首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pharmacological chaperones represent a new class of ligand with the potential to facilitate the delivery of misfolded, but still active, G-protein-coupled receptors to the cell surface. Using transfected HEK 293T cells, treatment with a nonpeptide antagonist, SR49059, dramatically increased ( approximately 60-fold) the surface expression of a misfolded, nonfunctional and intracellularly localized vasopressin V(1a) receptor (V(1a)R) mutant (D148A). This rescue of surface expression (111 +/- 7%) was almost identical to wild type assessed by confocal microscopy and quantitative enzyme-linked immunosorbent assay-based techniques. Recovery was not specific to D148A, since other surface-impaired mutations, D148N and D148E, and wild type were also increased following SR49059 exposure. However, surface delivery was specific to SR49059, since V(1a)R-selective peptide ligands or unrelated ligands were unable to mimic this action, suggesting that SR49059 acts intracellularly. SR49059-mediated surface rescue was time-, mutant-, and concentration-dependent but not directly related to its binding affinity. Maximal recovery was achieved following 12 h of treatment and did not involve de novo receptor synthesis or a consequence of preventing endogenous constitutive activity and/or internalization. Once at the surface, all mutants displayed enhanced signaling ability, and D148A was able to undergo agonist-mediated internalization. SR49059 was not effectively removed from the receptor, since signaling (EC(50)) of both wild type and D148A was reduced approximately 40-fold. This is the first report of a pharmacological chaperone ligand to act on misfolded mutant V(1a) Rs. This work provides an excellent model to understand the mechanistic action of an important new class of drug that may have potential in the treatment of diseases caused by inherited mutations.  相似文献   

2.
Despite their opposite effects on signal transduction, the nonapeptide hormone arginine-vasopressin (AVP) and its V1a receptor-selective cyclic peptide antagonist d(CH2)5[Tyr(Me)2]AVP display homologous primary structures, differing only at residues 1 and 2. These structural similarities led us to hypothesize that both ligands could interact with the same binding pocket in the V1a receptor. To determine receptor residues responsible for discriminating binding of agonist and antagonist ligands, we performed site-directed mutagenesis of conserved aromatic and hydrophilic residues as well as nonconserved residues, all located in the transmembrane binding pocket of the V1a receptor. Mutation of aromatic residues of transmembrane region VI (W304, F307, F308) reduced affinity for the d(CH2)5[Tyr(Me)2]AVP and markedly decreased affinity for the unrelated strongly hydrophobic V1a-selective nonpeptide antagonist SR 49059. Replacement of these aromatic residues had no effect on AVP binding, but increased AVP-induced coupling efficacy of the receptor for its G protein. Mutating hydrophilic residues Q108, K128 and Q185 in transmembrane regions II, III and IV, respectively, led to a decrease in affinity for both agonists and antagonists. Finally, the nonconserved residues T333 and A334 in transmembrane region VII, controlled the V1a/V2 binding selectivity for both nonpeptide and cyclic peptide antagonists. Thus, because conserved aromatic residues of the V1a receptor binding pocket seem essential for antagonists and do not contribute at all to the binding of agonists, we propose that these residues differentiate agonist vs. antagonist ligand binding.  相似文献   

3.
In most cases, nephrogenic diabetes insipidus results from mutations in the V2 vasopressin receptor (V2R) gene that cause intracellular retention of improperly folded receptors. We previously reported that cell permeable V2R antagonists act as pharmacological chaperones that rescue folding, trafficking, and function of several V2R mutants. More recently, the vasopressin antagonist, SR49059, was found to be therapeutically active in nephrogenic diabetes insipidus patients. Three of the patients with positive responses harbored the mutation R137H, previously reported to lead to constitutive endocytosis. This raises the possibility that, instead of acting as a pharmacological chaperone by favoring proper maturation of the receptors, SR49059 could mediate its action on R137H V2R by preventing its endocytosis. Here we report that the beta-arrestin-mediated constitutive endocytosis of R137H V2R is not affected by SR49059, indicating that the functional rescue observed does not result from a stabilization of the receptor at the cell surface. Moreover, metabolic labeling revealed that R137H V2R is also poorly processed to the mature form. SR49059 treatment significantly improved its maturation and cell surface targeting, indicating that the functional rescue of R137H V2Rs results from the pharmacological chaperone action of the antagonist.  相似文献   

4.
Radioligand binding studies with [3H]vasopressin (AVP) were used to determine the affinities of AVP receptor agonists and antagonists for mouse liver and kidney plasma membrane preparations. Both membrane preparations exhibited one class of high-affinity binding site. AVP ligand binding inhibition studies confirmed that mouse liver binding sites belong to the V1A subtype while kidney binding sites belong to the V2 receptor subtype. The affinity of each ligand for mouse V1A receptors was very similar to that for rat V1A receptors, showing differences in Ki values of less than 3-fold. In contrast, several peptide (d(CH2)5Tyr(Me)AVP) and nonpeptide (OPC-21268 and SR 49059) ligands had different affinities for mouse and rat kidney V2 receptors, with differences in Ki values ranging from 14- to 17-fold. These results indicate that mouse and rat kidney V2 receptors show significant pharmacologic differences.  相似文献   

5.
Some membrane-permeable antagonists restore cell surface expression of misfolded receptors retained in the endoplasmic reticulum (ER) and are therefore termed pharmacochaperones. Whether pharmacochaperones increase protein stability, thereby preventing rapid degradation, or assist folding via direct receptor interactions or interfere with quality control components remains elusive. We now show that the cell surface expression and function (binding of the agonist) of the mainly ER-retained wild-type murine vasopressin V2 receptor GFP fusion protein (mV2R.GFP) is restored by the vasopressin receptor antagonists SR49059 and SR121463B with EC50 values similar to their KD values. This effect was preserved when protein synthesis was abolished. In addition, SR121463B rescued eight mutant human V2Rs (hV2Rs, three are responsible for nephrogenic diabetes insipidus) characterized by amino acid exchanges at the C-terminal end of transmembrane helix TM I and TM VII. In contrast, mutants with amino acid exchanges at the interface of TM II and IV were not rescued by either antagonist. The mechanisms involved in successful rescue of cell surface delivery are explained in a three-dimensional homology model of the antagonist-bound hV2R.  相似文献   

6.
Nazari A  Sadr SS  Faghihi M  Imani A  Moghimian M 《Peptides》2011,32(12):2459-2466
The aim of the present study was to investigate the protective effect of various doses of exogenous vasopressin (AVP) against ischemia–reperfusion injury in anesthetized rat heart. Anesthetized rats were randomly divided into seven groups (n = 4–13) and all of them subjected to prolonged 30 min regional ischemia and 120 min reperfusion. Group I served as saline control with ischemia, in treatment groups II, III, IV and V, respectively different doses of AVP (0.015, 0.03, 0.06 and 1.2 μg/rat) were infused within 10 min prior to ischemia, in group VI, an AVP-selective V1 receptor antagonist (SR49059, 1 mg/kg, i.v.) was administrated prior to effective dose of AVP injection and in group VII, SR49059 (1 mg/kg, i.v.) was only administrated prior to ischemia. Various doses of AVP significantly prevented the decrease in heart rate (HR) at the end of reperfusion compared to their baseline and decreased infarct size, biochemical parameters [LDH (lactate dehydrogenase), CK-MB (creatine kinase-MB) and MDA (malondialdehyde) plasma levels], severity and incidence of ventricular arrhythmia, episodes and duration of ventricular tachycardia (VT) as compared to control group. Blockade of V1 receptors by SR49059 attenuated the cardioprotective effect of AVP on ventricular arrhythmias and biochemical parameters, but partially returned infarct size to control. AVP 0.03 μg/rat was known as effective dose. Our results showed that AVP owns a cardioprotective effect probably via V1 receptors on cardiac myocyte against ischemia/reperfusion injury in rat heart in vivo.  相似文献   

7.
Cerebral edema is a devastating consequence of brain injury leading to cerebral blood flow compromise and worsening parenchyma damage. In the present study, we investigated the effects of arginine-vasopressin (AVP) V(1a) receptor inhibition following an intracerebral hemorrhagic (ICH) brain injury in mice and closely assessed the role it played in cerebral edema formation, neurobehavioral functioning, and blood-brain-barrier (BBB) disruption. To support our investigation, SR49059, an AVP V(1a) receptor competitive antagonist, and NC1900, an arginine-vasopressin analogue, were used. Male CD1 mice (n=205) were randomly assigned to the following groups: na?ve, sham, ICH, ICH with SR49059 at 0.5 mg/kg, ICH with SR49059 at 2mg/kg, ICH with NC1900 at 1 ng/kg, ICH with NC1900 at 10 ng/kg, and ICH with a combination of SR49059 at 2 mg/kg and NC1900 at 10 ng/kg. ICH was induced by using the collagenase injection model and treatment was given 1h after surgery. Post assessment was conducted at 6, 12, 24, and 72 h after surgery and included brain water content, neurobehavioral testing, Evans Blue assay, western blotting, and hemoglobin assay. The study found that inhibition of the AVP V(1a) receptor significantly reduced cerebral edema at 24 and 72 h post-ICH injury and improved neurobehavioral function while reducing BBB disruption at 72 h. Western blot analysis demonstrated increased protein expression of aquaporin 4 (AQP4) in vehicle, which was reduced with AVP V(1a) receptor inhibition. Our study suggests that blockage of the AVP V(1a) receptor, is a promising treatment target for improving ICH-induced brain injury. Further studies will be needed to confirm this relationship and determine future clinical direction.  相似文献   

8.
[(3)H]SSR-149415 is the first tritiated nonpeptide vasopressin V(1b) receptor (V(1b)R) antagonist ligand. It was used for studying rodent (mouse, rat, hamster) and human V(1b)R from native or recombinant origin. Moreover, a close comparison between the human and the mouse V(1b)R was performed using SSR-149415/[(3)H]SSR-149415 in binding and functional studies in vitro. [(3)H]SSR-149415 binding was time-dependent, reversible, and saturable. Scatchard plot analysis gave a single class of high-affinity binding sites with apparent equilibrium dissociation constant (K(d)) approximately 1 nM and maximum binding density (B(max)) values from 7,000 to 300,000 sites/cell according to the cell line. In competition experiments, [(3)H]SSR-149415 binding was stereospecific and dose-dependently displaced by reference peptide and nonpeptide arginine vasopressin (AVP)/OT ligands following a V(1b) rank order of affinity: SSR-149415 = AVP > dCha > dPen > dPal > dDavp > SSR-126768A > SR-49059 > SSR-149424 > OT > SR-121463B. Species differences between human, rat, mouse, and hamster V(1b)R were observed. Autoradiography studies with [(3)H]SSR-149415 on rat and human pituitary showed intense specific labeling confined to corticotroph cells and absence of labeling in the other tissues examined. SSR-149415 potently and stereospecifically antagonized the AVP-induced inositol phosphate production and intracellular Ca(2+) increase (EC(50) from 1.83 to 3.05 nM) in recombinant cell lines expressing either the mouse or the human V(1b)R. AVP (10(-7) M) exposure of AtT20 cells expressing mouse or human EGFP-tagged V(1b)R induced their rapid internalization. Preincubation with 10(-6) M SSR-149415 counteracted the internalization process. Moreover, recycling of internalized receptors was observed upon 10(-6) M SSR-149415 treatment. Thus SSR-149415/[(3)H]SSR-149415 are unique tools for studying animal and human V(1b)R.  相似文献   

9.
A fundamental issue in molecular endocrinology is to define how agonist:receptor interaction differs from antagonist:receptor interaction. The vasopressin V1a receptor (V1aR) is a member of a subfamily of related G protein-coupled receptors that are activated by the hormone AVP or related peptides. The N-terminus of the V1aR has recently been shown to be critical for binding agonists but not antagonists. Using a combination of N-terminally truncated constructs and alanine-scanning mutagenesis, individual residues that provide these agonist-specific binding epitopes have now been identified in this study. Our data establish that a single residue, Arg46, is critical for AVP binding to the V1aR. Systematic substitution revealed that Arg was required at this locus and could not be substituted by Lys, Glu, Leu, or Ala. In contrast, antagonist binding (cyclic or linear, peptide or nonpeptide) was unaffected. Disruption of Arg46 also resulted in defective intracellular signaling. Arginine is conserved at this locus in all members of the neurohypophysial peptide hormone receptor family cloned to date, indicative of a fundamental role in receptor function. In addition to Arg46, the residues Leu42, Gly43, Asp45 form a patch contributing to AVP binding. This study provides molecular insight into the role of the V1aR N-terminus and key differences between agonist and antagonist binding requirements.  相似文献   

10.
Vasopressin, a hypothalamic hormone, acts on its target tissues via three different G protein coupled receptors. The vasopressin V1a and V1b receptors, associated to Gq protein and phospholipase C, are responsible for vasoconstriction and regulation of the corticotroph axis respectively. The V2 vasopressin receptor is coupled to Gs protein and adenylyl cyclase and is responsible for water reabsorption in the renal collecting duct. Mutations of the V2 receptor are involved in diabetes insipidus and most of these mutations result in an endoplasmic reticulum (ER) retention of the mutated receptor. With the V1b receptor model, we have identified a proximal sequence of the C-terminal segment, which is crucial for ER export. Mutations in this short domain result in ER accumulation and degradation of the receptor. SSR 149415, a nonpeptide antagonist of V1bR, which is permeable to cell membrane, is able to rescue the mutant phenotype and acts as a pharmacological chaperone.  相似文献   

11.
The neurotensin receptor 1 (NTR1) subtype belongs to the family of G protein-coupled receptors and mediates most of the known effects of the neuropeptide including modulation of central dopaminergic transmission. This suggested that nonpeptide agonist mimetics acting at the NTR1 might be helpful in the treatment of Parkinson's disease and schizophrenia. Here, we attempted to define the molecular interactions between neurotensin-(8-13), the pharmacophore of neurotensin, and the rat NTR1. Mutagenesis of the NTR1 identified residues that interact with neurotensin. Structure-activity studies with neurotensin-(8-13) analogs identified the peptide residues that interact with the mutated amino acids in the receptor. By taking these data into account, computer-assisted modeling techniques were used to build a tridimensional model of the neurotensin-(8-13)-binding site in which the N-terminal tetrapeptide of neurotensin-(8-13) fits in the third extracellular loop and the C-terminal dipeptide binds to residues at the junction between the extracellular and transmembrane domains of the receptor. Interestingly, the agonist binding site lies on top of the previously described NTR1-binding site for the nonpeptide neurotensin antagonist SR 48692. Our data provide a basis for understanding at the molecular level the agonist and antagonist binding modes and may help design nonpeptide agonist mimetics of the NTR1.  相似文献   

12.
This study investigates the contribution of central vasopressin receptors in the modulation of systolic arterial pressure (SAP) and heart rate (HR) response to air-jet stress in conscious Wistar rats equipped with a femoral arterial catheter and intracerebroventricular cannula using novel non-peptide and selective vasopressin V(1a) (SR49059) and V(1b) (SSR149415) antagonists. The effects of stress on SAP and HR were evaluated by measuring the maximal response to stress, the latency of the maximal response, the duration of the recovery period, and the increase in the low frequency (LF) short-term variability component. Stress induced a parallel and almost immediate increase in both SAP and HR, followed by enhanced LF SAP variability in the recovery period. Pretreatment of rats with V(1a) antagonist did not affect the maximal increase or the latency of SAP and HR response to acute stress, but shortened the recovery period of SAP and HR and prevented the increase in LF SAP. The V(1b) antagonist reduced the maximal increase in SAP without affecting HR and their latencies, shortened the recovery period of SAP and inhibited the increase in LF SAP variability. These results indicate that both central V(1a) and V(1b) receptors mediate cardiovascular changes induced by air-jet stress in conscious rats.  相似文献   

13.
《Peptides》2012,33(12):2459-2466
The aim of the present study was to investigate the protective effect of various doses of exogenous vasopressin (AVP) against ischemia–reperfusion injury in anesthetized rat heart. Anesthetized rats were randomly divided into seven groups (n = 4–13) and all of them subjected to prolonged 30 min regional ischemia and 120 min reperfusion. Group I served as saline control with ischemia, in treatment groups II, III, IV and V, respectively different doses of AVP (0.015, 0.03, 0.06 and 1.2 μg/rat) were infused within 10 min prior to ischemia, in group VI, an AVP-selective V1 receptor antagonist (SR49059, 1 mg/kg, i.v.) was administrated prior to effective dose of AVP injection and in group VII, SR49059 (1 mg/kg, i.v.) was only administrated prior to ischemia. Various doses of AVP significantly prevented the decrease in heart rate (HR) at the end of reperfusion compared to their baseline and decreased infarct size, biochemical parameters [LDH (lactate dehydrogenase), CK-MB (creatine kinase-MB) and MDA (malondialdehyde) plasma levels], severity and incidence of ventricular arrhythmia, episodes and duration of ventricular tachycardia (VT) as compared to control group. Blockade of V1 receptors by SR49059 attenuated the cardioprotective effect of AVP on ventricular arrhythmias and biochemical parameters, but partially returned infarct size to control. AVP 0.03 μg/rat was known as effective dose. Our results showed that AVP owns a cardioprotective effect probably via V1 receptors on cardiac myocyte against ischemia/reperfusion injury in rat heart in vivo.  相似文献   

14.
Oxytocin is a potent uterotonic agent administered to nearly all patients during childbirth in the United States. Inadequate oxytocin response can necessitate Cesarean delivery or lead to uterine atony and postpartum hemorrhage. Thus, it may be clinically useful to identify patients at risk for poor oxytocin response and develop strategies to sensitize the uterus to oxytocin. Previously, we showed that the V281M variant in the oxytocin receptor (OXTR) gene impairs OXTR trafficking to the cell surface, leading to a decreased oxytocin response in cells. Here, we sought to identify pharmacological chaperones that increased oxytocin response in cells expressing WT or V281M OXTR. We screened nine small-molecule agonists and antagonists of the oxytocin/vasopressin receptor family and identified two, SR49059 and L371,257, that restored both OXTR trafficking and oxytocin response in HEK293T cells transfected with V281M OXTR. In hTERT-immortalized human myometrial cells, which endogenously express WT OXTR, treatment with SR49059 and L371,257 increased the amount of OXTR on the cell surface by two- to fourfold. Furthermore, SR49059 and L371,257 increased the endogenous oxytocin response in hTERT-immortalized human myometrial cells by 35% and induced robust oxytocin responses in primary myometrial cells obtained from patients at the time of Cesarean section. If future studies demonstrate that these pharmacological chaperones or related compounds function similarly in vivo, we propose that they could potentially be used to enhance clinical response to oxytocin.  相似文献   

15.
Understanding of the molecular determinants responsible for antagonist binding to the oxytocin receptor should provide important insights that facilitate rational design of potential therapeutic agents for the treatment of preterm labor. To study ligand/receptor interactions, we used a novel photosensitive radioiodinated antagonist of the human oxytocin receptor, d(CH(2))(5) [Tyr(Me)(2),Thr(4),Orn(8),Phe(3(125)I,4N(3))-NH(2)9]vasotocin. This ligand had an equivalent high affinity for human oxytocin and V(1a) vasopressin receptors expressed in Chinese hamster ovary cells. Taking advantage of this dual specificity, we conducted photoaffinity labeling experiments on both receptors. Photolabeled oxytocin and V(1a) receptors appeared as a unique protein band at 70-75 kDa and two labeled protein bands at 85-90 and 46 kDa, respectively. To identify contact sites between the antagonist and the receptors, the labeled 70-75- and the 46-kDa proteins were cleaved with CNBr and digested with Lys-C and Arg-C endoproteinases. The fragmentation patterns allowed the identification of a covalently labeled region in the oxytocin receptor transmembrane domain III consisting of the residues Leu(114)-Val(115)-Lys(116). Analysis of contact sites in the V(1a) receptor led to the identification of the homologous region consisting of the residues Val(126)-Val(127)-Lys(128). Binding domains were confirmed by mutation of several CNBr cleavage sites in the oxytocin receptor and of one Lys-C cleavage site in the V(1a) receptor. The results are in agreement with previous experimental data and three-dimensional models of agonist and antagonist binding to members of the oxytocin/vasopressin receptor family.  相似文献   

16.
The melanocortin-4 (MC4) receptor is a potential therapeutic target for obesity and cachexia, for which nonpeptide agonists and antagonists are being developed, respectively. The aim of this study was to identify molecular interactions between the MC4 receptor and nonpeptide ligands, and to compare the mechanism of binding between agonist and antagonist ligands. Nonpeptide ligand interaction was affected by mutations that reduce peptide ligand binding (D122A, D126A, S190A, M200A, F261A, and F284A), confirming overlapping binding determinants for peptide and nonpeptide ligands. The common halogenated phenyl group of nonpeptide ligands was a determinant of F261A and F284A mutations' affinity-reducing effect, implying this group interacts with the aromatic side chains of these residues. All affected compounds contain this group, the mutations reduced binding of 2,4-dichloro-substituted compounds more than 4-chloro-substituted-compounds, and F284A mutation eliminated the affinity-enhancing effect of 2-chloro-substitution. F261A and F284A mutations reduced the affinity of antagonists more than agonists, suggesting that the stronger ligand interaction with these residues, the lower the ligand efficacy. Supporting this hypothesis, F261A mutation increased the efficacy of nonpeptide antagonist and partial agonist ligands. D122A and D126A mutations reduced nonpeptide ligand interaction. Removing the ligands' derivatized amide group eliminated the effect of the mutations. Interaction of agonists, which bear a common amine within this group, was strongly reduced by D126A mutation (550-3300-fold), suggesting an electrostatic interaction between the amine and the acidic group of D126. These postulated interactions with aromatic and acidic regions of the MC4 receptor are consistent with a molecular model of the receptor. Furthermore, the strength of interaction with the aromatic pocket, and potentially the acidic pocket, controls the signaling efficacy of the ligand.  相似文献   

17.
To visualize cell surface V1a vasopressin receptors in rat hepatocytes in the absence of receptor-mediated endocytosis, we used a high-affinity fluorescent linear antagonist, Rhm8-PVA. Epifluorescence microscopy (3CCD camera) and fluorescence spectroscopy were used. Rhm8-PVA alone did not stimulate Ca2+ signals and competitively blocked Ca2+ signals (Kinact of 3.0 nM) evoked by arginine vasopressin (vasopressin). When rat hepatocytes were incubated with 10 nM of Rhm8-PVA for 30 min at 4C, the fluorescent antagonist bound to the surface of cells, presumably the plasma membrane. The V1a receptor specificity of Rhm8-PVA binding was confirmed by its displacement by the nonfluorescent antagonist V4253 and by the natural hormone vasopressin at 4C. Prior vasopressin-mediated endocytosis of V1a receptors at 37C abolished binding of the labeled antagonist, whereas in non-preincubated cells, Rhm8-PVA labeled the cell surface of rat hepatocytes. When cells labeled with Rhm8-PVA at 4C were warmed to 37C to initiate receptor-mediated internalization of the fluorescent complex, Rhm8-PVA remained at the cell surface. Incubation temperature at 4C or 37C had little effect on binding of Rhm8-PVA. We conclude that Rhm8-PVA is unable to evoke receptor-mediated endocytosis and can readily be used to visualize cell surface receptors in living cells.  相似文献   

18.
The antagonistic properties of YM471, a potent nonpeptide vasopressin (AVP) V(1A) and V(2) receptor antagonist, were characterized using human coronary artery smooth muscle cells (CASMC). YM471 potently inhibited specific binding of 3H-AVP to V(1A) receptors on human CASMC, exhibiting a K(i) value of 0.49 nM. Furthermore, YM471 inhibited the AVP-induced increase in intracellular free Ca(2+) concentration with an IC(50) value of 1.42 nM, but exerted no agonistic activity on CASMC. Additionally, while AVP concentration-dependently induced hyperplasia and hypertrophy in CASMC, YM471 prevented these AVP-induced growth effects, exhibiting IC(50) values of 0.93 and 2.64 nM, respectively. These results indicate that YM471 has high affinity for V(1A) receptors on, and high potency in inhibiting AVP-induced physiologic responses of, human CASMC.  相似文献   

19.
A non-peptide, vasopressin V1a receptor-selective antagonist, OPC-21268, exhibited a markedly higher affinity for the rat V1a receptor (Ki = 380 nM) than for the human V1a receptor (Ki = 140 microM). To delineate the region responsible for the high affinity binding of OPC-21268 for the rat V1a receptor, we have constructed a series of chimeric human and rat V1a receptors, and examined the chimeric and point-mutated receptors by competitive radioligand binding analysis. The results showed that the transmembrane domain (TMD) VI-VII of the vasopressin V1a receptor, in particular the amino acid residue Ala-342 in TMD VII, is the major component conferring the rat-selective binding of OPC-21268 to the V1a receptor.  相似文献   

20.
Starting from the 2.8-A resolution x-ray structure of bovine rhodopsin, three-dimensional molecular models of the complexes between arginine vasopressin and two receptor subtypes (V1a, V1b) have been built. Amino acid sequence alignment and docking studies suggest that four key residues (1.35, 2.65, 4.61, and 5.35) fine tune the binding of vasopressin and related peptide agonists to both receptor subtypes. To validate these predictions, a series of single or double mutants were engineered at V1a and V1b receptor subtypes and tested for their binding and functional properties. Two negatively charged amino acids at positions 1.35 and 2.65 are key anchoring residues to the Arg8 residue of arginine vasopressin. Moreover, two amino acids (V(4.61) and P(5.35)) delineating a hydrophobic subsite at the human V1b receptor are responsible for the recognition of V1b selective peptide agonists. Last, one of the latter positions (5.35) is hypothesized to explain the pharmacological species differences between rat and human vasopressin receptors for a V1b peptide agonist. Altogether these refined three-dimensional models of V1a and V1b human receptors should enable the identification of further new selective V1a and V1b agonists as pharmacological but also therapeutic tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号