首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The trophic interactions of the marine rotifer Synchaeta cecilia were investigated by determining its feeding and growth rates on a wide variety of marine phytoplankton and by determining its susceptibility to predation by the calanoid copepod, Acartia tonsa. Reproduction of S. cecilia was sustained in four-day feeding trails by 13 of 37 algal species tested. Growth-supporting species included species of Cryptophyceae, Dinophyceae, Chlorophyceae and Haptophyceae in sizes from 4 to 47 μm. Within these taxa, other species in the acceptable size range failed to support growth. No species of Cyanophyceae, Bacillariophyceae, or Chrysophyceae supported growth of the rotifer. S. cecilia can be maintained on unialgal cultures of Cryptophyceae but growth is enhanced by a combination of two or three species; a mixture of Chroomonas salina (Cryptophyceae), Heterocapsa pygmaea (Dinophyceae), and Isochrysis galbana (Haptophyceae) has sustained laboratory stocks of S. cecilia for over four years. The expected response of S. cecilia to food quantity was observed: as food concentration was increased from 58 to 1154 μg C 1−1, the population growth constant increased from 0.17 to 0.60 d−1 at 20°C. This is equivalent to population doubling times of 4.0 and 1.1 days at H. pygmaea densities of 500 and 104 cells ml−1, respectively. The susceptibility of S. cecilia to predation was investigated by determining its rate of capture by the omnivorous marine copepod Acartia tonsa. At prey densities of 5 to 35 μg C 1−1 (0.3 to 1.9 individuals 1−1), A. tonsa readily ingested S. cecilia at rates up to 3 μg C copepod−1 day−1.  相似文献   

2.
Larval stages of the ctenophore Mnemiopsis leidyi rely on metazoanprey, such as Acartia tonsa nauplii and copepodites, to supporthigh growth rates. However, M. leidyi larvae <0.5 mm (totallength) had low retention efficiencies (REs) (proportion ofencountered prey actually ingested), 5.78 ± 2.6% (mean± SE), of nauplii and were often damaged by their encounters.REs of nauplii rapidly increased, 38.94 ± 3.73%, as larvaegrew to a size of  相似文献   

3.
We investigated whether phosphorus limitations of primary producers propagate upwards through the food web, not only to the primary consumer level but also onto the secondary consumers’ level. A tri-trophic food chain was used to assess the effects of phosphorus-limited phytoplankton (the cryptophyte Rhodomonas salina) on herbivorous zooplankters (the copepod Acartia tonsa) and finally on zooplanktivores (the ctenophore Pleurobrachia pileus). The algae were cultured in phosphorus-replete and phosphorus-limited media before being fed to two groups of copepods. The copepods in turn were fed to the top predator, P. pileus, in a mixture resulting in a phosphorus-gradient, ranging from copepods having received only phosphorus-replete algae to copepods reared solely on phosphorus-limited algae. The C:P ratio of the algae varied significantly between the two treatments, resulting in higher C:P ratios for those copepods feeding on phosphorus-limited algae, albeit with a significance of 0.07. The differences in the feeding environment of the copepods could be followed to Pleurobrachia pileus. Contrary to our expectations, we found that phosphorus-limited copepods represented a higher quality food source for P. pileus, as shown by the better condition (expressed as nucleic acid content) of the ctenophore. This could possibly be explained by the rather high C:P ratios of ctenophores, their resulting low phosphorus demand and relative insensitivity to P deficiency. This might potentially be an additional explanation for the observed increasing abundances of gelatinous zooplankton in our increasingly phosphorus-limited coastal seas.  相似文献   

4.
The lobate ctenophore, Mnemiopsis leidyi, consumed eggs andlarvae of the bay anchovy, Anchoa mitchilli, in laboratory experiments.This ctenophore exhibited a type I functional response to increasesin egg densities without reaching saturation at high prey densities.Clearance rate increased with increasing experimental containervolume. There was a 3-fold increase in the volume of water clearedby 2.0–2.5-cm ctenophores and a >5-fold increase for4.5–5.0-cm ctenophores in 15–1 versus 100–200–1containers. Clearance rate was dependent on tenophore lengthbut was probably underestimated for the larger animals due tocontainer effects. The presence of various densities of alternateprey, Acartia hudsonica or Anemia sp. nauplii, in addition toAnchoa mitchilli eggs did not affect the clearance rates onthe eggs alone. Comparison of clearance rates of 2.0–2.5-cmctenophores on various ages of starved and fed bay anchovy larvaeindicated that predation may be higher on yolk-sac larvae thanon eggs but decreases as the larvae grow. After 3 days posthatch starved anchovy larvae become more vulnerable to predationthan fed larvae. The ctenophore, M.leidyi has the potentialto inflict substantial predation pressure on early stages inthe life history of bay anchovy. 1 Present address: University of Maryland, Center for Environmentaland Estuarine Studies, Chesapeake Biological Laboratory, POBox 38, Solomons, MD 20688-0038, USA  相似文献   

5.
To study the effect of water flow on coral growth, four series of ten coral nubbins of Galaxea fascicularis were exposed to four different flow regimes (0, 10, 20, and 25 cm s−1, bidirectional flow) for 42 weeks. Buoyant weight, surface area, and polyp number were measured at regular intervals. Net photosynthesis and dark respiration were measured at the corresponding flow speeds, and daily amount of photosynthetic carbon left for coral growth was calculated. Finally, skeletal density and CN content, chlorophyll concentration and dry weight of coral tissue were determined for each coral. Specific growth rate (in day−1) decreased with time in each flow treatment. Absence of flow resulted in significantly lower growth rates. Average specific growth rate calculated over the entire experiment was not significantly different between 10 and 20 cm s−1, while it was significantly higher at 25 cm s−1. From 10 to 25 cm s−1, average net photosynthetic rate decreased and average dark respiration rate did not change significantly. Scope for growth based on phototrophic carbon decreased with increasing flow. Growth was not positively correlated with either photosynthesis or respiration, or scope for growth. It is suggested that higher flow rates reduce the chance of disturbance of coral growth by competing algae or cyanobacteria, allowing corals to grow more readily with the maximum specific growth rate possible under the given environmental conditions. Notably, other effects of increased flow, such as increased respiratory rates and increased (in)organic nutrient uptake, might have been equally responsible for the increased growth of the corals in 25 cm s−1.  相似文献   

6.
To quantify organic matter mineralization at estuarine intertidal flats, we measured in situ sediment respiration rates using an infrared gas analyzer in estuarine sandy intertidal flats located in the northwestern Seto Inland Sea, Japan. In situ sediment respiration rates showed spatial and seasonal variations, and the mean of the rates is 38.8 mg CO2-C m−2 h−1 in summer. In situ sediment respiration rates changed significantly with sediment temperature at the study sites (r 2 = 0.70, p < 0.05), although we did not detect any significant correlations between the rates and sediment characteristics. We prepared a model for estimating the annual sediment respiration based on the in situ sediment respiration rates and their temperature coefficient (Q 10 = 1.8). The annual sediment respiration was estimated to be 92 g CO2-C m−2 year−1. The total amount of organic carbon mineralization for the entire estuarine intertidal flats through sediment respiration (43 t C year−1) is equivalent to approximately 25% of the annual organic carbon load supplied from the river basin of the estuary.  相似文献   

7.
Sparse Ulmus pumila woodlands play an important role in contributing to ecosystem function in semi-arid grassland of northern China. To understand the key attributes of soil carbon cycling in U. pumila woodland, we studied dynamics of soil respiration in the canopy field (i.e., the projected crown cover area) and the open field at locations differing in distance (i.e., at 1–1.5, 3–4, 10, and >15 m) to tree stems from July through September of 2005, and measured soil biotic factors (e.g., fine root mass, soil microbial biomass, and activity) and abiotic factors [e.g., soil water content (SWC) and organic carbon] in mid-August. Soil respiration was further separated into root component and microbial component at the end of the field measurement in September. Results showed that soil respiration had a significant exponent relationship with soil temperature at 10-cm depth. The temperature sensitivity index of soil respiration, Q 10, was lower than the global average of 2.0, and declined significantly (P < 0.05) with distance. The rate of soil respiration was generally greater in the canopy field than in the open field; monthly mean of soil respiration was 305.5–730.8 mg CO2 m−2 h−1 in the canopy field and 299.6–443.1 mg CO2 m−2 h−1 in the open field from July through September; basal soil respiration at 10°C declined with distance, and varied from ~250 mg CO2 m−2 h−1 near tree stems to <200 mg CO2 m−2 h−1 in the open field. Variations in soil respiration with distance were consistent with patterns of SWC, fine root mass, microbial biomass and activities. Regression analysis indicated that soil respiration was tightly coupled with microbial respiration and only weakly related to root respiration. Overall, variations in SWC, soil nutrients, microbial biomass, and microbial activity are largely responsible for the spatial heterogeneity of soil respiration in this semi-arid U. pumila woodland.  相似文献   

8.
Ingestion rates and selectivity of the Arctic pelagic amphipod Themisto libellula were studied experimentally in Kongsfjorden (Svalbard, 78°N) during the summer period. Feeding incubations were conducted on naturally occurring copepod communities at different concentrations ranging from 25 to 250 preys L−1. The ingestion rates increased with food availability from 1.3 to 17.7 preys ind−1 day−1, which corresponded to 0.3–11% of body carbon day−1. Despite the high prey concentration used in the experiments the satiation level was not reached. We suggested that T. libellula is able to take the maximum benefit from dense patches of preys, which represent a good adaptation to the high variability in food supply characteristic of polar environment. Copepodids stage III of Calanus spp. appeared to be the preferred preys of T. libellula. Smaller copepods such as Oithona similis and Pseudocalanus spp., were also selected but only when their relative abundance exceeded 25% of the total prey available. The potential predation impact of T. libellula is discussed in relation to the mesozooplankton small-scale patchiness and predator abundance.  相似文献   

9.
Science has rapidly expanded its frontiers with new technologies in the 20th Century. Oceanography now is studied routinely by satellite. Predictive models are on global scales. At the same time, blooms of jellyfish and ctenophores have become problematic, especially after 1980. Although we have learned a great deal about gelatinous zooplankton ecology in the 20th Century on local scales, we generally have not scaled-up to estimate the extent, the causes, or effects of large blooms. In this age of global science, research on gelatinous zooplankton needs to utilize large-scale approaches and predictive equations. Some current techniques enable jellyfish populations (aerial, towed cameras), feeding (metabolic rates, stable isotopes), and dynamics (predictive modeling) to be studied over large spatial and temporal scales. I use examples of scyphomedusae (Aurelia spp., Cyanea capillata, Chrysaora quinquecirrha) and Mnemiopsis leidyi ctenophores, for which considerable data exist, to explore expanding from local to global scales of jellyfish trophic ecology. Regression analyses showed that feeding rates of Aurelia spp. (FR in copepods eaten medusa−1 d−1) generally could be estimated ±50% from in situ data on medusa wet weight (WW) and copepod density; temperature was not a significant factor. FR of C. capillata and C. quinquecirrha were similar to those of Aurelia spp.; the combined scyphomedusa regression underestimated measured FR of C. quinquecirrha and Aurelia spp. by 50% and 180%, respectively, and overestimated measured FR of C. capillata by 25%. Clearance rates (CR in liters cleared of copepods ctenophore−1 d−1) of M. leidyi were reduced in small containers (≤20 l), and a ratio of container-volume to ctenophore-volume of at least 2,500:1 is recommended for feeding experiments. Clearance rates were significantly related to ctenophore WW, but not to prey density or temperature, and estimated rates within 10–159%. Respiration rates of medusae and ctenophores were similar across habitats with greatly ambient different temperatures (10–30°C), and can be predicted from regressions using only mass. These regressions may permit estimation of feeding effects of gelatinous predators without exhaustive collection of feeding data in situ. I recommend that data on feeding and metabolism of jellyfish and ctenophores be entered in a database to allow generalized predictive relationships to be developed to promote inclusion of these important predators in ecosystem studies and models. Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances  相似文献   

10.
This paper focuses on modelling the growth rate and exopolysaccharides production of Anabaena sp. ATCC 33047, to be used in carbon dioxide removal and biofuels production. For this, the influence of dilution rate, irradiance and aeration rate on the biomass and exopolysaccharides productivity, as well as on the CO2 fixation rate, have been studied. The productivity of the cultures was maximum at the highest irradiance and dilution rate assayed, resulting to 0.5 gbio l−1 day−1 and 0.2 geps l−1 day−1, and the CO2 fixation rate measured was 1.0 gCO2 l−1 day−1. The results showed that although Anabaena sp. was partially photo-inhibited at irradiances higher than 1,300 μE m−2 s−1, its growth rate increases hyperbolically with the average irradiance inside the culture, and so does the specific exopolysaccharides production rate. The latter, on the other hand, decreases under high external irradiances, indicating that the exopolysaccharides metabolism hindered by photo-damage. Mathematical models that consider these phenomena have been proposed. Regarding aeration, the yield of the cultures decreased at rates over 0.5 v/v/min or when shear rates were higher than 60 s−1, demonstrating the existence of thus existence of stress damage by aeration. The behaviour of the cultures has been verified outdoors in a pilot-scale airlift tubular photobioreactor. From this study it is concluded that Anabaena sp. is highly recommended to transform CO2 into valuable products as has been proved capable of metabolizing carbon dioxide at rates of 1.2 gCO2 l−1 day−1 outdoors. The adequacy of the proposed equations is demonstrated, resulting to a useful tool in the design and operation of photobioreactors using this strain.  相似文献   

11.
The oxygen and nutrient dynamics of the zooxanthellate, upside down jellyfish (Cassiopea sp.), were determined both in situ and during laboratory incubations under controlled light conditions. In the laboratory, Cassiopea exhibited a typical Photosynthesis–Irradiance (P–I) curve with photosynthesis increasing linearly with irradiance, until saturation was reached at an irradiance of ~400 μE m−2 s−1, with photosynthetic compensation (photosynthesis = respiration) being achieved at an irradiance of ~50 μE m−2 s−1. Under saturating irradiation, gross photosynthesis attained a rate of almost 3.5 mmol O2 kg WW−1 h−1, whereas the dark respiration rate averaged 0.6 mmol O2 kg WW−1 h−1. Based upon a period of saturating irradiance of 9 h, the ratio of daily gross photosynthesis to daily respiration was 2.04. Thus, photosynthetic carbon fixation was not only sufficient to meet the carbon demand of respiration, but also to potentially support a growth rate of ~3% per day. During dark incubations Cassiopea was a relatively minor source of inorganic N and P, with the high proportion of NO X (nitrate + nitrite) produced indicating that the jellyfish were colonised by nitrifying bacteria. Whereas, under saturating irradiance the jellyfish assimilated ammonium, NO X and phosphate from the bathing water. However, the quantities of inorganic nitrogen assimilated were small by comparison to carbon fixation rates and the jellyfish would need to exploit other sources of nitrogen, such as ingested zooplankton, in order to maintain balanced growth. During in situ incubations the presence of Cassiopea had major effects on benthic oxygen and nutrient dynamics, with jellyfish occupied patches of sediment having 3.6-fold higher oxygen consumption and 4.5-fold higher ammonium regeneration rates than adjacent patches of bare sediment under dark conditions. In contrast at saturating irradiance, jellyfish enhanced benthic photosynthetic oxygen production almost 100-fold compared to the sediment alone and created a small sink for inorganic nutrients, whereas unoccupied sediment patches were sources of inorganic nutrients to the water column. Overall, Cassiopea greatly enhanced the spatial and temporal heterogeneity of benthic fluxes and processes by creating “hotspots” of high activities which switched between being sources or sinks for oxygen and nutrients over diurnal irradiance cycles, as the metabolism of the jellyfish swapped between heterotrophy and net autotrophy.  相似文献   

12.
As a common pollutant, nitrite concentrations can approach 15 mg NO2-N L−1 in some aquatic systems. Microcystis aeruginosa blooms are common and widespread in eutrophic freshwater bodies. In this study, M. aeruginosa was exposed to nitrite concentrations ranging from 0 to 15 mg NO2-N L−1, and the responses of M. aeruginosa were investigated. The specific growth rates, maximum cell densities, light-saturated photosynthetic rates (Pm chla ), dark respiration rates (Rd chla ), and apparent photosynthetic efficiencies (αchla ) showed a significant decline with nitrite concentrations increasing. Electrical conductivity and malondialdehyde contents investigation revealed cell membrane damage and apparent leakage of intracellular contents under high nitrite level conditions due to oxidative stress enhancement. Intracellular microcystin (MC)-LR content reached the highest value at 10 mg NO2-N L−1; however, extracellular MC-LR contents showed a continuous increase until 15 mg NO2-N L−1 owing to the increasing leakage of intracellular contents. These results elucidated that the high-level nitrite inhibited M. aeruginosa growth by rising oxidative stress, damaging cell membrane, and reducing photosynthesis. However, the moderate increase in nitrite concentrations promoted toxin production and release of toxin.  相似文献   

13.
The ammonia oxidizers Nitrosomonas europaea and Nitrosomonas eutropha are able to grow chemoorganotrophically under anoxic conditions with pyruvate, lactate, acetate, serine, succinate, α-ketoglutarate, or fructose as substrate and nitrite as terminal electron acceptor. The growth yield of both bacteria is about 3.5 mg protein (mmol pyruvate)−1 and the maximum growth rates of N. europaea and N. eutropha are 0.094 d−1 and 0.175 d−1, respectively. In the presence of pyruvate and CO2 about 80% of the incorporated carbon derives from pyruvate and about 20% from CO2. Pyruvate is used as energy and only carbon source in the absence of CO2 (chemoorganoheterotrophic growth). CO2 stimulates the chemoorganotrophic growth of both ammonia oxidizers and the expression of ribulose bisphosphate carboxylase/oxygenase is down-regulated at increasing CO2 concentration. Ammonium, although required as nitrogen source, is inhibitory for the chemoorganotrophic metabolism of N. europaea and N. eutropha. In the presence of ammonium pyruvate consumption and the expression of the genes aceE, ppc, gltA, odhA, and ppsA (energy conservation) as well as nirK, norB, and nsc (denitrification) are reduced.  相似文献   

14.
In the fed-batch culture of glycerol using a metabolically engineered strain of Escherichia coli, supplementation with glucose as an auxiliary carbon source increased lycopene production due to a significant increase in cell mass, despite a reduction in specific lycopene content. l-Arabinose supplementation increased lycopene production due to increases in cell mass and specific lycopene content. Supplementation with both glucose and l-arabinose increased lycopene production significantly due to the synergistic effect of the two sugars. Cell growth by the consumption of carbon sources was related to endogenous metabolism in the host E. coli. Supplementation with l-arabinose stimulated only the mevalonate pathway for lycopene biosynthesis and supplementation with both glucose and l-arabinose stimulated synergistically only the mevalonate pathway. In the fed-batch culture of glycerol with 10 g l−1 glucose and 7.5 g l−1 l-arabinose, the cell mass, lycopene concentration, specific lycopene content, and lycopene productivity after 34 h were 42 g l−1, 1,350 mg l−1, 32 mg g cells−1, and 40 mg l−1 h−1, respectively. These values were 3.9-, 7.1-, 1.9-, and 11.7-fold higher than those without the auxiliary carbon sources, respectively. This is the highest reported concentration and productivity of lycopene.  相似文献   

15.
Quasi steady state growth of Lactococcus lactis IL 1403 was studied in glucose-limited A-stat cultivation experiments with acceleration rates (a) from 0.003 to 0.06 h−2 after initial stabilization of the cultures in chemostat at D = 0.2–0.3 h−1. It was shown that the high limit of quasi steady state growth rate depended on the acceleration rate used—at an acceleration rate 0.003 h−2 the quasi steady state growth was observed until μ crit = 0.59 h−1, which is also the μ max value for the culture. Lower values of μ crit were observed at higher acceleration rates. The steady state growth of bacteria stabilized at dilution rate 0.2 h−1 was immediately disrupted after initiating acceleration at the highest acceleration rate studied—0.06 h−2. Observation was made that differences [Δ(μ − D)] of the specific growth rates from pre-programmed dilution rates were the lowest using an acceleration rate of 0.003 h−2 (< 4% of preset changing growth rate). The adaptability of cells to follow preprogrammed growth rate was found to decrease with increasing dilution rate—it was shown that lower acceleration rates should be applied at higher growth rates to maintain the culture in the quasi steady state. The critical specific growth rate and the biomass yields based on glucose consumption were higher if the medium contained S 0 = 5 g L−1 glucose instead of S 0 = 10 g L−1. It was assumed that this was due to the inhibitory effect of lactate accumulating at higher concentrations in the latter cultures. Parallel A-stat experiments at the same acceleration and dilution rates showed good reproducibility—Δ(μ − D) was less than 5%, standard deviations of biomass yields per ATP produced (Y ATP), and biomass yields per glucose consumed (Y XS) were less than 15%.  相似文献   

16.
The zooxanthellate octocoral Sinularia flexibilis is a producer of potential pharmaceutically important metabolites such as antimicrobial and cytotoxic substances. Controlled rearing of the coral, as an alternative for commercial exploitation of these compounds, requires the study of species-specific growth requirements. In this study, phototrophic vs. heterotrophic daily energy demands of S. flexibilis was investigated through light and Artemia feeding trials in the laboratory. Rate of photosynthetic oxygen by zooxanthellae in light (≈200 μmol quanta m−2 s−1) was measured for the coral colonies with and without feeding on Artemia nauplii. Respiratory oxygen was measured in the dark, again with and without Artemia nauplii. Photosynthesis–irradiance curve at light intensities of 0, 50, 100, 200, and 400 μmol quanta m−2 s−1 showed an increase in photosynthetic oxygen production up to a light intensity between 100 and 200 μmol quanta m−2 s−1. The photosynthesis to respiration ratio (P/R > 1) confirmed phototrophy of S. flexibilis. Both fed and non-fed colonies in the light showed high carbon contribution by zooxanthellae to animal (host) respiration values of 111–127%. Carbon energy equivalents allocated to the coral growth averaged 6–12% of total photosynthesis energy (mg C g 1 buoyant weight day 1) and about 0.02% of the total daily radiant energy. “Light utilization efficiency (ε)” estimated an average ε value of 75% 12 h 1 for coral practical energetics. This study shows that besides a fundamental role of phototrophy vs. heterotrophy in daily energy budget of S. flexibilis, an efficient fraction of irradiance is converted to useable energy.  相似文献   

17.
We investigated seasonal changes in dry mass and CO2 exchange rate in fruit and leaves of the evergreen tree Cinnamomum camphora with the aim of quantitatively determining the translocation balance between the two organs. The fruit dry mass growth peaked in both August and October: the first increase was due to fruit pulp development and the second to seed development. Fruit respiration also increased with the rapid increase in fruit dry mass. Therefore, the carbohydrates required for fruit development showed two peaks during the reproductive period. Fruit photosynthesis was relatively high in early August, when fruit potentially re-fixed 75% of respired CO2, indicating that fruit photosynthesis contributed 15–35% of the carbon requirement for fruit respiration. Current-year leaves completed their growth in June when fruit growth began. Current-year leaves translocated carbohydrates at a rate of approximately 10–25 mg dry weight (dw) leaf−1 day−1 into other organs throughout the entire fruit growth period. This rate of translocation from current-year leaves was much higher than the amount of carbohydrate required for reproduction (ca. 3 mg dw fruit−1 day−1). Given the carbon balance between fruit and current-year leaves, carbohydrates for reproduction were produced within the current-year fruit-bearing shoots. C. camphora would be adaptive for steadily supplying enough amount of carbohydrate to the fruits, as there was little competition for carbohydrates between the two organs. As assimilates by leaves are used for processes such as reproduction and the formation of new shoots, photosynthesis by reproductive organs is considered to be important to compensate for reproductive cost.  相似文献   

18.
The zooplankton off the north-east coast of England has been the subject of a number of studies focusing on its productivity. It has also been shown to be representative of the zooplankton of much of the western North Sea. The community contains a number of predatory species, three of which are widely described as ‘voracious’, the ctenophorePleurobrachia pileus, the chaetognathSagitta elegans and the hyperiid amphipodThemisto compressa (≡ Parathemisto gaudichaudi). This study investigates the role of these planktonic predators in this community, with special reference to the seasonal changes in predation pressure. The functional response ofPleurobrachia pileus feeding onAcartia was determined from laboratory experiments. It was found to be linear at prey densities typical of UK coastal waters, although the linear relationship appeared to break down at low and high prey densities. Feeding rate data forSagitta elegans were obtained from gut content analysis and published laboratory derived estimates of digestion time. Of the 1,789 individuals examined 198 (11.1%) had food remains in the gut. A linear relationship betweenSagitta length and prey size was established and the daily feeding rate ofSagitta elegans was estimated to be 0.4 prey items d−1 ind−1. For comparative purposes, the proportion of the copepod standing stock removed bySagitta elegans, Pleurobrachia pileus andThemisto gaudichaudi was estimated for each month of the year. From this model it was shown thatThemisto applied the most predation pressure, andSagitta elegans applied the least predation pressure of the three planktonic predators considered. The impact ofPleurobrachia will be to a large extent offset due to its peak of seasonal abundance coinciding with the zooplankton peak in the summer.  相似文献   

19.
Biomass distributions of the ctenophore, Mnemiopsis leidyi, were collected during a week-long survey program in a tidal front along the Patagonian shelf in December 1989. Average ctenophore biomass concentrations varied significantly along a north–south gradient and in stratified compared to unstratified waters. The relative vertical distribution of M. leidyi biomass appeared to be constrained by surface levels of vertical shear. Vertical distributions of ctenophore biomass were highly variable at low levels of vertical shear (<4 s−1) at the surface, but at higher levels of surface vertical shear ctenophores occurred deeper in the water column where shear levels were lower. These results indicate that physical conditions are important factors influencing the distribution of M. leidyi along the Patagonian shelf during summer months.  相似文献   

20.
Elevated CO2 enhances carbon uptake of a plant stand, but the magnitude of the increase varies among growth stages. We studied the relative contribution of structural and physiological factors to the CO2 effect on the carbon balance during stand development. Stands of an annual herb Chenopodium album were established in open-top chambers at ambient and elevated CO2 concentrations (370 and 700 μmol mol−1). Plant biomass growth, canopy structural traits (leaf area, leaf nitrogen distribution, and light gradient in the canopy), and physiological characteristics (leaf photosynthesis and respiration of organs) were studied through the growing season. CO2 exchange of the stand was estimated with a canopy photosynthesis model. Rates of light-saturated photosynthesis and dark respiration of leaves as related with nitrogen content per unit leaf area and time-dependent reduction in specific respiration rates of stems and roots were incorporated into the model. Daily canopy carbon balance, calculated as an integration of leaf photosynthesis minus stem and root respiration, well explained biomass growth determined by harvests (r 2 = 0.98). The increase of canopy photosynthesis with elevated CO2 was 80% at an early stage and decreased to 55% at flowering. Sensitivity analyses suggested that an alteration in leaf photosynthetic traits enhanced canopy photosynthesis by 40–60% throughout the experiment period, whereas altered canopy structure contributed to the increase at the early stage only. Thus, both physiological and structural factors are involved in the increase of carbon balance and growth rate of C. album stands at elevated CO2. However, their contributions were not constant, but changed with stand development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号