首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The systematic utility of sequences from a non-coding region of chloroplast DNA (cpDNA) betweenpsbA andtrnH(GUG) was examined by assessing phylogenetic relationships in subtribeSonchinae (Asteraceae:Lactuceae). Primers constructed against highly conserved regions of tRNA genes were used for PCR amplification and sequencing. ThepsbA-trnH intergenic spacer contains several insertions and deletions (indels) inSonchinae with the length varying from 385 to 450 bp. Sequence divergence ranges from 0.00% to 7.54% withinSonchinae, with an average of 2.4%. Average sequence divergence inSonchus subg.Sonchus is 2.0%, while the mean for subg.Dendrosonchus and its close relatives in Macaronesia (the woodySonchus alliance) is 1.0%. Our results suggest that this region does not evolve rapidly enough to resolve relationships among closely related genera or insular endemics in theAsteraceae. The phylogenetic utility ofpsbA-trnH sequences of the non-coding cpDNA was compared to sequences from the ITS region of nuclear ribosomal DNA. The results suggest that ITS sequences evolve nearly four times faster thanpsbA-trnH intergenic spacer sequences. Furthermore, the ITS sequences provide more variable and phylogenetically informative sites and generate more highly resolved trees with more strongly supported clades, and thus are more suitable for phylogenetic comparisons at lower taxonomic levels than thepsbA-trnH intergenic chloroplast sequences.  相似文献   

2.
The phylogenetic utility of chloroplast (atpB-rbcL, petD, rps16, trnL-F) and nuclear (ETS, ITS) DNA regions was investigated for the tribe Spermacoceae of the coffee family (Rubiaceae). ITS was, despite often raised cautions of its utility at higher taxonomic levels, shown to provide the highest number of parsimony informative characters, in partitioned Bayesian analyses it yielded the fewest trees in the 95% credible set, it resolved the highest proportion of well resolved clades, and was the most accurate region as measured by the partition metric and the proportion of correctly resolved clades (well supported clades retrieved from a combined analysis regarded as “true”). For Hedyotis, the nuclear 5S-NTS was shown to be potentially as useful as ITS, despite its shorter sequence length. The chloroplast region being the most phylogenetically informative was the petD group II intron.We also present a phylogeny of Spermacoceae based on a Bayesian analysis of the four chloroplast regions, ITS, and ETS combined. Spermacoceae are shown to be monophyletic. Clades supported by high posterior probabilities are discussed, especially in respect to the current generic classification. Notably, Oldenlandia is polyphyletic, the two subgenera of Kohautia are not sister taxa, and Hedyotis should be treated in a narrow sense to include only Asian species.  相似文献   

3.
Phylogenetic studies were conducted for Carpinus and the subfamily Coryloideae (Betulaceae) using sequences of the chloroplast matK gene, the trnL-trnF region (trnL intron, and trnL [UAA] 3' exon-trnF [GAA] intergenic spacer) and the psbA-trnH intergenic spacer, and the nuclear ribosomal ITS regions. The combined analyses of the three chloroplast regions suggest that Coryloideae is monophyletic; Ostryopsis is sister to the Carpinus - Ostrya clade; Corylus is monophyletic and sister to the Ostrya - Carpinus - Ostryopsis clade; Ostrya is paraphyletic; and within Carpinus, species of sect. Carpinus from eastern Asia form a monophyletic group, whereas the positions of C. betulus from Europe and C. caroliniana from eastern North America are unresolved within the Carpinus clade. The cpDNA tree generated in this study is largely congruent with the previously published ITS results, but the ITS tree places Carpinus sect. Distegocarpus as sister to the Ostrya - Carpinus sect. Carpinus clade. Future work is needed to examine the relationships within the Ostrya - Carpinus clade, evaluate the generic status of Ostrya, and test the phylogenetic position of Ostryopsis.  相似文献   

4.
Phylogenetic analysis of the plastid (chloroplast) DNA matK gene of Zosteraceae species was undertaken. A molecular phylogenetic tree based on matK sequence data showed the monophyly of Heterozostera tasmanica and subgenus Zosterella and did not support the separation of Heterozostera from the genus Zostera. The tree based on matK supported the monophyly of the subgenus Zostera, and showed that Zosteraceae consist of three main groups: Phyllospadix, which is clearly defined by being dioecious; the subgenus Zosterella and Heterozostera; and the subgenus Zostera. Character-state reconstruction of chromosome number and geographic distribution for our molecular phylogenetic tree showed that 2n=12 is a plesiomorphic character for Zostera and Heterozostera, that the chromosome number was doubled or tripled in two lineages, and that the initial speciation of Zostera and Heterozostera occurred in the Northern Hemisphere. The matK tree showed the close affinity of Z. noltii and Z. japonica, which have disjunct distributions. Zostera marina, which is the only widely distributed species in the subgenus Zostera, also occurring in the northern Atlantic, was shown to be embedded within other subgenus Zostera species.  相似文献   

5.
The internal transcribed spacer (ITS) region of the 18 S–25 S nuclear ribosomal DNA repeat was sequenced from 19 populations of the tribeLactuceae, including all species of dwarf dandelion (Krigia) and five outgroup genera. The incidence of length changes and base substitutions was at least two times higher for ITS 1 than ITS 2. Interspecific sequence divergence withinKrigia averaged 9.62% (1.61%–15.19%) and 4.26% (0%–6.64%) in ITS 1 and ITS 2, respectively. Intergeneric sequence divergence ranged from 15.6% to 44.5% in ITS 1 and from 8.0% to 28.6% in ITS 2. High sequence divergence and homoplasy among genera of tribeLactuceae suggest that the phylogenetic utility of ITS sequence data is limited to interspecific studies or comparisons among closely related genera. Trees generated from ITS sequences are essentially identical to those from restriction site comparisons of the entire nuclear ribosomal (nr) DNA region. The degree of tree resolution differed depending on how gaps were treated in phylogenetic analyses. The ITS trees were congruent with the chloroplast DNA and morphological phylogenies in three major ways: 1) the sister group relationship betweenKrigia andPyrrhopappus; 2) the recognition of two monophyletic sections,Krigia andCymbia, in genusKrigia; and 3) the monophyly of theK. occidentalis-K. cespitosa clade in sect.Cymbia. However, the two nrDNA-based trees are not congruent with morphology/chloroplast DNA-based trees for the interspecific relationships in sect.Krigia. An average of 22.5% incongruence was observed among fourKrigia data sets. The relatively high degree of incongruence among data sets is due primarily to conflict between trees based on nrDNA and morphological/cpDNA data. The incongruence is probably due to the concerted evolution of nrDNA repeating units. The results fromKrigia and theLactuceae suggest that nrDNA data may have limited utility in phylogenetic studies of plants, especially in groups which exhibit high levels of sequence divergence. Our combined phylogenetic analysis as a total evidence shows the least conflict to each of the individual data sets.  相似文献   

6.
The genus Bonatea is widely distributed throughout southern and eastern Africa. Considerable debate surrounds the generic status of Bonatea, but there have been neither previous studies of evolutionary relationships among Bonatea species, nor any tests of the monophyly of the genus in relation to its close relative Habenaria. We investigated phylogenetic relationships between Bonatea and selected Habenaria species using morphology, as well as sequences of the chloroplast gene matK and the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA. A fully resolved cladogram was obtained using morphological data, but neither the ITS, matK, nor combined data sets yielded well-resolved and well-supported phylogenetic structure for Bonatea. There is poor congruence between ITS and matK data for interspecific relationships in Bonatea, whilst the morphological results are largely congruent with the ITS analysis. Relative to Habenaria, there is little sequence variation between Bonatea species, which could indicate a recent and rapid radiation of Bonatea. Although the sampled Bonatea species form a distinct clade, more extensive sampling of Habenaria would be required to establish unambiguously whether or not Bonatea is monophyletic.  相似文献   

7.
In the present study phylogenetic relationships of the genus Stereocaulon (lichenized ascomycetes) were examined using DNA sequences from the ITS1–5.8 S–ITS2 rDNA gene cluster and from the protein-coding β-tubulin gene. In addition to the fruticose species traditionally classified in Stereocaulon, representatives of the crustose species that have recently been transferred to the genus were included. Muhria, a monotypic genus that is morphologically similar to Stereocaulon, differing only in apothecia ontogeny, was also incorporated. The analyses included 101 specimens from the ingroup representing 49 taxa. Sequences from both DNA regions were analysed simultaneously using direct optimization under the parsimony optimality criterion. The results support the inclusion of the crustose species and Muhria in Stereocaulon, while the current infrageneric classification is not supported. As Muhria is securely nested within Stereocaulon the new combination Stereocaulon urceolatum comb. nov. (syn. Muhria urceolata) is made. Further, species concepts need to be re-examined, as some species do not appear as monophyletic entities in the phylogeny.  相似文献   

8.
The chloroplast DNA diversity of 33 accessions belonging to 16 species of five sections in Allium subgenus Rhizirideum was studied by analysing the sequence of three fragments: the trnL-F intergenic spacer, the rps 16 intron and rbcL (rubisco large subunit). The three sections Cepa, Schoenoprasum and Rhizirideum, representing the majority of the included species, each possess a separate clade after phylogenetic analysis. Exceptions to this general rule are the placement of Allium pskemense (section Cepa) connected to Allium senescens (section Rhizirideum) and Alium roylei, taking an intermediate position between sections Cepa and Schoenoprasum. Both species were located in their own section after nuclear DNA analysis. A range of crossing experiments has been carried out. The different position of A. roylei when comparing cpDNA and nDNA diversity was not confirmed with the production of hybrid seeds after crossing A. roylei with species other than those of section Cepa. The different position of A. pskemense in the cpDNA and the nDNA tree can not be compared to its crossability, since only a few crossing experiments are reported for this species. The hypothesis that a shorter distance between two species in a cpDNA tree compared to their distance in a nDNA tree will indicate interfertility at a certain level, is neither confirmed nor rejected by the currently available results.Communicated by R. Hagemann  相似文献   

9.
The family Sordariaceae incorporates a number of fungi that are excellent model organisms for various biological, biochemical, ecological, genetic and evolutionary studies. To determine the evolutionary relationships within this group and their respective phylogenetic placements, multiple-gene sequences (partial nuclear 28S ribosomal DNA, nuclear ITS ribosomal DNA and partial nuclear β-tubulin) were analysed using maximum parsimony and Bayesian analyses. Analyses of different gene datasets were performed individually and then combined to generate phylogenies. We report that Sordariaceae, with the exclusion Apodus and Diplogelasinospora, is a monophyletic group. Apodus and Diplogelasinospora are related to Lasiosphaeriaceae. Multiple gene analyses suggest that the spore sheath is not a phylogenetically significant character to segregate Asordaria from Sordaria. Smooth-spored Sordaria species (including so-called Asordaria species) constitute a natural group. Asordaria is therefore congeneric with Sordaria. Anixiella species nested among Gelasinospora species, providing further evidence that non-ostiolate ascomata have evolved from ostiolate ascomata on several independent occasions. This study agrees with previous studies that show heterothallic Neurospora species to be monophyletic, but that homothallic ones may have a multiple origins. Although Gelasinospora and Neurospora are closely related and not resolved as monophyletic groups, there is insufficient evidence to place currently accepted Gelasinospora and Neurospora species into the same genus.  相似文献   

10.
Parsimony analyses based on DNA sequence data of the plastid group II intron rps16 and the internal transcribed spacer (ITS) were performed in order to examine the relationship of the pantropical subfamily Alpinioideae in Zingiberaceae (Zingiberales). Special emphasis was given to the large genus Etlingera placed in the tribe Alpinieae. A total of 50 taxa were included in the analysis. The strict consensus tree obtained by combining all data (280 parsimony informative characters of ITS, rps16, and coded indels) is well resolved with strongly supported clades. The subfamily Alpinioideae (excluding Pommereschea and Rhynchanthus) is strongly supported as monophyletic. The basal part of the tree is unresolved but a clade containing the derived genera of Alpinieae (Geocharis, Amomum, Hornstedtia, and Etlingera) is strongly supported. The establishment of Etlingera as the inclusive name for Achasma, Geanthus, and Nicolaia is also strongly supported: Etlingera is monophyletic with Hornstedtia as sister group.  相似文献   

11.
A ribosomal DNA region, including the entire 5.8S RNA gene and the internal transcribed spacers ITS 1 and ITS 2, was used for studying the phylogeny ofSalicaceae and the relationship betweenSalicaceae andFlacourtiaceae. The length of the ITS regions withinSalicaceae andFlacourtiaceae was similar to that found in other angiosperms. The GC content of both ITS regions was high, varying 62.7-72.2%. The most parsimonious tree clusters the wind-pollinatedChosenia bracteosa among theSalix species, suggesting that it should be included in the genusSalix. The grouping withinSalix leaves subg.Salix as paraphyletic, for which reason the subgeneric division is questionable.Populus was monophyletic and formed a sister group toSalix. The interspecific variation of the ITS sequences was very small inSalicaceae, which is in contradiction to the age of the group according to the evidence from fossil data.Idesia polycarpa fromFlacourtiaceae shows great sequence similarity withSalicaceae, but the analysis of 5.8S rDNA supports monophyly of the four species ofFlacourtiaceae sampled for this study.  相似文献   

12.
Low rates of evolution in cnidarian mitochondrial genes such as COI and 16S rDNA have hindered molecular systematic studies in this important invertebrate group. We sequenced fragments of 3 mitochondrial protein-coding genes (NADH dehydrogenase subunits ND2, ND3 and ND6) as well as the COI-COII intergenic spacer, the longest noncoding region found in the octocoral mitochondrial genome, to determine if any of these regions contain levels of variation sufficient for reconstruction of phylogenetic relationships among genera of the anthozoan subclass Octocorallia. Within and between the soft coral families Alcyoniidae and Xeniidae, sequence divergence in the genes ND2 (539 bp), ND3 (102 bp), and ND6 (444 bp) ranged from 0.5% to 12%, with the greatest pairwise distances between the 2 families. The COI-COII intergenic spacer varied in length from 106 to 122 bp, and pairwise sequence divergence values ranged from 0% to 20.4%. Phylogenetic trees constructed using each region separately were poorly resolved. Better phylogenetic resolution was obtained in a combined analysis using all 3 protein-coding regions (1085 bp total). Although relationships among some pairs of species and genera were well supported in the combined analysis, the base of the alcyoniid family tree remained an unresolved polytomy. We conclude that variation in the NADH subunit coding regions is adequate to resolve phylogenetic relationships among families and some genera of Octocorallia, but insufficient for most species - or population-level studies. Although the COI-COII intergenic spacer exhibits greater variability than the protein-coding regions and may contain useful species-specific markers, its short length limits its phylogenetic utility.  相似文献   

13.
The genusNothofagus is distributed in the Southern Hemisphere from South America to Oceania, and its distribution has been assumed to be formed by continental drift by means of Gondwana break-up during the Mesozoic era. The phylogeny of the genus was elucidated by the sequences ofatpB-rbcL intergenic spacer of cpDNA for the better understanding of its evolution and biogeography. The phylogeny ofNothofagus corresponded completely to the pollen morphology which recognizes four pollen types in extant species, and agrees well with the taxonomic system of Hill and Read (1991) although there, the subgenusNothofagus showed in unresolved polytomy. The topology of the phylogenetic tree reveals that subgenusLophozonia was derived first, and thenFuscospora, Nothofagus andBrassospora. Species from South America and New Zealand were assigned to each cluster according to their pollen morphology. Therefore, diversification ofNothofagus should have already proceeded at the subgenus level before the completion of Gondwana break-up Tropical species distributed in New Guinea and New Caledonia whose evolutionary history has been controversial were revealed to be a derived group. All five New Caledonian species formed a monophyletic group with very few sequence divergences in the intergenic spacer of cpDNA, thus showing rapid adaptive radiation in the island. Evolutionary trends of several morphological traits ofNothofagus are discussed. The evolution of valve number of cupules, number of nuts per cupule, and habit of leaf-fall (evergreen or deciduous) which are diversified in the genus, were revealed as having occurred several times as the result of convergence.  相似文献   

14.
The molecular phylogeny of 36 specimens of JapaneseAmanita species was studied based on nucleotide sequences of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA. The phylogenetic tree obtained supported the traditional classification systems of Bas (1969) and Singer (1986), which are based on morphological characters, in the division of the genusAmanita is divided into subgeneraAmanita andLepidella by the amyloidity of basidiospores. However, at section-level, we suggest that subgenusAmanita should be divided into three sections (Amanita, Vaginatae, andCaesareae). Our results also showed the necessity to modify the taxonomic treatments at section-level in the subgenusLepidella. It appears that the establishment ofA. muscaria andA. pantherina from a common ancestral species might be a very recent event, or these might be lower taxa of same species. As for three subspecies ofA. hemibapha and three varieties ofA. vaginata, it is necessary to grade up their taxonomical ranks from subspecies/variety to species. A new combination,A. javanica, is proposed forA. hemibapha subsp.javanica.  相似文献   

15.
The pollen morphology of all 23 Japanese species ofSymplocos (1 of subgenusEusymplocos, and 22 of subgenusHopea) was comprehensively studied using LM, SEM and TEM, and found to be classifiable into two types (Type I and II) primarily on the basis of wall structure. Type I, characterized by a thick tectum lacking a supratectal structure and reduced columellae, occurs in subgenusEusymplocos, while Type II, characterized by a thin tectum with a supratectal structure and generally distinct columellae, occurs in subgenusHopea. Resemblances in wall structure suggest a closer relationship of subgenusEusymplocos to subgenusMicrosymplocos as well as of subgenusHopea to subgenusEpigenia. This fact contradicts the earlier proposed infrageneric classification, and may require its revision. Within Type II, five subtypes are recognized primarily on the basis of sculpture combined with other pollen characters. Systematic value of sculpture (i.e., subtype), aperture morphology and “globules”, as well as certain species relationships based on those characters, are also discussed.  相似文献   

16.
To elucidate the evolution of epiphytes in Liparis section Liparis, we examined the phylogenetic relationships of 16 species by using internal transcribed spacer regions of 18S–26S nuclear ribosomal DNA (ITS) and three chloroplast DNA regions (trnS-trnG spacer, trnL with trnL-trnF spacer, and partial matK). Results showed that the epiphytic L. fujisanensis is sister to the terrestrial L. koreana and L. kumokiri, while another epiphyte, L. truncata, is sister to the terrestrial L. krameri. Therefore, the two epiphytic species evolved from terrestrial species independently in section Liparis. Comparative seed morphology revealed that the epiphytes have larger embryos than their closely related terrestrial counterparts. A similar trend toward the increase of embryo size in the two epiphytic species belonging to closely related, but distinct clades suggests that the large embryo may have an advantage in the epiphytic lifestyle. The two epiphytic species share another character state, smaller air spaces in the seed than that of closely related terrestrial species, suggesting possible low dispersibility of the epiphytes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Polystichum, one of the largest genera of ferns, occurs worldwide with the greatest diversity in southwest China and adjacent regions. Although there have been studies of Chinese Polystichum on its traditional classification, geographic distributions, and even a few on its molecular systematics, its relationships to other species outside China remain little known. Here, we investigated the phylogeny and biogeography of the Polystichum species from China and Australasia. The evolutionary relationships among 42 Polystichum species found in China (29 taxa) and Australasia (13 taxa) were inferred from phylogenetic analyses of two chloroplast DNA sequence data sets: rps4-trnS and trnL-F intergenic spacers. The divergence time between Chinese and Australasian Polystichum was estimated. The results indicated that the Australasian species comprise a monophyletic group that is nested within the Chinese diversity, and that the New Zealand species are likewise a monophyletic group nested within the Australasian species. The divergence time estimates suggested that Chinese Polystichum migrated into Australasia from around 40 Ma ago, and from there to New Zealand from about 14 Ma. The diversification of the New Zealand Polystichum species began about 10 Ma. These results indicated that Polystichum probably originated in eastern Asia and migrated into Australasia: first into Australia and then into New Zealand.  相似文献   

18.
The taxonomy of Bambusoideae is in a state of flux and phylogenetic studies are required to help resolve systematic issues. Over 60 taxa, representing all subtribes of Bambuseae and related non-bambusoid grasses were sampled. A combined analysis of five plastid DNA regions, trnL intron, trnL-F intergenic spacer, atpB-rbcL intergenic spacer, rps16 intron, and matK, was used to study the phylogenetic relationships among the bamboos in general and the woody bamboos in particular. Within the BEP clade (Bambusoideae s.s., Ehrhartoideae, Pooideae), Pooideae were resolved as sister to Bambusoideae s.s. Tribe Bambuseae, the woody bamboos, as currently recognized were not monophyletic because Olyreae, the herbaceous bamboos, were sister to tropical Bambuseae. Temperate Bambuseae were sister to the group consisting of tropical Bambuseae and Olyreae. Thus, the temperate Bambuseae would be better treated as their own tribe Arundinarieae than as a subgroup of Bambuseae. Within the tropical Bambuseae, neotropical Bambuseae were sister to the palaeotropical and Austral Bambuseae. In addition, Melocanninae were found to be sister to the remaining palaeotropical and Austral Bambuseae. We discuss phylogenetic and morphological patterns of diversification and interpret them in a biogeographic context.  相似文献   

19.
Classification of the genusAconitum (Ranunculaceae) has long been considered quite difficult because its species show high levels of morphological and ecological variability. The molecular phylogeny of Asian aconites,Aconitum subgenusAconitum was, therefore, studied based on RFLP and sequences of the intergenic spacer between thetrnL (UAA) 3′ exon andtrnF (GAA), and of thetrnL intron, of the chloroplast DNA. UsingAconitum subgenusLycoctonum as an outgroup, we obtained a statistically reliable molecular tree composed of six clades branched radiatively at the very base. There are three clades of Japanese aconites, a single clade of the species of Yunnan and Himalayas, and two clades of Siberian plants. All the tetraploid taxa of Japan we studied did not show any difference based on the molecular characters analyzed, though they have been classified into many taxa. Evolution and phytogeography of the Asian aconites as well as the phylogeny are discussed.  相似文献   

20.
A few individuals with intermediate morphology always appeared in the sympatric distributions of Gentiana straminea and G. siphonantha. These intermediate individuals were hypothesized to be the hybrids of two species after a careful evaluation of their morphological characteristics. To test this hypothesis, sequence comparison of the internal transcribed spacer (ITS) regions of the nuclear ribosomal and trnS (GCU)-trnG (UCC) intergenic spacer region of the chloroplast DNA from Gentiana straminea, G. siphonantha and the putative hybrids was performed. The results suggest that most intermediate individuals were the natural hybrids between G. straminea and G. siphonantha. In addition, we examined the sequence variation among the individuals of both parent species and analyzed the possibility leading to the incongruent identification in some individuals based on morphologic and molecular evidences, respectively. The intraspecific diversification of DNA fragments within both parent species and their high variability in hybrid swarms probably resulted from chloroplast genome recombination and incomplete lineage sorting during the early stages of speciation origin of the parent species. __________ Translated from Acta Botanica Yunnanica, 2007, 29 (1): 91–97 [译自:云南植物研究]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号