首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The decrease in receptor-stimulated cyclic AMP production after chronic ethanol exposure was suggested previously to be secondary to an ethanol-induced increase in extracellular adenosine. The present study was undertaken to ascertain whether a similar mechanism was responsible for the ethanol-induced desensitization of cyclic AMP production in PC12 pheochromocytoma cells. The acute addition of ethanol in vitro significantly increased both basal cyclic AMP content and extracellular levels of adenosine. A 4-day exposure to ethanol decreased basal as well as 2-chloroadenosine- and forskolin-stimulated cyclic AMP contents. No change in cyclic AMP content was observed after a 2-day exposure of PC12 cells to ethanol. Inclusion of adenosine deaminase during the chronic ethanol treatment significantly decreased extracellular levels of adenosine, yet the percentage decrease in 2-chloroadenosine- and forskolin-stimulated cyclic AMP levels after chronic ethanol exposure was not changed by the inclusion of the adenosine deaminase. Similar results were obtained when the chronic treatment was carried out with serum-free defined media. The ethanol-induced desensitization could not be mimicked by chronic exposure of PC12 cells to adenosine analogues. A 24-h exposure of PC12 cells to 2-chloroadenosine resulted in a decrease in the subsequent ability of this adenosine analogue to stimulate cyclic AMP content, but basal and forskolin-stimulated cyclic AMP levels were increased. Similar results were obtained after a 4-day exposure of PC12 cells to 2-chloroadenosine or 5'- N -ethylcarboxamido-adenosine. The present results indicate that the ethanol-induced decrease in receptor-stimulated cyclic AMP content in PC12 cells is not due to an increase in extracellular adenosine.  相似文献   

2.
Activities of adenylate-degrading enzymes in muscles of vertebrates and invertebrates were determined. Mammalian and fish muscles showed a markedly higher activity of AMP deaminase with a lower level of adenosine deaminase and 5'-nucleotidase. Cephalopods showed an active adenosine deaminase and a 5'-nucleotidase which preferred AMP as the substrate. Negligible deamination of AMP and adenosine and little phosphohydrolase activity toward AMP and IMP were observed in the shellfish muscles. Adenine nucleotides can be degraded to form IMP via the AMP deaminase reaction in vertebrate muscles, while dephosphorylation of AMP to adenosine, which is then converted to inosine, appears to proceed in cephalopods. Adenylates can be hardly degraded in shellfish muscles.  相似文献   

3.
In fat cells isolated from the parametrial adipose tissue of rats, the addition of purified adenosine deaminase increased lipolysis and cyclic adenosine 3':5'-monophosphate (cyclic AMP) accumulation. Adenosine deaminase markedly potentiated cyclic AMP accumulation due to norepinephrine. The increase in cyclic AMP due to adenosine deaminase was as rapid as that of theophylline with near maximal effects seen after only a 20-sec incubation. The increases in cyclic AMP due to crystalline adenosine deaminase from intestinal mucosa were seen at concentrations as low as 0.05 mug per ml. Further purification of the crystalline enzyme preparation by Sephadex G-100 chromatography increased both adenosine deaminase activity and cyclic AMP accumulation by fat cells. The effects of adenosine deaminase on fat cell metabolism were reversed by the addition of low concentrations of N6-(phenylisopropyl)adenosine, an analog of adenosine which is not deaminated. The effects of adenosine deaminase on cyclic AMP accumulation were blocked by coformycin which is a potent inhibitor of the enzyme. These findings suggest that deamination of adenosine is responsible for the observed effects of adenosine deaminase preparations. Protein kinase activity of fat cell homogenates was unaffected by adenosine or N6-(phenylisopropyl)adenosine. Norepinephrine-activated adenylate cyclase activity of fat cell ghosts was not inhibited by N6-(phenylisopropyl)adenosine. Adenosine deaminase did not alter basal or norepinephrine-activated adenylate cyclase activity. Cyclic AMP phosphodiesterase activity of fat cell ghosts was also unaffected by adenosine deaminase. Basal and insulin-stimulated glucose oxidation were little affected by adenosine deaminase. However, the addition of adenosine deaminase to fat cells incubated with 1.5 muM norepinephrine abolished the antilipolytic action of insulin and markedly reduced the increase in glucose oxidation due to insulin. These effects were reversed by N6-(phenylisopropyl)adenosine. Phenylisopropyl adenosine did not affect insulin action during a 1-hour incubation. If fat cells were incubated for 2 hours with phenylisopropyl adenosine prior to the addition of insulin for 1 hour there was a marked potentiation of insulin action. The potentiation of insulin action by prior incubation with phenylisopropyl adenosine was not unique as prostaglandin E1, and nicotinic acid had similar effects.  相似文献   

4.
The activities (Vmax) of several enzymes of purine nucleotide metabolism were assayed in premature and mature primary rat neuronal cultures and in whole rat brains. In the neuronal cultures, representing 90% pure neurons, maturation (up to 14 days in culture) resulted in an increase in the activities of guanine deaminase (guanase), purine-nucleoside phosphorylase (PNP), IMP 5'-nucleotidase, adenine phosphoribosyltransferase (APRT), and AMP deaminase, but in no change in the activities of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), adenosine deaminase, adenosine kinase, and AMP 5'-nucleotidase. In whole brains in vivo, maturation (from 18 days of gestation to 14 days post partum) was associated with an increase in the activities of guanase, PNP, IMP 5'-nucleotidase, AMP deaminase, and HGPRT, a decrease in the activities of adenosine deaminase and IMP dehydrogenase, and no change in the activities of APRT, AMP 5'-nucleotidase, and adenosine kinase. The profound changes in purine metabolism, which occur with maturation of the neuronal cells in primary cultures in vitro and in whole brains in vivo, create an advantage for AMP degradation by deamination, rather than by dephosphorylation, and for guanine degradation to xanthine over its reutilization for synthesis of GMP. The physiological meaning of the maturational increase in these two ammonia-producing enzymes in the brain is not yet clear. The striking similarity in the alterations of enzyme activities in the two systems indicates that the primary culture system may serve as an appropriate model for the study of purine metabolism in brain.  相似文献   

5.
Selective adenosine release from human B but not T lymphoid cell line   总被引:5,自引:0,他引:5  
Intracellular adenosine formation and release to extracellular space was studied in WI-L2-B and SupT1-T lymphoblasts under conditions which induce or do not induce ATP catabolism. Under induced conditions, B lymphoblasts but not T lymphoblasts, release significant amounts of adenosine, which are markedly elevated by adenosine deaminase inhibitors. In T lymphoblasts, under induced conditions, only simultaneous inhibition of both adenosine deaminase activity and adenosine kinase activities resulted in small amounts of adenosine release. Under noninduced conditions, neither B nor T lymphoblasts release adenosine, even in the presence of both adenosine deaminase or adenosine kinase inhibitors. Comparison of B and T cell's enzyme activities involved in adenosine metabolism showed similar activity of AMP deaminase, but the activities of AMP-5'-nucleotidase, adenosine kinase and adenosine deaminase differ significantly. B lymphoblasts release adenosine because of their combination of enzyme activities which produce or utilize adenosine (high AMP-5'-nucleotidase and relatively low adenosine kinase and adenosine deaminase activities). Accelerated ATP degradation in B lymphoblasts proceeds not only via AMP deamination, but also via AMP dephosphorylation into adenosine but its less efficient intracellular utilization results in the release of adenosine from these cells. In contrast, T lymphoblasts release far less adenosine, because they contain relatively low AMP-5'-nucleotidase and high adenosine kinase and adenosine deaminase activities. In T lymphoblasts, AMP formed during ATP degradation is not readily dephosphorylated to adenosine but mainly deaminated to IMP by AMP deaminase. Any adenosine formed intracellularly in T lymphoblasts is likely to be efficiently salvaged back to AMP by an active adenosine kinase. In general, these results may suggest that adenosine can be produced only by selective cells (adenosine producers) whereas other cells with enzyme combination similar to SupT1-T lymphoblasts can not produce significant amounts of adenosine even in stress conditions.  相似文献   

6.
J Greger  K Fabianowska 《Enzyme》1979,24(1):54-60
The activities of dTMP kinase (ATP-deoxythymidine monophosphate phosphotransferase, EC 2.7.4.9), 5'-nucleotidase (5'-ribonucleoside phosphohydrolase, EC 3.1.3.5), adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4), AMP deaminase (AMP aminohydrolase, EC 3.5.3.6) and ATP-(Mg2+)-ase (ATP phosphohydrolase, EC 3.6.1.3) were assayed in mitochondria of normal and regenerating rat liver. In regenerating mitochondria, the dTMP kinase activity increased 20 times, 5'-nucleotidase (5'Nase) activity for dTMP diminished by 65% and its activity for other nucleoside monophosphates did not change; adenosine deaminase activity for adenosine (AR) increased by 40%, but for deoxyadenosine (AdR) decreased by 70%. AMP deaminase and ATP-(Mg2+)-ase activities behaved similarly in mitochondria from regenerating liver, decreasing by 70 and 64% respectively. The changes of the amount of dTMP in mitochondria depend on enzyme activities which regulate the AdR concentration.  相似文献   

7.
In skeletal muscle, adenosine monophosphate (AMP) is mainly deaminated by AMP deaminase. However, the C34T mutation in the AMPD1 gene severely reduces AMP deaminase activity. Alternatively, intracellular AMP is dephosphorylated to adenosine via cytosolic AMP 5'-nucleotidase (cN-I). In individuals with a homozygous C34T mutation, cN-I might be a more important pathway for AMP removal. We determined activities of AMP deaminase, cN-I, total cytosolic 5'-nucleotidase (total cN), ecto-5'-nucleotidase (ectoN) and whole homogenate 5'-nucleotidase activity in skeletal muscle biopsies from patients with different AMPD1 genotypes [homozygotes for C34T mutation (TT); heterozygotes for C34T mutation (CT); and homozygotes for wild type (CC): diseased controls CC; and normal controls CC]. AMP deaminase activity showed genotype-dependent differences. Total cN activity in normal controls accounted for 57+/-22% of whole homogenate 5'-nucleotidase activity and was not significantly different from the other groups. A weak inverse correlation was found between AMP deaminase and cN-I activities (r2=0.18, p<0.01). There were no significant differences between different groups in the activities of cN-I, whole homogenate 5'-nucleotidase and ectoN, or in cN-I expression on Western blots. No correlation for age, fibre type distribution and AMPD1 genotype was found for whole homogenate nucleotidase, total cN and cN-I using multiple linear regression analysis. There was no gender-specific difference in the activities of whole homogenate nucleotidase, total cN and cN-I. The results indicate no changes in the relative expression or catalytic behaviour of cN-I in AMP deaminase-deficient human skeletal muscle, but suggest that increased turnover of AMP by cN-I in working skeletal muscle is due to higher substrate availability of AMP.  相似文献   

8.
The role of P1 receptors and P2Y1 receptors in coronary vasodilator responses to adenine nucleotides was examined in the isolated guinea pig heart. Bolus arterial injections of nucleotides were made in hearts perfused at constant pressure. Peak increase in flow was measured before and after addition of purinoceptor antagonists. Both the P1 receptor antagonist 8-(p-sulfophenyl)theophylline and adenosine deaminase inhibited adenosine vasodilation. AMP-induced vasodilation was inhibited by P1 receptor blockade but not by adenosine deaminase or by the selective P2Y1 antagonist N6-methyl-2'-deoxyadenosine 3',5'-bisphosphate (MRS 2179). ADP-induced vasodilation was moderately inhibited by P1 receptor blockade and greatly inhibited by combined P1 and P2Y1 blockade. ATP-induced vasodilation was antagonized by P1 blockade but not by adenosine deaminase. Addition of P2Y1 blockade to P1 blockade shifted the ATP dose-response curve further rightward. It is concluded that in this preparation ATP-induced vasodilation results primarily from AMP stimulation of P1 receptors, with a smaller component from ATP or ADP acting on P2Y1 receptors. ADP-induced vasodilation is largely due to P2Y1 receptors, with a smaller contribution by AMP or adenosine acting via P1 receptors. AMP responses are mediated solely by P1 receptors. Adenosine contributes very little to vasodilation resulting from bolus intracoronary injections of ATP, ADP, or AMP.  相似文献   

9.
1. The maximal activities of 5'-nucleotidase, adenosine kinase and adenosine deaminase together with the Km values for their respective substrates were measured in muscle, nervous tissue and liver from a large range of animals to provide information on the mechanism of control of adenosine concentration in the tissues. 2. Detailed evidence that the methods used were optimal for the extraction and assay of these enzymes has been deposited as Supplementary Publication SUP 50088 (16pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K.,from whom copies can be obtained on the terms indicated in Biochem. J. (1978), 169, 5. This evidence includes the effects of pH and temperature on the activities of the enzymes. 3. In many tissues, the activities of 5'-nucleotidase were considerably higher than the sum of the activities of adenosine kinase and deaminase, which suggests that the activity of the nucleotidase must be markedly inhibited in vivo so that adenosine does not accumulate. In the tissues in which comparison is possible, the Km of the nucleotidase is higher than the AMP content of the tissue, and since some of the latter may be bound within the cell, the low concentration of substrate may, in part, be responsible for a low activity in vivo. 4. In most tissues and animals investigated, the values of the Km of adenosine kinase for adenosine are between one and two orders of magnitude lower than those for the deaminase. It is suggested that 5'-nucleotidase and adenosine kinase are simultaneously active so that a substrate cycle between AMP and adenosine is produced: the difference in Km values between kinase and deaminase indicates that, via the cycle, small changes in activity of kinase or nucleotidase produce large changes in adenosine concentration. 5. The activities of adenosine kinase or deaminase from vertebrate muscles are inversely correlated with the activities of phosphorylase in these muscles. Since the magnitude of the latter activities are indicative of the anaerobic nature of muscles, this negative correlation supports the hypothesis that an important role of adenosine is the regulation of blood flow in the aerobic muscles.  相似文献   

10.
1. AMP catabolism in frog liver extract was found to proceed exclusively through the formation of IMP. Further metabolism of IMP is relatively slow. 2. Among the enzymes involved in AMP catabolism, AMP deaminase is most active and adenosine deaminase and AMP 5'-nucleotidase exhibit only 20 and 10% of AMP deaminase activity respectively.  相似文献   

11.
5'-Nucleotidase, adenosine phosphorylase, adenosine deaminase and purine nucleoside phosphorylase, four enzymes involved in the utilization of exogenous compounds in Bacillus cereus, were measured in extracts of this organism grown in different conditions. It was found that adenosine deaminase is inducible by addition of adenine derivatives to the growth medium, and purine, nucleoside phosphorylase by metabolizable purine and pyrimidine ribonucleosides. Adenosine deaminase is repressed by inosine, while both enzymes are repressed by glucose. Evidence is presented that during growth of B. cereus in the presence of AMP, the concerted action of 5'-nucleotidase and adenosine phosphorylase, two constitutive enzymes, leads to formation of adenine, and thereby to induction of adenosine deaminase. The ionsine formed would then cause induction of the purine nucleoside phosphorylase and repression of the deaminase. Taken together with our previous findings showing that purine nucleoside phosphorylase of B. cereus acts as a translocase of the ribose moiety of inosine inside the cell (Mura, U., Sgarrella, F. and Ipata, P.L. (1978) J. Biol Chem. 253, 7905-7909), our results provide a clear picture of the molecular events leading to the utilization of the sugar moiety of exogenous AMP, adenosine and inosine as an energy source.  相似文献   

12.
Pathways of adenine nucleotide catabolism in primary rat muscle cultures   总被引:2,自引:0,他引:2  
The pathways of AMP degradation and the metabolic fate of adenosine were studied in cultured myotubes under physiological conditions and during artificially induced enhanced degradation of ATP. The metabolic pathways were gauged by tracing the flow of radioactivity from ATP, prelabelled by incubation of the cultures with [14C]adenine, into the various purine derivatives. The fractional flow from AMP to inosine through adenosine was estimated by the use of the adenosine deaminase (EC 3.5.4.4) inhibitors, coformycin and 2'-deoxycoformycin. The activities of the enzymes involved with AMP and adenosine metabolism were determined in cell extracts. The results demonstrate that under physiological conditions, there is a small but significant flow of label from ATP to diffusible bases and nucleosides, most of which are effluxed to the incubation medium. This catabolic flow is mediated almost exclusively by the activity of AMP deaminase (EC 3.5.4.6), rather than by AMP 5'-nucleotidase (EC 3.1.3.5), reflecting the markedly higher Vmax/Km ratio for the deaminase. Enhancement of ATP degradation by inhibition of glycolysis or by combined inhibition of glycolysis and of electron transport resulted in a markedly greater flux of label from adenine nucleotides to nucleosides and bases, but did not alter significantly the ratio between AMP deamination and AMP dephosphorylation, which remained around 19:1. Combined inhibition of glycolysis and of electron transport resulted, in addition, in accumulation of label in IMP, reaching about 20% of total AMP degraded. In the intact myotubes at low adenosine concentration, the anabolic activity of adenosine kinase was at least 4.9-fold the catabolic activity of adenosine deaminase, in accord with the markedly higher Vmax/Km ratio of the kinase for adenosine. The results indicate the operation in the myotube cultures, under various rates of ATP degradation, of the AMP to IMP limb of the purine nucleotide cycle. On the other hand, the formation of purine bases and nucleosides, representing the majority of degraded ATP, indicates inefficient activity of the IMP to AMP limb of the cycle, as well as inefficient salvage of hypoxanthine under these conditions.  相似文献   

13.
1. A rapid method for the determination of AMP and IMP by HPLC is described. 2. Its application to the assay of AMP deaminase allows the specific determination of enzyme activities in crude extracts, eliminating any interference by other enzyme systems (5'-nucleotidase and adenosine deaminase). 3. The method was routinely used for the determination of the AMP deaminase activity in the muscles of marine animals.  相似文献   

14.
The accumulations of radioactive cyclic AMP elicited by adenosine, norepinephrine, and histamine in adenine-labeled vesicular entities of a particulate fraction from guinea pig cerebral cortex are greatly reduced as a result of prolonged preincubation. The presence of adenosine deaminase during preincubations largely prevents the loss of adenosine, norepinephrine and histamine responses. Adenosine deaminase was inactivated by deoxycoformycin prior to stimulation of cyclic AMP accumulation by adenosine or amines. If adenosine deaminase is not inactivated, responses to norepinephrine are not significant and histamine responses are reduced by 50%. Adenosine deaminase cannot restore responsiveness of the cyclic AMP-generating systems. It is proposed that, in particulate fractions of guinea pig cerebral cortex, low levels of adenosine cause a slow loss of receptors and/or coupling of receptors to cyclic AMP-generating systems.  相似文献   

15.
The xanthine-requiring mutants defective in adenine deaminase (adenase) derived from a Bacillus strain accumulate much adenosine. The mechanism of adenosine production was investigated. Limitation of the guanine-related substances in the fermentation medium facilitated the adenosine accumulation, but the excess of those suppressed it.Metabolic regulation of the purine nucleotide biosynthesis was supposed to be released from both feedback inhibition and repression by limiting the concentration of guanine-related substances in the cells caused by xanthine-requirement. Deficiency in the deaminase activities of adenine, adenosine and AMP and the weak adenosine phosphorylase activity contributed to adenosine accumulation. No apparent changes were observed in the adenylosuccinate synthetase activity and the dephosphorylation activity of AMP compared with the wild strain.  相似文献   

16.
1. Enzymes interconnecting the adenylate pool were present in high concentration. 2. AMP and adenosine were easily deaminated by the corresponding enzymes whose high levels were detected. 3. Adenylate was hydrolyzed either by deamination to yield IMP which was further dephosphorylated to inosine or by dephosphorylation to adenosine followed by deamination to inosine. 4. Incubation of gill extract with [-14C]-AMP in the presence and absence of ATP but with adenosine deaminase inhibitors allowed demonstration that ATP controlled the balance between these pathways. 5. Some biochemical properties of 5'-nucleotidase. AMP deaminase and adenosine deaminase were defined. 6. Purine salvage enzymes were also estimated.  相似文献   

17.
5′-Nucleotidase, adenosine phosphorylase, adenosine deaminase and purine nucleoside phosphorylase, four enzymes involved in the utilization of exogenous purine compounds in Bacillus cereus, were measured in extracts of this organism grown in different conditions. It was found that adenosine deaminase is inducible by addition of adenine derivatives to the growth medium, and purine nucleoside phosphorylase by metabolizable purine and pyrimidine ribonucleosides. Adenosine deaminase is repressed by inosine, while both enzymes are repressed by glucose. Evidence is presented at during growth of B. cereus in the presence of AMP, the concerted action of 5′-nucleotidase and adenosine phosphorylase, two constitutive enzymes, leads to formation of adenine, and thereby to induction of adenosine deaminase. The ionsine formed would then cause induction of the purine nucleoside phosphorylase and repression of the deaminase. Taken together with our previous findings showing that purine nucleoside phosphorylase of B cereus acts as a translocase of the ribose moiety of ionsine inside the cell (Mura, U., Sgarrella, F. and Ipata, P.L. (1978) J. Biol. Chem. 253, 7905–7909), our results provide a clear picture of the molecular events leading to the utilization of the sugar moiety of exogenous AMP, adenosine and inosine as an energy source.  相似文献   

18.
The level of 5′-AMP deaminase in homogenates of human term placenta has been measured by means of a simple radiometric assay. The assay uses 14C-labeled AMP as substrate and incorporates conditions of pH and K+ concentration, which optimize the 5′-AMP deaminase activity, and inhibitors of 5′-nucleotidase and adenosine deaminase to reduce interference from these enzymes. Assay products are separated by descending paper chromatography and quantitated by liquid scintillation counting. The activity of 5′-AMP deaminase in human term placenta determined by this assay was 474 ± 37 nmol min?1 g?1 at 30°C and was less than the 5′-AMP phosphatase activity evident under the same assay conditions. The assay is suitable for measurement of 5′-AMP deaminase in extracts of other tissues in which high levels of phosphatases and adenosine deaminase preclude assay of 5′-AMP deaminase by such techniques as ultraviolet absorption changes or ammonia estimation.  相似文献   

19.
A microassay requiring as few as 2 X 10(5) cells per assay was developed for systematic analysis of 9 purine enzymes in lymphocytes from equine peripheral blood, spleen, lymph node, thymus and bone marrow. The activities of adenosine deaminase (ADA), purine nucleoside phosphorylase (PNP), adenosine kinase (AK), deoxyadenosine kinase (dAK), deoxycytidine kinase (dCK), 5'-nucleotidase (5'-N), AMP deaminase, hypoxanthine-guanine phosphoribosyl transferase (HGPRT or HPRT), and adenine phosphoribosyl transferase (APRT) were measured by this microassay in lymphocytes from peripheral blood from four different breeds of horses (Arabian, Quarter Horse, Thoroughbred and Shetland Pony). There were no significant differences in the enzyme activities among the various breeds. Peripheral blood lymphocytes (PBL) from foals exhibited enzyme activities similar to those observed for adult animals. All lymphoid tissue contained similar levels of activity for each kinase (AK, dAK and dCK). Spleen had the highest activity for ADA, PNP, 5'-N, and HGPRT. The lowest activity for ADA, APRT, PNP and AMP deaminase was found in thymus. Enzymatic activities that varied the most among the tissue were 5'-N, ADA, APRT, HGPRT and AMP deaminase.  相似文献   

20.
We compared the response of rat PC12 cells and a derivative PC18 cell line to the effects of adenosine receptor agonists, antagonists, and adenine nucleotide metabolizing enzymes. We found that theophylline (an adenosine receptor antagonist), adenosine deaminase, and AMP deaminase all decreased basal cyclic AMP content and tyrosine hydroxylase activity in the PC12 cells, but not in PC18 cells. Both cell lines responded to the addition of 2-chloroadenosine and 5'-N-ethylcarboxamidoadenosine, adenosine receptor agonists, by exhibiting an increase in tyrosine hydroxylase activity and cyclic AMP content. The latter finding indicates that both cell lines contained an adenosine receptor linked to adenylate cyclase. We found that the addition of dipyridamole, an inhibitor of adenosine uptake, produced an elevation of cyclic AMP and tyrosine hydroxylase activity in both cell lines. Deoxycoformycin, an inhibitor of adenosine deaminase, failed to alter the levels of cyclic AMP or tyrosine hydroxylase activity. This suggests that uptake was the primary inactivating mechanism of adenosine action in these cells. We conclude that both cell types generated adenine nucleotides which activate the adenosine receptor in an autocrine or paracrine fashion. We found that PC12 cells released ATP in a calcium-dependent process in response to activation of the nicotinic receptor. We also measured the rates of degradation of exogenous ATP, ADP, and AMP by PC12 cells. We found that the rates of metabolism of the former two were at least an order of magnitude greater than that of AMP. Any released ATP would be rapidly metabolized to AMP and then more slowly degraded to adenosine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号