首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Gossypium hirsutum L. var. Delta Pine 61 was cultivated in controlled-environment chambers at 1000–1100 mol photosynthetically active photons m-2 s-1 (medium photon flux density) and at 1800–2000 mol photons m-2 s-1 (high photon flux density), respectively. Air temperatures ranged from 20° to 34°C during 12-h light periods, whereas during dark periods temperature was 25° C in all experiments. As the leaf temperature decreased from about 33° to 27° C, marked reductions in dry matter production, leaf chlorophyll content and photosynthetic capacity occurred in plants growing under high light conditions, to values far below those in plants growing at 27° C and medium photon flux densities. The results show that slightly suboptimum temperatures, well above the so-called chilling range (0–12° C), greatly reduce dry matter production in cotton when combined with high photon flux densities equivalent to full sunlight.Abbreviations DW dry weight - F v variable fluorescence yield - F M maximum fluorescence yield - PFD photon flux density (400–700 nm)  相似文献   

2.
Summary Cotton (Gossypium hirsutum L. var. DP 61) was grown at different temperatures during 12-h light periods, with either 1800–2000 mol photons m–2 s–1 (high photon flux density, PFD) or 1000–1100 mol m–2 s–1 (medium PFD) incident on the plants. Night temperature was 25°C in all experiments. Growth was less when leaf temperatures were below 30°C during illumination, the effect being greater in plants grown with high PFD (Winter and Königer 1991). Leaf pigment composition and the photon-use efficiency of photosynthesis were analysed to assess whether plants grown with high PFD and suboptimal temperatures experienced a higher degree of high irradiance stress during development than those grown with medium PFD. The chlorophyll content per unit area was 3–4 times less, and the content of total carotenoids about 2 times less, with the proportion of the three xanthophylls zeaxanthin + antheraxanthin + violaxanthin being greater in leaves grown at 20–21°C than in leaves grown at 33–34°C. In leaves from plants grown at 21°C and 1800–2000 mol photons m–2 s–1, zeaxanthin accounted for as much as 34% of total carotenoids in the middle of the photoperiod, the highest level recorded in this study. This finding is consistent with a protective role of zeaxanthin under conditions of excess light. At the lower temperatures, the photochemical efficiency of photosystem II, measured as the ratio of variable to maximum fluorescence yield (F V/F M) after 12-h dark adaptation, was 0.76 in medium PFD plants and 0.75 in high PFD plants compared with 0.83 and 0.79, respectively, at the higher temperatures. The photon-use efficiency of O2 evolution () based on absorbed light between 630 and 700nm, decreased with decrease in temperature from 0.102 to 0.07 under conditions of high PFD, but remained above 0.1 at medium PFD. Owing to compensatory reactions in these long-term growth experiments, sustained differences inF V/F M and were much less pronounced than the differences in chlorophyll content and dry matter, particularly in plants which had developed at high PFD and low temperature. In fact, in these plants, which exhibited pronounced photobleaching, a largely functional photosynthetic apparatus was still maintained in cells adjacent to the lower leaf surfaces. This was indicated by measurements of photon use efficiencies of photosynthetic O2 evolution with leaves illuminated first at the upper, and then at the lower surface.Abbreviations F O yield of dark level fluorescence - F M maximum yield of fluorescence, induced in a pulse of saturating light - F V yield of variable fluorescence (=F M-F o) - PFD photon flux density - iw photon use efficiency of O2 evolution based on white (400–700 nm) incident light - ir photon use efficiency based on red (630–700 nm) incident light - aw photon use efficiency based on white absorbed light - ar photon use efficiency based on red absorbed light  相似文献   

3.
Three light intensity-dependent Chl b-deficient mutants, two in wheat and one in barley, were analyzed for their xanthophyll cycle carotenoids and Chl fluorescence characteristics under two different growth PFDs (30 versus 600 mol photons·m–2 s–1 incident light). Mutants grown under low light possessed lower levels of total Chls and carotenoids per unit leaf area compared to wild type plants, but the relative proportions of the two did not vary markedly between strains. In contrast, mutants grown under high light had much lower levels of Chl, leading to markedly greater carotenoid to Chl ratios in the mutants when compared to wild type. Under low light conditions the carotenoids of the xanthophyll cycle comprised approximately 15% of the total carotenoids in all strains; under high light the xanthophyll cycle pool increased to over 30% of the total carotenoids in wild type plants and to over 50% of the total carotenoids in the three mutant strains. Whereas the xanthophyll cycle remained fairly epoxidized in all plants grown under low light, plants grown under high light exhibited a considerable degree of conversion of the xanthophyll cycle into antheraxanthin and zeaxanthin during the diurnal cycle, with almost complete conversion (over 90%) occurring only in the mutants. 50 to 95% of the xanthophyll cycle was retained as antheraxanthin and zeaxanthin overnight in these mutants which also exhibited sustained depressions in PS II photochemical efficiency (Fv/Fm), which may have resulted from a sustained high level of photoprotective energy dissipation activity. The relatively larger xanthophyll cycle pool in the Chl b-deficient mutant could result in part from the reported concentration of the xanthophyll cycle in the inner antenna complexes, given that the Chl b-deficient mutants are deficient in the peripheral LHC-II complexes.Abbreviations A antheraxanthin - Chl chlorophyll - Fo and Fm minimal yield (at open PS II reaction centers) and maximal yield (at closed centers) of chlorophyll fluorescence in darkness - F level of fluorescence during illumination with photosynthetically active radiation - Fm maximal yield (at closed centers) of chlorophyll fluorescence during illumination with photosynthetically active radiation - (Fm–F)/Fm actual efficiency of PS II during illumination with photosynthetically active radiation - Fv/Fm+(Fm–Fo)/Fm intrinsic efficiency of PS II in darkness - LHC_II light-harvesting chlorophyll-protein complex of Photosystem II - PFD photon flux density (between 400 and 700 nm) - PS I Photosystem I - PS II Photosystem II - V violaxanthin - Z zeaxanthin  相似文献   

4.
Tobacco (Nicotiana tabacum cv. Xanthi) transformed with an antisense cDNA construct of violaxanthin de-epoxidase (VDE) was examined for the effects of suppressed xanthophyll-cycle activity on photoinhibition, photosynthesis and growth under field conditions. De-epoxidation of violaxanthin and non-photochemical quenching were highly inhibited in antisense plants relative to vector-control and wild-type plants. However, no differences were observed between antisense and control plants in photosynthetic CO2 uptake and maximum photochemical yield [(Fm–Fo)/Fm] measured at predawn or in actual photochemical yield [(Fm–Fs)/Fm] measured at midday. Moreover, growth rates of the plants were the same, as were the leaf area ratio, plant height and leaf number. Similarly, antisense plants did not exhibit greater susceptibility to photoinhibition than controls under field conditions. In contrast, when chloroplast protein (D1) synthesis was inhibited by lincomycin, antisense plants were more vulnerable to photoinhibition than wild-type plants. These results indicate that photoprotection under field conditions is not strictly dependent on the levels of the de-epoxidized xanthophylls, antheraxanthin and zeaxanthin.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

5.
Kurasová  I.  Kalina  J.  Urban  O.  Štroch  M.  Špunda  V. 《Photosynthetica》2003,41(4):513-523
The short-term acclimation (10-d) of Norway spruce [Picea abies (L.) Karst] to elevated CO2 concentration (EC) in combination with low irradiance (100 mol m–2 s–1) resulted in stimulation of CO2 assimilation (by 61 %), increased total chlorophyll (Chl) content (by 17 %), significantly higher photosystem 2 (PS2) photochemical efficiency (Fv/Fm; by 4 %), and reduced demand on non-radiative dissipation of absorbed excitation energy corresponding with enhanced capacity of photon utilisation within PS2. On the other hand, at high cultivation irradiance (1 200 mol m–2 s–1) both Norway spruce and spring barley (Hordeum vulgare L. cv. Akcent) responded to EC by reduced photosynthetic capacity and prolonged inhibition of Fv/Fm accompanied with enhanced non-radiative dissipation of absorbed photon energy. Norway spruce needles revealed the expressive retention of zeaxanthin and antheraxanthin (Z+A) in darkness and higher violaxanthin (V) convertibility (yielding even 95 %) under all cultivation regimes in comparison with barley plants. In addition, the non-photochemical quenching of minimum Chl a fluorescence (SV0), expressing the extent of non-radiative dissipation of absorbed photon energy within light-harvesting complexes (LHCs), linearly correlated with V conversion to Z+A very well in spruce, but not in barley plants. Finally, a key role of the Z+A-mediated non-radiative dissipation within LHCs in acclimation of spruce photosynthetic apparatus to high irradiance alone and in combination with EC was documented by extremely high SV0 values, fast induction of non-radiative dissipation of absorbed photon energy, and its stability in darkness.  相似文献   

6.
The obligate shade plant, Tradescantia albiflora Kunth grown at 50 mol photons · m–2 s–1 and Pisum sativum L. acclimated to two photon fluence rates, 50 and 300 mol · m–2 · s–1, were exposed to photoinhibitory light conditions of 1700 mol · m–2 · s–1 for 4 h at 22° C. Photosynthesis was assayed by measurement of CO2-saturated O2 evolution, and photosystem II (PSII) was assayed using modulated chlorophyll fluorescence and flash-yield determinations of functional reaction centres. Tradescantia was most sensitive to photoinhibition, while pea grown at 300 mol · m–2 · s–1 was most resistant, with pea grown at 50 mol · m–2 · s–1 showing an intermediate sensitivity. A very good correlation was found between the decrease of functional PSII reaction centres and both the inhibition of photosynthesis and PSII photochemistry. Photoinhibition caused a decline in the maximum quantum yield for PSII electron transport as determined by the product of photochemical quenching (qp) and the yield of open PSII reaction centres as given by the steady-state fluorescence ratio, FvFm, according to Genty et al. (1989, Biochim. Biophys. Acta 990, 81–92). The decrease in the quantum yield for PSII electron transport was fully accounted for by a decrease in FvFm, since qp at a given photon fluence rate was similar for photoinhibited and noninhibited plants. Under lightsaturating conditions, the quantum yield of PSII electron transport was similar in photoinhibited and noninhibited plants. The data give support for the view that photoinhibition of the reaction centres of PSII represents a stable, long-term, down-regulation of photochemistry, which occurs in plants under sustained high-light conditions, and replaces part of the regulation usually exerted by the transthylakoid pH gradient. Furthermore, by investigating the susceptibility of differently lightacclimated sun and shade species to photoinhibition in relation to qp, i.e. the fraction of open-to-closed PSII reaction centres, we also show that irrespective of light acclimation, plants become susceptible to photoinhibition when the majority of their PSII reaction centres are still open (i.e. primary quinone acceptor oxidized). Photoinhibition appears to be an unavoidable consequence of PSII function when light causes sustained closure of more than 40% of PSII reaction centres.Abbreviations Fo and Fo minimal fluorescence when all PSII reaction centres are open in darkness and steady-state light, respectively - Fm and Fm maximal fluorescence when all PSII reaction centres are closed in darkand light-acclimated leaves, respectively - Fv variable fluorescence - (Fm-Fo) under steady-state light con-ditions - Fs steady-state fluorescence in light - QA the primary,stable quinone acceptor of PSII - qNe non-photochemical quench-ing of fluorescence due to high energy state - (pH); qNi non-photochemical quenching of fluorescence due to photoinhibition - qp photochemical quenching of fluorescence To whom correspondence should be addressedThis work was supported by the Swedish Natural Science Research Council (G.Ö.) and the award of a National Research Fellowship to J.M.A and W.S.C. We thank Dr. Paul Kriedemann, Division of Forestry and Forest Products, CSIRO, Canberra, Australia, for helpful discussions.  相似文献   

7.
Lootens  P.  Van Waes  J.  Carlier  L. 《Photosynthetica》2004,42(2):187-192
The effect of a short cold stress in combination with photoinhibition stress, similar to a low temperature and a high irradiance situation during early morning in the spring time, was examined on four maize cultivars common for Belgium, that differ in early vigour. After 1 h of 2 °C and 500 mol(photon) m–2 s–1, quantum efficiency and maximum photosynthesis rate at saturating irradiance decreased on average by 11 and 8 %, respectively. For one cultivar, Magister, the decrease was the largest: by 23 and 10 %, respectively. For this cultivar it was combined with a decrease of the water vapour conductance after the stress. The decrease of Fv/F0 due to the cold/light stress was dependent on the cold tolerance (early vigour) of the cultivars. Fv/F0 changed with –45.5 and –40.2 % for the cultivars Ardiles and Banguy, respectively (cultivars with a less good early vigour) in comparison to –36.3 and –35.9 % for Fjord and Magister, which have a good early vigour. Also the ratio of total chlorophylls/total carotenoids changed in dependence on cold tolerance of the cultivars. For more cold tolerant cultivars, the relative amount of total carotenoids (x+c) was higher, indicating a higher protective state. Both the parameter Fv/F0 and the ratio of total chlorophylls to total carotenoids can be used to differentiate the cold tolerant cultivars from the cold non-tolerant ones. Fv/F0 has the advantage because its resolving power is larger and the measurement is less expensive than determination of the pigment ratio.  相似文献   

8.
Photoinhibition and pigment composition of green stem tissues of field-grown adult Eucalyptus nitens were measured on clear spring days with low morning temperatures—conditions that cause photoinhibition in leaves of many plant species. The sun-exposed (north-facing) bark contained less chlorophyll a+b (531 vs 748 mol m–2), neoxanthin (29 vs 41), and -carotene (54 vs 73), more xanthophyll cycle pigments per unit surface area and per unit chlorophyll (71 vs 53 mol m–2 and 141 vs 66 mmol mol–1 chlorophyll), and less lutein per unit chlorophyll (239 vs 190) than the shaded (southern) side. Maximum electron flow rates were 60 mol m–2 s–1 on the sun-exposed side, and about 10 mol m–2 s–1 on the shaded side. Fv/Fm was always lower than 0.8 on the sun-exposed side and the de-epoxidation state (DEPS) of the xanthophyll cycle was dominated by zeaxanthin in midday samples. Fv/Fm increased quickly after darkening, but DEPS recovered more slowly to 40% overnight. This suggested that rapidly reversible pH-dependent quenching was responsible for the bulk of changes in PS II efficiency. Fv/Fm remained below 0.8 overnight, which may well be indicative of photo-damage to PSII. In contrast, DEPS of the shaded side was lower, and Fv/Fm was higher, than for the sun-exposed side. We conclude that E. nitens chlorenchyma on the sun-exposed stem side has a photosynthetic pigment composition similar to sun leaves and it experiences significant photoinhibition in the field.  相似文献   

9.
Wen X  Qiu N  Lu Q  Lu C 《Planta》2005,220(3):486-497
Thermotolerance of photosystem II (PSII) in leaves of salt-adapted Artemisia anethifolia L. plants (100–400 mM NaCl) was evaluated after exposure to heat stress (30–45°C) for 30 min. After exposure to 30°C, salt adaptation had no effects on the maximal efficiency of PSII photochemistry (Fv/Fm), the efficiency of excitation capture by open PSII centers (Fv/Fm), or the actual PSII efficiency (PSII). After pretreatment at 40°C, there was a striking difference in the responses of Fv/Fm, Fv/Fm and PSII to heat stress in non-salt-adapted and salt-adapted leaves. Leaves from salt-adapted plants maintained significantly higher values of Fv/Fm, Fv/Fm and PSII than those from non-salt-adapted leaves. The differences in Fv/Fm, Fv/Fm and PSII between non-salt-adapted and salt-adapted plants persisted for at least 12 h following heat stress. These results clearly show that thermotolerance of PSII was enhanced in salt-adapted plants. This enhanced thermotolerance was associated with an improvement in thermotolerance of the PSII reaction centers, the oxygen-evolving complexes and the light-harvesting complex. In addition, we observed that after exposure to 42.5°C for 30 min, non-salt-adapted plants showed a significant decrease in CO2 assimilation rate while in salt-adapted plants CO2 assimilation rate was either maintained or even increased to some extent. Given that photosynthesis is considered to be the physiological process most sensitive to high-temperature damage and that PSII appears to be the most heat-sensitive part of the photosynthetic apparatus, enhanced thermotolerance of PSII may be of significance for A. anethifolia, a halophyte plant, which grows in the high-salinity regions in the north of China, where the air temperature in the summer is often as high as 45°C.  相似文献   

10.
Egorova  E.A.  Bukhov  N.G. 《Photosynthetica》2002,40(3):343-347
Photosystem 2 (PS2)-driven electron transfer was studied in primary leaves of barley (Hordeum vulgare L.) seedlings grown under various photon fluxes (0.3–170.0 mol m–2 s–1) of blue (BR) or red (RR) radiation using modulated chlorophyll fluorescence. The Fv/Fm ratio was 0.78–0.79 in leaves of all radiation variants, except in seedlings grown under BR or RR of 0.3 mol m–2 s–1. The extent of the photochemical phase of the polyphasic Fv rise induced by very strong white light was similar in leaves of all radiation treatments. Neither radiation quality nor photon flux under plant cultivation influenced the amount of non QB-transferring centres of PS2 except in leaves of seedlings grown under BR of 0.3 mol m–2 s–1, in which the amount of such centres increased threefold. Both BR and RR stimulated the development of photochemically competent PS2 at photon fluxes as low as 3 mol m–2 s–1. Three exponential components with highly different half times were distinguished in the kinetics of Fv dark decay. This indicates different pathways of electron transfer from QA , the reduced primary acceptor of PS2, to other acceptors. Relative magnitudes of the individual decay components did not depend on the radiation quality or the photon flux during plant cultivation. Significant differences were found, however, between plants grown under BR or RR in the rate of the middle and fast components of Fv dark decay, which showed 1.5-times faster intersystem linear electron transport in BR-grown leaves.  相似文献   

11.
Summary Abies nordmanniana (Stev.) Spach was cultivated in rooting media either rich in nutrients (control) or low in magnesium (low Mg) or low in magnesium and nitrogen (low Mg-N), respectively. Intact, attached needles were exposed, in the light (460 mol photons m-2 s-1), to an atmosphere containing 1 ppm SO2 for 5 h. Measurements of light- and CO2-saturated rates of photosynthetic O2 evolution, A max, were performed before and after SO2 treatments. In needles from well fertilized plants, A max was high (about 50 mol m-2 s-1) and was not affected by SO2. Needles from low-Mg and low-Mg-N plants had lower photosynthetic rates and showed a marked decline in A max in response to the SO2 treatment. Stomatal conductance was similar in the three groups of plants during SO2 treatments.Abbreviations A max photosynthetic capacity (CO2- and light-saturated rate of O2 evolution) - DW dry weight - Fo yield of dark level fluorescence - FM maximum yield of fluorescence, induced in a pulse of saturating light - Fv yield of variable fluorescence (= FM–FO) - FW fresh weight; g, conductance to water vapor transfer  相似文献   

12.
The effect of high light intensity on photosynthesis and growth of Sphagnum moss species from Alaskan arctic tundra was studied under field and laboratory conditions. Field experiments consisted of experimental shading of mosses at sites normally exposed to full ambient irradiance, and removal of the vascular plant canopy from above mosses in tundra water track habitats. Moss growth was then monitored in the experimental plots and in adjacent control areas for 50 days from late June to early August 1988. In shaded plots total moss growth was 2–3 times higher than that measured in control plots, while significant reductions in moss growth were found in canopy removal plots. The possibility that photoinhibition of photosynthesis might occur under high-light conditions and affect growth was studied under controlled laboratory conditions with mosses collected from the arctic study site, as well as from a temperate location in the Sierra Nevada, California. After 2 days of high-light treatment (800 mol photons m–2 s–1) in a controlled environmental chamber, moss photosynthetic capacity was significantly lowered in both arctic and temperate samples, and did not recover during the 14-day experimental period. The observed decrease in photosynthetic capacity was correlated (r 2=0.735, P<0.001) with a decrease in the ratio of variable to maximum chlorophyll fluorescence (F v/F m) in arctic and temperate mosses. This relationship indicates photoinhibition of photosynthesis in both arctic and temperate mosses at even moderately high light intensities. It is suggested that susceptibility to photoinhibition and failure to photoacclimate to higher light intensities in Sphagnum spp. may be related to low tissue nitrogen levels in these exclusively ombrotrophic plants. Photoinhibition of photosynthesis leading to lowered annual carbon gain in Sphagnum mosses may be an important factor affecting CO2 flux at the ecosystem level, given the abundance of these plants in Alaskan tussock tundra.  相似文献   

13.
Linda A. Franklin 《Planta》1994,192(3):324-331
The effect of acclimation to 25, 18, or 10° C on the relationship between photoprotection and photodamage was tested in low-light-grown (80 mol · m–2 · s–1) Ulva rotundata Blid. exposed to several higher irradiances at the acclimation temperature. Changes in chlorophyll fluorescence parameters (minimum fluorescence, F0, and the ratio of variable to maximum fluorescence, Fv/Fm, measured after 5 min darkness) were monitored during 5 h transfers to 350, 850, and 1700 mol · m–2 · s–1, and during recovery after 1- or 5-h treatments. At all temperatures, rate of onset and final extent of photoinhibition, measured by a decrease in Fv/Fm, increased with increasing irradiance. At a given photoinhibitory irradiance, rate of onset was most rapid at 10 ° C, but the extent was temperature-independent. Recovery rates from mild light stress were similar at all temperatures, but recovery from the most extreme photoinhibitory treatment lagged 2 h at 10° C. De-epoxidation of xanthophyll-cycle components proceeded faster and to a lower epoxidation status at 25° C, but there was little difference in the pool size among the three growth conditions. Using chloramphenicol to inhibit chloroplast protein synthesis and dithiothreitol to inhibit violaxanthin de-epoxidation, it was shown that at the lowest light treatment given, the extent of photoinhibition could be attributed both to greater amounts of photodamage and to greater zeaxanthin-related photoprotection at 25 than at 10° C. While these two mechanisms for high-light-induced loss of photosynthetic efficiency were operating at 10° C, there was evidence for a relatively greater proportion of zeaxanthin-unrelated photoprotection at the low temperature. This photoprotective mechanism is related to a rapidly reversible increase in F0 and is insentivite to both chloramphenicol and dithiothreitol.Abbreviations and Symbol CAP chloramphenicol - DTT dihiothreitol - F0, Fm, Fv minimum, maximum, and variable fluorescence - quantum yield This research was conducted in partial fulfillment of the requirements for the Ph. D. degree in the Department of Botany, Duke University. The author wishes to thank E.-M. Aro, W.J. Henley, G. Levavasseur, C.B. Osmond, and J. Ramus for helpful discussions, and C. Lovelock for pigment standards. Funding was provided by Grants-in-Aid of Research from Sigma Xi and the Phycological Society of America, and a Lynde and Harry Bradley Foundation Fellowship to L.A.F., and National Science Foundation grant OCE-8812157 to C.B.O. and J.R.  相似文献   

14.
The interaction of extreme temperature events with future atmospheric CO2 concentrations may have strong impacts on physiological performance of desert shrub seedlings, which during the critical establishment phase often endure temperature extremes in conjunction with pronounced drought. To evaluate the interaction of drought and CO2 on photosynthesis during heat stress, one-year-old Larrea tridentata[DC] Cov. seedlings were exposed to nine days of heat with midday air temperature maxima reaching 53 °C under three atmospheric CO2 concentrations (360, 550 and 700 mol mol–1) and two water regimes (well-watered and droughted). Photosynthetic gas exchange, chlorophyll fluorescence and water potential responses were measured prior to, during and one week following the high temperature stress event. Heat stress markedly decreased net photosynthetic rate (A net), stomatal conductance (g s), and the photochemical efficiency of photosystem II (F v/F m) in all plants except for well-watered L. tridentata grown in 700 mol mol–1 CO2. A net and g s remained similar to pre-stress levels in these plants. In droughted L. tridentata, A net was ca. 2× (in 550 mol mol–1 CO2) to 3× (in 700 mol mol–1 CO2) higher than in ambient-CO2-grown plants, while g s and F v/F m were similar and low in all CO2 treatments. Following heat stress, g s in all well-watered plants rose dramatically, exceeding pre-stress levels by up to 100%. In droughted plants, g s and A net rose only in plants grown at elevated CO2 following release from heat. This recovery response was strongest at 700 mol mol–1 CO2, which returned to A net and g s values similar to pre-heat following several days of recovery. Extreme heat diminished the photosynthetic down-regulation response to growth at elevated CO2 under well-watered conditions, similar to the action of drought. Ambient-CO2-grown L. tridentata did not show significant recovery of photosynthetic capacity (A \max and CE) after alleviation of temperature stress, especially when exposed to drought, while plants exposed to elevated CO2 appeared to be unaffected. These findings suggest that elevated CO2 could promote photosynthetic activity during critical periods of seedling establishment, and enhance the potential for L. tridentata to survive extreme high temperature events.  相似文献   

15.
Summary Selaginella lepidophylla, the resurrection plant, curls dramatically during desiccation and the hypothesis that curling may help limit bright light-induced damage during desiccation and rehydration was tested under laboratory conditions. Restraint of curling during desiccation at 25° C and a constant irradiance of 2000 mol m–2 s]t-1 significantly decreased PSII and whole-chain electron transport and the Fv/Fm fluorescence yield ratio following rehydration relative to unrestrained plants. Normal curling during desiccation at 37.5°C and 200 mol m–2 s–1 irradiance did not fully protect against photoinhibition or chlorophyll photooxidation indicating that some light-induced damage occurred early in the desiccation process before substantial curling. Photosystem I electron transport was less inhibited by high-temperature, high-irradiance desiccation than either PSII or whole-chain electron transport and PSI was not significantly affected by restraint of curling during desiccation at 25°C and high irradiance. Previous curling also helped prevent photoinhibition of PSII electron transport and loss of whole-plant photosynthetic capacity as the plants uncurled during rehydration at high light. These results demonstrate that high-temperature desiccation exacerbated photoinhibition, PSI was less photoinhibited than PSII or whole-chain electron transport, and stem curling ameliorated bright light-induced damage helping to make rapid recovery of photosynthetic competence possible when the plants are next wetted.  相似文献   

16.
Pea (Pisum sativum L.) and bean (Phaseolus vulgaris L.) plants were exposed to enhanced levels of UV-B radiation in a growth chamber. Leaf discs of UV-B treated and control plants were exposed to high-light (HL) stress (PAR: 1200 mol m–2 s–1) to study whether pre-treatment with UV-B affected the photoprotective mechanisms of the plants against photoinhibition. At regular time intervals leaf discs were taken to perform chlorophyll a fluorescence and oxygen evolution measurements to assess damage to the photosystems. Also, after 1 h of HL treatment the concentration of xanthophyll cycle pigments was determined. A significantly slower decline of maximum quantum efficiency of PSII (F v/F m), together with a slower decline of oxygen evolution during HL stress was observed in leaf discs of UV-B treated plants compared to controls in both plant species. This indicated an increased tolerance to HL stress in UV-B treated plants. The total pool of xanthophyll cycle pigments was increased in UV-B treated pea plants compared to controls, but in bean no significant differences were found between treatments. However, in bean plants thiol concentrations were significantly enhanced by UV-B treatment, and UV-absorbing compounds increased in both species, indicating a higher antioxidant capacity. An increased leaf thickness, together with increases in antioxidant capacity could have contributed to the higher protection against photoinhibition in UV-B treated plants.  相似文献   

17.
Ash (Fraxinus excelsior L.) and beech (Fagus sylvatica L.) seedlings were grown in the field under three levels of natural light: (1) open, (2) gap and (3) shade. Light acclimation of photosynthesis was characterized by means of modulated chlorophyll a fluorescence of intact leaves and growth parameters were measured at the end of the growing season. Measurements of maximum photochemical efficiency (Fv/Fm) of dark-adapted leaves at intervals through the day showed that ash had a higher Fv/Fm than beech in open and gap plots but not in shade plots. This indicated a larger build-up of photoinhibition in beech under gap and open conditions. Steady-state light response curves of the operating efficiency of PSII (Fq/Fm), the electron transport rate (ETR) and the photochemical efficiency factor (Fq/Fv) showed greater variability across light treatments in ash than in beech. Both species exhibited similar responses of non-photochemical quenching (NPQ) to light. When the data were normalized to the mean maximum irradiance in the growth environment, all photochemical parameters showed a reduction in variation across treatments, indicating that light acclimation in the two species occurred primarily through adjustments in rates of photochemistry. Adjustments in thermal heat dissipation were small in both species. This pattern was stronger in ash, suggesting a greater degree of phenotypic plasticity in photosynthetic capacity in this earlier successional species. Contrary to our expectations, the build-up of photoinhibition in beech did not appear to have a negative effect on total biomass accumulation relative to ash.Abbreviations ETR Electron transport rate - Fm Maximal fluorescence in the dark-adapted state - Fo Minimal fluorescence in the dark-adapted state - Fs Steady-state fluorescence in actinic light - Fv=FmFo Variable fluorescence in the dark-adapted state - Fv/Fm Maximum photochemical efficiency of photosystem II in the dark-adapted state - Fm Maximal fluorescence in actinic light - Fo Minimal fluorescence in actinic light - Fv=FmFo Variable fluorescence in actinic light - Fq=FmFs; Fq/Fm Operating efficiency of photosystem II in actinic light - Fq/Fv Efficiency factor of PSII photochemistry (also referred to as qP—photochemical quenching) - Fv/Fm Maximum efficiency of PSII under actinic light if all reaction centres were open - NPQ Stern-Volmer non-photochemical quenching - PPFD Photosynthetic photon flux density (mol m–2 s–1) refers to photosynthetically active irradiance measured with a cosine-corrected quantum sensor - PPFFR Photosynthetic photon flux fluence rate (mol m–2 s–1) refers to photosynthetically active irradiance measured with a spherical quantum sensor. Fluorescence nomenclature follows Oxborough and Baker (2000).  相似文献   

18.
Dennis H. Greer 《Planta》1995,197(1):31-38
Bean (Phaseolus vulgaris L.) plants were grown at two light periods of 8 and 13 h with a similar photon flux density (PFD) giving a daily photon receipt (DPR) of 17.9 and 38.2 mol · m–2, respectively. Shoot growth and leaf area development were followed at regular intervals and diurnal whole-plant photosynthesis measured. Single mature trifoliate leaves were exposed to photoinhibitory treatments at PFDs of 800 and 1400 mol · m–2 · s–1 and at temperatures of 12 and 20°C. Chlorophyll fluorescence and photon yields were measured at regular intervals throughout each treatment. Plants grown in 13 h had significantly greater leaf areas than those grown in 8 h. There were no differences in maximum rates of photosynthesis, photon yields and only minor but significant differences in Fv/Fm for plants in the two treatments, showing photosynthetic characteristics were dependent on PFD but not DPR. A significant decline in photosynthesis and Fv/Fm occurred over the 13-h but little change in photosynthesis for plants in the 8 h, indicating some feedback inhibition of photosynthesis was occurring. Plants grown in 8 h were consistently more susceptible to photoinhibition of photosynthesis at all treatments than 13-h plants. Nevertheless, photoinhibition was exacerbated by increases in PFD, and by decreases in temperature for leaves from both treatments. However, for plants from the 8-h day, exposing leaves to 12°C and 1400 mol · m–2 · s–1 caused photo-oxidation and severe bleaching but no visible damage on leaves from 13-h-grown plants. Closure of the photosystem II reaction-centre pool was partially correlated with increasing extents of photoinhibition but the relationship was similar for plants from both treatments. There remains no clear explanation for their wide differences in susceptibility to photoinhibition.Abbreviations and Symbols DPR daily photon receipt - F0 and Fm initial and maximal fluorescence - Fv/Fm fluorescence ratio in dark-treated leaves - F/Fm intrinsic efficiency of PSII during illumination - PFD photon flux density - i photon yield (incident basis) - psi quantum yield of PSII electron transport - Pmax maximum rate of photosynthesis - qN non-photochemical quenching coefficient - qP photochemical quenching coefficient Many thanks to my colleague William Laing who spent a considerable effort in developing the programme to run the photosynthesis apparatus. I am also indebted to one reviewer with whom I corresponded to resolve some issues in the paper. This project was funded by the New Zealand Foundation for Research, Science and Technology.  相似文献   

19.
Photoinhibition of photosynthesis was studied in intact barley leaves at 5 and 20°C, to reveal if Photosystem II becomes predisposed to photoinhibition at low temperature by 1) creation of excessive excitation of Photosystem II or, 2) inhibition of the repair process of Photosystem II. The light and temperature dependence of the reduction state of QA was measured by modulated fluorescence. Photon flux densities giving 60% of QA in a reduced state at steady-state photosynthesis (300 mol m–2s–1 at 5°C and 1200 mol m–2s–1 at 20°C) resulted in a depression of the photochemical efficiency of Photosystem II (Fv/Fm) at both 5 and 20°C. Inhibition of Fv/Fm occurred with initially similar kinetics at the two temperatures. After 6h, Fv/Fm was inhibited by 30% and had reached steady-state at 20°C. However, at 5°C, Fv/Fm continued to decrease and after 10h, Fv/Fm was depressed to 55% of control. The light response of the reduction state of QA did not change during photoinhibition at 20°C, whereas after photoinhibition at 5°C, the proportion of closed reaction centres at a given photon flux density was 10–20% lower than before photoinhibition.Changes in the D1-content were measured by immunoblotting and by the atrazine binding capacity during photoinhibition at high and low temperatures, with and without the addition of chloramphenicol to block chloroplast encoded protein synthesis. At 20°C, there was a close correlation between the amount of D1-protein and the photochemical efficiency of photosystem II, both in the presence or in the absence of an active repair cycle. At 5°C, an accumulation of inactive reaction centres occurred, since the photochemical efficiency of Photosystem II was much more depressed than the loss of D1-protein. Furthermore, at 5°C the repair cycle was largely inhibited as concluded from the finding that blockage of chloroplast encoded protein synthesis did not enhance the susceptibility to photoinhibition at 5°C.It is concluded that, the kinetics of the initial decrease of Fv/Fm was determined by the reduction state of the primary electron acceptor QA, at both temperatures. However, the further suppression of Fv/Fm at 5°C after several hours of photoinhibition implies that the inhibited repair cycle started to have an effect in determining the photochemical efficiency of Photosystem II.Abbreviations CAP D-threochloramphenicol - F0 and F 0 fluorescence when all Photosystem II reaction centres are open in dark- and light-acclimated leaves, respectively - Fm and F m fluorescence when all Photosystem II reaction centres are closed in dark- and light-acclimated leaves, respectively - Fs fluorescence at steady state - QA the primary, stable quinone acceptor of Photosystem II - qN non-photochemical quenching of fluorescence - qP photochemical quenching of fluorescence  相似文献   

20.
D. H. Greer  W. A. Laing 《Planta》1992,186(3):418-425
Kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson) plants grown in an outdoor enclosure were exposed to the natural conditions of temperature and photon flux density (PFD) over the growing season (October to May). Temperatures ranged from 14 to 21° C while the mean monthly maximum PFD varied from 1000 to 1700 mol · m–2 · s–1, although the peak PFDs exceeded 2100 mol · m–2 · s–1. At intervals, the daily variation in chlorophyll fluorescence at 692 nm and 77K and the photon yield of O2 evolution in attached leaves was monitored. Similarly, the susceptibility of intact leaves to a standard photoinhibitory treatment of 20° C and a PFD of 2000 mol · m–2 · s–1 and the ability to recover at 25° C and 20 mol · m–2 · s–2 was followed through the season. On a few occasions, plants were transferred either to or from a shade enclosure to assess the suceptibility to natural photoinhibition and the capacity for recovery. There were minor though significant changes in early-morning fluorescence emission and photon yield throughout the growing season. The initial fluorescence, Fo, and the maximum fluorescence, Fm, were, however, significantly and persistently different from that in shade-grown kiwifruit leaves, indicative of chronic photoinhibition occurring in the sun leaves. In spring and autumn, kiwifruit leaves were photoinhibited through the day whereas in summer, when the PFDs were highest, no photoinhibition occurred. However, there was apparently no non-radiative energy dissipation occurring then also, indicating that the kiwifruit leaves appeared to fully utilize the available excitation energy. Nevertheless, the propensity for kiwifruit leaves to be susceptible to photoinhibition remained high throughout the season. The cause of a discrepancy between the severe photoinhibition under controlled conditions and the lack of photoinhibition under comparable, natural conditions remains uncertain. Recovery from photoinhibition, by contrast, varied over the season and was maximal in summer and declined markedly in autumn. Transfer of shade-grown plants to full sun had a catastrophic effect on the fluorescence characteristics of the leaf and photon yield. Within 3 d the variable fluorescence, Fv, and the photon yield were reduced by 80 and 40%, respectively, and this effect persisted for at least 20 d. The restoration of fluorescence characteristics on transfer of sun leaves to shade, however, was very slow and not complete within 15 d.Abbreviations and Symbols Fo, Fm, Fv initial, maximum, variable fluorescence - Fi Fv at t = 0 - F Fv at t = - PFD photon flux density - PSII photosystem II - leaf absorptance ratio - (a photon yield of O2 evolution (absorbed basis) - i a at t = 0 - a at t = We thank Miss Linda Muir and Amanda Yeates for their technical assistance in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号