首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
根据对巴山松针叶群体的水平和垂直变化特征及趋势进行的研究,得到如下结果:(1)单株木的针叶总数和各龄针叶总数随胸径增加而增多,随密度增加而减少;当年生针叶数量所占比例随径阶增加而增大,2年生针叶比例与此相反,而1年生和3年生针叶比例基本保持稳定。(2)单株木的径阶愈小,针叶平均寿命亦愈长;就针叶平均生存期限而言,劣势木最短,优势木次之,而平均木最长。(3)各龄级针叶群体的数量一般在树冠中部所占比例最大,下部所占比例次之,上部比例最小。在林分中处于不同地位的林木表现形式略有差异,与树冠内光照的分布有关。(4)针叶的内禀增长率随着径阶的增大、树高的增加及相对光照强度的增高而增加;树冠中针叶的平均寿命随树高增加而减小。另外,对产生上述结果的原因也进行了部分探讨。  相似文献   

2.
长白山暗针叶林林隙一般特征及干扰状况   总被引:17,自引:0,他引:17  
杨修 《生态学报》2002,22(11):1825-1831
对长白山暗针叶林林隙一般特征和干扰状况进行了研究。结果表明:长白山暗针叶林林隙的线状密度为21.15个/km,扩展林隙所占的面积比例为29.45%,冠空隙所占的面积比例为15.81%;冠空隙的年干扰频率为0.24%,干扰轮回期为416.7a左右;冠空隙的大小变化在17.9—340.3m^2之间,<100m^2的冠空隙个数较多,冠空隙的平均面积为93.60m^2;扩展林隙的大小变化在43.6—482.3m^2之间,50一200m^2之间的扩展林隙个数较多,扩展林隙的平均面积为174.34m^2;暗针叶林林隙形成的主要方式是风倒;在长白山暗针叶林中,大多数林隙是由2—6株形成木形成,其中由3株形成木形成的林隙员多,单株或7株以上形成木形成的林隙数量很少;在暗针叶林中,10一40a前这段时间形成的林隙较多,特别是20一30a期间形成的林隙员多。其它阶段形成的林隙较少;暗针叶林的林隙大多是由臭冷杉、落叶松和鱼鳞云杉形成。径级在10一30cm之间,高度在25—30m之间的主林层树木形成林隙的可能性最大。暗针叶林林分组成、林隙干扰方式和程度随海拔高度的变化而变化。  相似文献   

3.
甜菊含甙量的变异及R—A型良种的选育   总被引:1,自引:0,他引:1  
从甜味成分种类及含量的不同,研究甜菊实生群体和单株无性系的变化,从中选育优质甜味成分含量高的良种。主要结果:(1)在实生群体中,丰产株型(圆纺锤形株)占7.3%,其中,优质甜味成分R-A含量超过St含量的R-A型株占10.96%,它们的R-A含量变幅为3.3-12.0%。(2)R-A型良种J-2单株无生系在繁殖达2000万株时,叶片大小和含甙量均存在极显著差异,R-A含量变幅为4.5-12.2%。  相似文献   

4.
甜菊含甙量的变异及R-A型良种的选育   总被引:3,自引:1,他引:2  
从甜味成分种类及含量的不同,研究甜菊(SteviarebaudianaBertoni)实生群体和单株无性系的变化,从中选育优质甜味成分含量高的良种。主要结果:(1)在实生群体中,丰产株型(圆纺锤形株)占7.3%,其中,优质甜味成分R-A含量超过St含量的R-A型株占10.96%,它们的R-A含量变幅为3.3~12.0%。(2)R-A型良种J-2单株无性系在繁殖达2000万株时,叶片大小和含甙量均存在极显著差异,R-A含量变幅为4.5~12.2%。(3)从R-A含量为3.86%的实生群体中选出R-A含量为7.04~12.03%的单株及从R-A含量为9.10%的良种单株无性系中选出R-A含量为10.15~12.15%的单株,它们的R-A含量均大幅度提高。  相似文献   

5.
涌漏型蒸渗仪时梭梭和柠条蒸腾蒸发的研究   总被引:1,自引:0,他引:1  
赵明  郭志 《西北植物学报》1997,17(3):305-314
利用非称量蒸渗仪对俊俊、柠条的蒸散进行了研究,结果表明:3年生的梭梭的单株蒸散量是515.3mm,3年生柠条的单株蒸散量是499.1mm。供水量和蒸散量之间存在着一定的正相关系。3年生和2年生梭梭的单株平均蒸腾量分别是105.8mm和202.77mm;3年生和2年生柠条的单株平均蒸腾量分别为120.67mm和128.72mm。在3种供水条件下,柠条的蒸腾量都是梭梭的81%左右.在水分充足的情况下,  相似文献   

6.
盐城保护区狗獾洞巢的初步研究   总被引:2,自引:1,他引:1  
徐宏发  陆厚基 《兽类学报》1997,17(2):107-112
本文对苏北盐城保护区6个狗獾洞巢进行了初步研究。结果表明:每个洞巢平均有12.7个洞口组成,占地面积平均为192.1m2。洞径的平均大小为25.8(±8.1)×32.3(±11.8)cm。洞道口可分为斜向型、垂直型和水平型,分别占总洞口的77.6%、11.8%和10.5%。每个洞巢动物经常用来进出的洞口2~3个,占总洞口数的19.7%,废弃的洞口占总数的55.3%,另有25%洞口偶而使用。狗獾极其敏感,一旦常用洞口有异物即放弃使用,另掘新洞口  相似文献   

7.
不同林龄尾巨桉人工林的生物量及其分配特征   总被引:2,自引:0,他引:2  
根据1,2,3,5,8a共5个不同年龄的15块1000 m2尾巨桉样地(3次重复)调查资料,利用18株不同年龄和径阶的样木数据,建立以胸径(D)为单变量的生物量回归方程。采用样木回归分析法(乔木层)和样方收获法(灌木层、草本层、地上凋落物)获取不同林龄尾巨桉人工林的生物量,分析了其组成、分配及不同林龄生物量的变化趋势。结果表明:林分总生物量随林龄而增加,1,2,3,5年生和8年生尾巨桉人工林生物量分别为12.49,47.75,64.51,105.77和137.51 t/hm2,其中活体植物占85.60%—97.61%,地上凋落物占2.39%—14.40%;层次分配方面乔木层占绝对优势,占54.80%—91.56%,且随林龄的增加而增大,其次为凋落物,灌木层和草本层生物量较小,分别占1.02%—6.47%和0.28%—24.33%,均随林龄的增加呈递减趋势;乔木层以干所占比例最高,占51.07%—98.48%,且随林龄而增加,枝、叶、根分别占5.76%—11.80%,2.17%—21.01%和6.72%—14.87%,均随林龄而下降;灌木层以枝所占比例最高,为37.89%—56.79%,叶和根分别占16.35%—34.24%和19.52%—39.52%,随林龄的变化均不大;草本层分配1—5年生以地上所占比例较大,8年生地下所占比例高达63.87%;尾巨桉人工林乔木层各器官、地上凋落物及总生物量具有良好的优化增长模型,其总生物量的增长模型为Y=-1.693×104+3.337×104X-1.761X2;8年生尾巨桉人工林总生物量与30年生的木莲人工林持平,低于热带雨林,但其年均净生产量高达17.19 t/hm2,是一个光合效率高、固碳潜力大的速生丰产优良造林树种。  相似文献   

8.
西双版纳橡胶林的生物量及其模型   总被引:1,自引:0,他引:1  
利用30株不同年龄和径阶的橡胶树样木数据,建立了以胸径(D)和胸径的平方乘以树高(D2H)为自变量的生物量回归模型.根据所建立的生物量回归模型,推算了15个1000 m2不同林龄橡胶林的生物量,并分析了其组成和分配特征及不同林龄生物量的变化趋势.林分的总生物量随林龄而增加,7、13、19、25和47年生橡胶林生物量分别为23.98、66.90、150.37、171.12和250.21 t·hm-2.生物量的器官分配以干材所占的比例最大,占50%以上,并随林龄而递增;枝生物量所占比例也随着林龄的增加而增大;叶和根的生物量所占比例则随林龄呈下降趋势.橡胶林生物量远低于本地区的热带季节雨林和石灰山季雨林,但高于本地区的热带次生林及其他热带地区年龄相近的人工林.  相似文献   

9.
臭是一种小型哺乳类动物,与黄胸鼠、褐家鼠、小家鼠组成南方家栖鼠形哺乳类动物群体。根据雷州半岛40多年(1950~1994年)鼠疫监测和10年(1985年2月~1995年1月)鼠情监测资料,对臭的数量、分布、繁殖等方面进行了分析研究。结果,臭占家栖鼠形哺乳类动物群体比例逐年上升,80年代达高峰;其分布是农村多于城市,野外也有发现;月份分布呈马鞍形曲线;全年均可繁殖,月均怀孕率为357%,每胎胎仔数1~7只,平均为315只,频率分布近似正态。  相似文献   

10.
马尾松天然群体同工酶遗传变异   总被引:15,自引:0,他引:15  
黄启强  王莲辉 《遗传学报》1995,22(2):142-151
6个马尾松天然群体同工酶分析结果表明:马尾松群体具有较丰富的遗传变异,其多态位点百分率(P)=76.2%;等位基因平均数(Na)=2.39;有效等位基因平均数(Ne)=1.62,平均杂合率(He)=0.273。但群体间遗传分化极小,基因分化系数(G_(ST))=0.0172,遗传距离(D)=0.011±0.005。总遗传变异中,约2%来自群体间,而约98%的遗传变异存在于群体内的个体,并且其变异又主要来源于1/3的基因位点。马尾松群体近似于随机交配群体,绝大多数位点处于平衡状况,但也有约1/3的位点并非随机交配,存在不同程度的近交。  相似文献   

11.
12.
Currently, foliage biomass is estimated based on stem diameter or basal area. However, it is questionable whether the relations between foliage and stem observed from plantations of a single tree species can be applied to stands of different structure or species composition. In this paper, a procedure is presented to simulate foliage and branch biomass of tree crowns relative to crown size and light competition. Crowns are divided into layers and segments and each segment is divided into a foliated and an unfoliated fraction. Depending on the competitive status of the segment, leaf area density, specific leaf area and foliated branch fraction are determined. Based on this information, foliage biomass is calculated. The procedure requires a crown shape function and a measure to characterise competition for light and space of each individual segment within the canopy. Simple solutions are suggested for both requirements to enable an application with data that can be measured non-destructively in the field; these were stem position, tree height, crown base height, crown radii and some general crown shape information. The model was parameterised from single trees of Norway spruce and European beech and partly evaluated with independent data close to the investigation plot. Evaluations showed that the model can attribute the ecology of the different crown forms. Modelled foliage distribution for beech and spruce as well as total needle biomass of spruce agreed well with measurements but foliage biomass of beech was underestimated. The results are discussed in the context of a general model application in structured forests.  相似文献   

13.
The relative effects of light and tree height on the architecture of leader crowns (i.e., the leading section of the main trunk, 100 cm in length) and current-year shoots for a canopy species, Fagus crenata, occupying both the ridge top and the valley bottom in a cool-temperate forest in Japan were investigated. For leader crowns, the number of current-year shoots and leaves increased with increasing tree height, whereas the mean length of current-year shoots increased with increasing relative photon flux density (PFD). The leader crown area decreased, and the depth and leaf area index of leader crowns increased, with increasing relative PFD. The mass of current-year shoots increased with relative PFD. However, this total mass was allocated differently between stems and leaves depending on tree height, such that the relative allocation to stems increased with increasing tree height. Furthermore, stem structures within current-year shoots also changed with height, such that taller trees produced thicker and shorter stems of the same volume. In contrast, leaf structure and leaf biomass allocations changed with relative PFD. Specific leaf area decreased with increasing relative PFD. In addition, leaf number increased more rapidly with increasing individual leaf mass for trees exposed to greater relative PFD. Consequently, the total leaf area supported by a stem of a given diameter decreased with increasing tree height and relative PFD. Thus, the architecture of leader crowns and current-year shoots were related differently to light and tree height, which are considered important for efficient light capture and the growth of small and tall trees in different environments.  相似文献   

14.
Ülo Niinemets 《Plant Ecology》1996,124(2):145-153
Variation in leaf size (area per leaf) and leaf dry weight per area (LWA) in relation to species shade- and drought-tolerance, characterised by Ellenberg's light (ELD) and water demand (EWD) values, respectively, were examined in 60 temperate woody taxa at constant relative irradiance. LWA was independent of plant size, but leaf size increased with total plant height at constant ELD. Canopy position also affected leaf morphology: leaves from the upper crown third had higher LWA and were larger than leaves from the lower third. Leaf size and LWA were negatively correlated, and leaf size decreased and LWA increased with decreasing species shade-tolerance. Mean LWA was similar for trees and shrubs, but trees had larger leaves than shrubs. Furthermore, all relationships were altered by plant growth-form: none of the qualitative tendencies was significant for trees. This implies the considerably lower plasticity of foliar parameters in trees than those in shrubs. Accordingly, shade-tolerance of trees, having relatively constant leaf structure, may be most affected by the variability in biomass partitioning and crown geometry which influence foliage distribution and spacing and finally determine canopy light absorptance. Alteration of leaf form and investment pattern for construction of unit foliar surface area which change the efficiency of light interception per unit biomass investment in leaves, is a competitive strategy inherent to shrubs. EWD as well as wood anatomy did not control LWA and leaf size, though there was a trend of ring-porous tree species to be more shade-tolerant than diffuse-porous trees. Since ring-porous species are more vulnerable to cavitation than diffuse-porous species, they may be constrained to environments where irradiances and consequently evaporative demand is lower.  相似文献   

15.
Surface area of wood and bark is an important dimension of forests, with implications for respiration rate, energy exchange, and water and mineral budgets. Surface area of stem wood and bark can be estimated effectively from linear regressions on conic surface (one-half basal circumference times tree height) or from regressions of the logarithm of area on the logarithm of diameter at breast height. Branch surface can be estimated from a formula using branch basal diameter, length, and number of current twigs, and from logarithmic regressions of branch bark surface on basal diameter of branches and breast-height diameter of trees. In temperate deciduous forests several square meters of plant surface occur above each square meter of ground surface; these plant surfaces include 0.3–0.6 m2 of stem bark, 1.2–2.2 m2 of branch bark, and 3.0–6.0 m2 of leaf blades. Branch bark surface increases more rapidly than leaf surface with increasing size of branches and trees. Growth and aging of trees, and maturation of forests, imply increasing ratios of bark (and wood) surface to the photosynthetic leaf surface which supports its growth and respiration.  相似文献   

16.
肖瑜 《植物生态学报》1993,17(4):358-363
 根据森林和林木各器官生物量随时间的变化,林冠叶片(叶群体)生长和死亡规律及数学生态学的原理,得出了叶的生物量、年净生产量和平均叶龄之间的关系。一般表达式为P=│lnlx│·B/x(式中Pn为叶年净生产量,lx为特定叶龄的存留率,B为叶生物量,x为平均叶龄)。当林冠叶片达到平衡时,Pn=0.693·B/x;存留率为36.8%时,成为目前用平均叶龄计算叶年净初级生产量的形式。本文证明了后一种特殊形式之所以被人们广泛采用是因为混淆了平均叶龄与叶量周转时间这两个概念;这种方法估算的结果比正常值约高30%。 还用实例讨论了用0—1龄级平均叶龄估算叶净生产量所不可避免的偏大原因,用本文提出的公式对某些叶净生产量的计算数值进行了修正;结果表明,与实际情况比较吻合。  相似文献   

17.
Tree species can generally be classified into two groups, heterobaric and homobaric leafed species, according to whether bundle-sheath extensions (BSEs) are found in the leaf (heterobaric leaf) or not (homobaric leaf). In this study, we study whether the leaf type is related to the growth environment and/or life form type, even in a tropical rain forest, where most trees have evergreen leaves that are generally homobaric. Accordingly, we investigated the distribution of leaf morphological differences across different life forms of 250 tree species in 45 families in a tropical rainforest. In total, 151 species (60%) in 36 families had homobaric leaves, and 99 species (40%) in 21 families had heterobaric leaves. We found that the proportion of heterobaric and homobaric leaf species differed clearly across taxonomic groups and life form types, which were divided into five life form types by their mature tree heights (understory, subcanopy, canopy, and emergent species) and as canopy gap species. Most understory (94%) and subcanopy (83%) species such as Annonaceae had homobaric leaves. In contrast, heterobaric leaf trees appeared more frequently in the canopy species (43%), the emergent species (96%) (such as Dipterocarpaceae), and the canopy gap species (62%). Our results suggest that tree species in the tropical rainforest adapt to spatial differences in the environmental conditions experienced at the mature height of each tree species, such as light intensity and vapor pressure difference, by having differing leaf types (heterobaric or homobaric) because these types potentially have different physiological and/or mechanical functions.  相似文献   

18.
Phenotypic plasticity and developmental instability in leaf traits are common in oak species but the role of environmental factors is not well understood. To decipher possible correlations between different leaf traits and effects of the position of leaves within the tree canopy, we quantified the plasticity of three leaf traits of 30 trees of Quercus alba L., Quercus palustris Muench and Quercus velutina Lam. We hypothesized that trees could modify the shape of their leaves for better adaptation to the variable microclimate within the canopy. Our results demonstrated that the south and north outer leaves were significantly smaller, more lobed and denser than those situated in the inner canopy. The order of leaves on the branch accounted for the plasticity of leaf traits in Q. alba only. Plasticity of lobing in Q. alba and Q. velutina depended on the height of the trees. We detected fluctuating asymmetry (FA) in all three species, but the source of variation depended on branch position in Q. velutina only. FA was more pronounced in north-facing leaves. Plasticity of the leaf traits ranged from small to medium. Plasticity of leaf area and leaf mass per area (LMA) depended on the branch position. However, the plasticity of lobation was not affected by the location of a branch within the tree canopy. Quercus alba and Q. palustris had similar plastic responses but the plasticity of Q. velutina was significantly smaller. We concluded that individual plants detect and cope with environmental stress through vegetative organ modification.  相似文献   

19.
Rhizophora mangle L., the predominant neotropical mangrove species, occupies a gradient from low intertidal swamp margins with high insolation, to shaded sites at highest high water. Across a light gradient, R. mangle shows properties of both “light-demanding” and “shade-tolerant” species, and defies designation according to existing successional paradigms for rain forest trees. The mode and magnitude of its adaptability to light also change through ontogeny as it grows into the canopy. We characterized and compared phenotypic flexibility of R. mangle seedlings, saplings, and tree modules across changing light environments, from the level of leaf anatomy and photosynthesis, through stem and whole-plant architecture. We also examined growth and mortality differences among sun and shade populations of seedlings over 3 yr. Sun and shade seedling populations diverged in terms of four of six leaf anatomy traits (relative thickness of tissue layers and stomatal density), as well as leaf size and shape, specific leaf area (SLA), leaf internode distances, disparity in blade–petiole angles, canopy spread: height ratios, standing leaf numbers, summer (July) photosynthetic light curve shapes, and growth rates. Saplings showed significant sun/shade differences in fewer characters: leaf thickness, SLA, leaf overlap, disparity in bladepetiole angles, standing leaf numbers, stem volume and branching angle (first-order branches only), and summer photosynthesis. In trees, leaf anatomy was insensitive to light environment, but leaf length, width, and SLA, disparities in bladepetiole angles, and summer maximal photosynthetic rates varied among sun and shade leaf populations. Seedling and sapling photosynthetic rates were significantly depressed in winter (December), while photosynthetic rates in tree leaves did not differ in winter and summer. Seasonal and ontogenetic changes in response to light environment are apparent at several levels of biological organization in R. mangle, within constraints of its architectural baiiplan. Such variation has implications for models of stand carbon gain, and suggest that response flexibility may change with plant age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号