-4-phenylpyridinium species (MPP+). These bio-oxidations are blocked by selective inhibitors of MAO A and B. Additionally, MPTP, MPDP+ and MPP+ are competitive inhibitors of MAO A and B. The A form of the enzyme is particularly sensitive to this type of reversible inhibition. Both MAO A and B also are irreversibly inactivated by MPTP and MPDP+, but not by MPP+. This inactivation obeys the characteristics of a mechanism-based or 'suicide' process. The inactivation, which is accompanied by the incorporation of radioactivity from methyl-labelled MPTP, is likely to result from covalent modification of the enzyme. 相似文献
20.
The quantitative 2-[14C]deoxyglucose autoradiographic method was used to map the pattern of alterations in local cerebral glucose utilization associated with the Parkinsonian syndrome induced by the administration of the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), to rhesus monkeys. Monkeys treated with the neurotoxin exhibited both behavioral symptoms (e.g. akinesia, rigidity, flexed posture, and eyelid closure) and neuropathological changes (degeneration of the cells of the substantia nigra pars compacta) that closely paralleled those in human Parkinson's disease. Glucose utilization was significantly reduced in the pars compacta of the substantia nigra and in the subthalamus, and increased in the external segment of the globus pallidus. Outside the basal ganglia reductions in glucose utilization were limited to the mediodorsal nucleus of the thalamus, frontal eye fields, and ventral tegmental area. The results of these studies indicate that the profound functional and behavioral deficits in MPTP-induced Parkinson's syndrome are the consequences of highly selective functional changes in a few cerebral structures, mainly within the basal ganglia. 相似文献