首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mus musculus subsp. musculus (Czech II) mammary tumor DNA frequently contains an integrated proviral genome of the mouse mammary tumor virus (MMTV) within a specific 0.5-kilobase-pair region of the cellular genome (designated int-3). Viral integration at this site results in activation of expression of an adjacent cellular gene. We mapped int-3 to mouse chromosome 17 by analysis of PstI-restricted cellular DNAs from mouse-hamster somatic cell hybrids. Restriction analysis of cellular DNA from (C3H/OuJ X Czech II) X Czech II backcross mice established the gene order T-H-2-int-3. These results demonstrated that the int-3 locus is distinct from two other common integration regions for mouse mammary tumor virus (designated int-1 and int-2) in mammary tumor DNA and suggest that several cellular genes may be at risk for virally induced activation during mammary tumor development.  相似文献   

2.
Molecular probes were used as markers in the backcross (Czech II X BALB/cPt) X Czech II to determine the positions of six genes on mouse chromosome 16 (MMU 16). The order of the genes mapped is (centromere), protamine-1 (Prm-1), immunoglobulin lambda 1 light chain (Igl-1), preprosomatostatin (Smst), an endogenous mouse mammary tumor virus locus (Mtv-6), and two more distal sequences, superoxide dismutase, cytoplasmic form (Sod-1), and the proto-oncogene sequence Ets-2. The largest recombination frequency between any two adjacent markers is 24 cM, and thus the position of any marker on MMU 16 that is polymorphic between these two strains can be readily determined in this backcross. A region of MMU 16 which corresponds to the Down syndrome region of human chromosome 21 is located near the distal end of the chromosome.  相似文献   

3.
A new oncogene, c-raf, is located on mouse chromosome 6   总被引:5,自引:2,他引:3       下载免费PDF全文
The recently described acute transforming virus 3611-MSV contains cellular sequences designated v-raf. Mouse cellular DNA contains a single-copy sequence homologous to this oncogene (c-raf), and Southern blot analysis of hamster-mouse somatic cell hybrid DNAs showed that the mouse c-raf sequence is present on chromosome 6.  相似文献   

4.
A population of Mus musculus subsp. musculus (Czech II), recently isolated from the wild, lack endogenous mouse mammary tumor virus (MMTV) proviral genomes. Some of these mice carry an infectious MMTV [designated MMTV (Czech II)] that is transmitted in the milk and is associated with mammary tumor development. This virus is distinct from laboratory strains of MMTV present in inbred mice. An MMTV (Czech II) genome was found within a 0.5-kilobase region of the cellular genome in five of 16 Czech II mammary tumors. MMTV insertion at this site activates expression of a 2.4-kilobase species of RNA from a previously silent cellular gene. This region of the cellular genome was designated int-3 since it is unrelated to the int-1 and int-2 loci. The int-3 locus does not appear to correspond to other proto-oncogenes but is well conserved among mammalian species.  相似文献   

5.
6.
The met proto-oncogene was mapped in the mouse and cat genomes with the use of mouse X hamster and cat X rodent somatic cell hybrid DNA panels. Based on these analyses we assigned the met gene to mouse chromosome 6 and to cat chromosome A2. We also assigned the cat raf-1 proto-oncogene to the A2 chromosome; met and raf-1 are the first cloned DNAs mapped to this linkage group. Using an interspecies backcross we further localized met on mouse chromosome 6 to a position proximal to the beta chain of the T-cell receptor. This places met near the obese locus in a region of mouse chromosome 6 that appears to be homologous with the long arm of human chromosome 7. The close linkage of met to the gene responsible for cystic fibrosis in humans suggests that further genetic analysis of mouse chromosome 6 may be useful in developing a mouse model for the disease.  相似文献   

7.
Two repetitive DNA fragments located on the mouse X chromosome are described. The fragments were isolated from a lambda phage library enriched in X-chromosomal sequences by flow sorting. Both fragments, which are repeated 20 to 50 times in the genome, were mapped to the mouse X chromosome by Southern blot hybridization to DNA from hybrid cells retaining the mouse X chromosome, by dosage analysis, and by in situ hybridization to mouse chromosomes. In mouse strain C57BL/10BK, one fragment appeared to be located only on the X chromosome, while the other fragment had homologous sequences on chromosome 11 in addition to the X chromosome. The latter fragment showed DNA variants between mouse strains, which are potentially useful for mapping. Both fragments cross-hybridized to another mouse species: Mus caroli. In this species, each fragment appeared to be located on the X chromosome, indicating that some X-chromosome repetitive sequences are partially conserved. In addition, one fragment cross-hybridized to human DNA.  相似文献   

8.
The restriction endonuclease EcoRI has been used to study the inheritance of strain difference in endogenous mouse mammary tumor virus DNA sequences. This enzyme, which cleaves at only one site within the nondefective viral genome, generates DNA fragments containing mouse mammary tumor virus sequences which vary in size according to the locations of EcoRI restriction sites in the flanking mouse sequences, thereby defining unique integration sites of the viral genome. Recombinant inbred strains of mice have been used to study the inheritance of these DNA fragments which hybridize to mouse mammary tumor virus cDNA sequences. The results define 11 segregating units consisting of 1 or 2 fragments. These units were shown to segregate among the recombinant inbred strains, and in some instances linkage was established. Two units were shown to be linked on chromosome 1. Another unit was mapped to chromosome 7, which is presumably identical to the previously defined genetic locus Mtv- 1. One other mouse mammary tumor virus locus was tentatively assigned to chromosome 6. The results are consistent with the view that integration of mouse mammary tumor virus can take place at numerous sites within the genome, and once inserted, these proviruses appear to be relatively stable genetic entities.  相似文献   

9.
L C Amar  D Arnaud  J Cambrou  J L Guenet    P R Avner 《The EMBO journal》1985,4(13B):3695-3700
Two libraries enriched in murine X chromosome material have been constructed in the lambda vector NM 1149 from flow-sorted chromosomes. Inserts of unique genomic sequence DNA were purified and their X chromosome specificity characterised by hybridisation to a panel of somatic cell hybrid lines. Of the first five such X chromosome-specific probes characterised, all detect restriction fragment length polymorphisms (RFLPs) between inbred mouse laboratory strains such as C57BL/6 and BALB/c and the SPE/Pas mouse strain established from a wild Mus spretus mouse, when their DNAs are digested with the restriction enzyme TaqI. Taking advantage of these RFLPs, all five probes have been localised on the X chromosome using an interspecific backcross between the B6CBARI and SPE/Pas mouse strains segregating the X chromosome markers hypoxanthine phosphoribosyl transferase (Hprt) and Tabby (Ta). Three of the probes map to the region between the centromere and Hprt, and two distal to Ta. Since such X-specific sequence probes detect RFLPs between M. spretus and M. musculus domesticus DNAs with high frequency, a large panel of well localised probes should soon be available for studies of biological problems associated with the X chromosome which can best be approached using the murine species.  相似文献   

10.
The protamines are small, arginine-rich nuclear proteins that replace histones and transition proteins late in the haploid phase of spermatogenesis in mammals. The two mouse genes encoding protamines--Prm-1 and Prm-2--have been molecularly cloned and mapped to mouse chromosome 16 (MMU 16). A cDNA clone of mouse Prm-1 that hybridized to the corresponding human gene was used to analyze a panel of somatic cell hybrids made between human lymphoblasts and the E36 hamster cell line. The human gene, which we have designated PRM 1, was syntenic with human chromosome 16 (HSA 16) and discordant with all other human chromosomes. Linkage analysis in the mouse was accomplished using the backcross (Czech II x BALB/c Pt) x Czech II to map Prm-1 and Prm-2 to a position near the 5' terminus of MMU 16. No recombination between Prm-1 and Prm-2 was observed among 89 progeny of the Czech II x BALB/c cross or among 94 progeny of the backcross (CBA/J x BALB/cJ) x BALB/cJ, demonstrating that the two loci are separated by less than 1.6 cM on MMU 16. This tight linkage may be of functional significance, as Prm-1 and Prm-2 are among a limited number of genes known to be expressed postmeiotically in male haploid germ cells.  相似文献   

11.
12.
We used restriction endonucleases to prepare physical maps of the mouse mammary tumor virus (MMTV)-specific DNA endogenous to the BALB/c mouse strain. The mapping was facilitated by the DNA transfer procedure, using complementary DNAs specific for the whole and for the 3' terminus of MMTV RNA to detect fragments containing viral sequences. The strategies used for the arrangement of fragments into physical maps included sequential digestions with two or three enzymes; preparative isolation of EcoRI fragments containing viral sequences; and comparisons of virus-specific fragments derived from the DNA of several mouse strains. Most of the MMTV-related DNA in the BALB/c genome is organized into two units (II and III) which strongly resemble proviruses acquired upon horizontal infection with milk-borne strains of MMTV and other retroviruses. These units contain approximately 6.0 x 10(6) Mr of apparently uninterrupted viral sequences, they bear redundant sequences totaling at least 700 to 800 base pairs at their termini, and the terminal redundancies include sequences derived from the 3' end of MMTV RNA. Units II and III are closely related in that they share 12 of 14 recognition sites for endonucleases, but cellular sequences flanking units II and III are dissimilar by this criterion. The remainder of the MMTV-related DNA endogenous to BALB/c mice is found in a single subgenomic unit (unit I) with a complexity of ca. 2 x 10(6) Mr; the structure of this unit has not been further defined. These results support the hypotheses that endogenous proviruses have been acquired by infection of germinal tissues with MMTV. The physical maps are also useful for identifying the MMTV genomes endogenous to BALB/c mice in studies of the natural history of mammary tumorigenesis.  相似文献   

13.
Localization of the rhodopsin gene to the distal half of mouse chromosome 6   总被引:2,自引:0,他引:2  
We have assigned the mouse rhodopsin gene, Rho, to chromosome 6 using DNA from a set of mouse-hamster somatic hybrid cell lines and a partial cDNA clone for mouse opsin. This assignment rules out the direct involvement of the rhodopsin gene in the known mouse mutations that produce retinal degeneration, including retinal degeneration slow (rds, chromosome 17), retinal degeneration (rd, chromosome 5), Purkinje cell degeneration (pcd, chromosome 13), and nervous (nr, chromosome 8). Segregation of Rho-specific DNA fragment differences among 50 animals from an interspecific backcross (C57BL/6J X Mus spretus) X C57BL/6J indicates that the Rho locus is 4.0 +/- 2.8 map units distal to the locus for the proto-oncogene Raf-1 and 18.0 +/- 5.4 map units proximal to the locus for the proto-oncogene Kras-2. Linkage to Raf-1 was confirmed using four sets of recombinant inbred strains. The two loci RAF1 and RHO are also syntenic on human chromosome 3, but on opposite arms.  相似文献   

14.
Similarity of G-band patterns between the long arm of Chinese hamster chromosome 6 and mouse chromosome 2, combined with the assignments of AK1, ADA, and ITPA to hamster chromosome 6 and AK1 to mouse chromosome 2, suggested mouse chromosome 2 also might contain ADA and ITPA. Here, concordant segregation analysis of enzyme loci and chromosomes in mouse spleen X CHO as well as mouse microcell X CHO somatic cell hybrids established the assignments of ADA and ITPA onto mouse chromosome 2 in the region between the first G-band and the terminus (C1----ter). This assignment presents a demonstration of the conservation and evolution of enzyme and proto-oncogene loci linkage since two cellular homologs of viral oncogenes--c-src and c-abl--also map to mouse chromosome 2. In humans c-src, ADA, and ITPA remain conserved on chromosome 20, whereas AK1 and c-abl are together on chromosome 9. These observations and concepts are discussed with respect to the role of proto-oncogenes in chromosomal evolution and suggest the long arm of chromosome 6 as a fruitful place to look for c-src and c-abl in the Chinese hamster.  相似文献   

15.
16.
A mouse cDNA probe homologous to the human MCF2 transforming sequence has been identified and partially cloned, and is used here to localize the gene on the mouse X chromosome. The human gene has been physically mapped to within 60 kb of the gene for coagulation factor IX, within a large conserved linkage group between the mouse and human genomes which extends from HPRT to G6PD on the X chromosomes of both mammalian species. In situ hybridization of the mouse Mcf-2 probe onto mouse metaphase chromosomes indicates that this gene lies in the same region of the X chromosome as Cf-9, the mouse gene for coagulation factor IX. Moreover, segregation of species-specific genomic DNA polymorphisms for Mcf-2 and Cf-9 in a total of 203 individuals derived from two large interspecific mouse backcross populations (which are also segregating for 17 other X-linked molecular markers) demonstrates that the mouse genes are separated by only 0.5 +/- 0.5 cM. Despite this short distance we were able to order Mcf-2 and Cf-9 relative to one another and other genes in this region. The mouse gene order Hprt-Cf-9-Mcf-2-G6pd predicts a similar ordering of genes on the human X chromosome, a gene order which has only recently been demonstrated by physical mapping. Thus, the map location and linkage relationships of the Mcf-2 gene are similar in man and mouse, and this unique protooncogenic locus is part of a conserved linkage group on the mammalian X chromosome.  相似文献   

17.
Five mouse mammary tumor virus proviruses and their flanking cellular DNA sequences have been cloned from a transplanted C57BL/6 (B6) T-cell lymphoma containing additional copies of mouse mammary tumor virus DNA. Characterization of these proviruses and their flanking DNA indicates that B6 lymphomas contain many newly integrated mouse mammary tumor virus copies synthesized by a mechanism(s) which generates polymorphism or deletions or both.  相似文献   

18.
Construction and analysis of linking libraries from the mouse X chromosome   总被引:1,自引:0,他引:1  
A hybrid cell line containing the mouse X chromosome on a human background has been used to construct linking libraries from the mouse X chromosome, and approximately 250 unique EagI and NotI clones have been identified. Seventy-three clones have been sublocalized onto the X chromosome using interspecific Mus spretus/Mus domesticus crosses and a panel of somatic cell hybrids carrying one-half of reciprocal X-autosome translocations. The average spacing of the linking clones mapped to date is about one every 2 Mb of DNA. Two clones from the central region of the chromosome have been physically linked by pulsed-field gel electrophoresis. A large number of clones contain conserved sequences, indicating the presence of CpG-rich island-associated genes. The clones isolated from these libraries provide a valuable resource for comparative mapping between man and mouse X chromosomes, isolation of X-linked disease loci of interest by reverse genetics, and analysis of the long-range structure and organization of the chromosome.  相似文献   

19.
Introduction of a human or Syrian hamster X chromosome (derived from BHK-191-5C cell hybrids) into tumorigenic mouse A9 cells via microcell fusion induced changes in cellular morphology and a retardation of cellular growth. The suppression of growth of the hybrids could be abolished, however, by daily changes of medium containing 20% serum. G-banding analysis showed the absence of a single, cytogenetically identifiable, indigenous X chromosome (marker Z) in two of four hybrid clones after an X chromosome was transferred from either hamster or human cells. All hybrids were tumorigenic when tested in nude mice. Together, these data suggest that the loss of the mouse X chromosome took place probably because of growth inhibitory effects imposed on hybrid cells due to the increase in X chromosome dosage. In addition, our results show a lack of association between the phenotype of cellular growth suppression in vitro and the phenotype of suppression of tumorigenicity in vivo.  相似文献   

20.
Friend murine leukemia virus (F-MuLV) induces a variety of hematopoietic neoplasms 2 to 12 months after inoculation into newborn mice. These neoplasms are clonal or oligoclonal and contain a small number of F-MuLV insertions in high-molecular-weight DNA. To investigate whether different tumors have proviral insertions in the same region, a provirus-cellular DNA junction fragment from an F-MuLV-induced myelogenous leukemia was cloned in lambda gtWES, and a portion of the flanking cellular DNA sequence was used in blot-hybridization studies of 34 additional F-MuLV-induced neoplasms. Three of these additional neoplasms (one myelogenous leukemia and two lymphomas) were found to have altered copies of the flanking cellular sequence. Restriction enzyme analysis of genomic DNA from these tumors revealed that in each case a proviral copy of F-MuLV had inserted into the same 1.5-kilobase region; all proviruses had the same orientation. Using mouse-Chinese hamster somatic cell hybrids, we mapped this common integration region, designated Fis-1, to mouse chromosome 7. Fis-1 is distinct from three oncogenes on mouse chromosome 7, Ha-ras, fes, and Int-2, based on restriction enzyme analysis and blot hybridization. Therefore, Fis-1 appears to be a novel sequence implicated in both lymphoid and myeloid leukemias induced by F-MuLV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号