首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Aberrant Nuclear Factor-κappaB (NF-κB) activation due to rapid IκBα turnover and high basal IκBα kinase (IKK) activity has been frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits anti-proliferative, anti-inflammatory and anti-carcinogenic activities by inhibiting NF-κB pathway, through a mechanism not fully understood. We found that apigenin feeding in microgram doses (bioavailable in humans) inhibited prostate tumorigenesis in TRAMP mice by interfering with NF-κB signaling. Apigenin feeding to TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate and completely abolished metastasis, which correlated with inhibition of NF-κB activation and binding to the DNA. Apigenin intake blocked phosphorylation and degradation of IκBα by inhibiting IKK activation, which in turn led to suppression of NF-κB activation. The expression of NF-κB-regulated gene products involved in proliferation (cyclin D1, and COX-2), anti-apoptosis (Bcl-2 and Bcl-xL), and angiogenesis (vascular endothelial growth factor) were also downregulated after apigenin feeding. These events correlated with the induction of apoptosis in tumor cells, as evident by increased cleaved caspase-3 labeling index in the dorsolateral prostate. Our results provide convincing evidence that apigenin inhibits IKK activation and restores the expression of IκBα, preventing it’s phosphorylation in a fashion similar to that elicited by IKK and proteasomal inhibitors through suppression of NF-κB signaling pathway.  相似文献   

6.
7.
8.
The role of the subunits of phosphoinositide (PI) 3-kinase in NF-B activation in silica-stimulated RAW 264.7 cells was investigated. Results indicate that PI3-kinase activity was increased in response to silica. The p85 subunit of PI3-kinase interacted with tyrosine-phosphorylated IB- in silica-stimulated cells. PI3-kinase specific inhibitors, such as wortmannin and LY294003, substantially blocked both silica-induced PI3-kinase and NF-B activation. The inhibition of NF-B activation by PI3-kinase inhibitors was also observed in pervanadate-stimulated but not in LPS-stimulated cells. Furthermore, tyrosine phosphorylation of NF-B p65 was enhanced in cells stimulated with silica, pervanadate or LPS, and wortmannin substantially inhibited the phosphorylation event induced by the first two stimulants but not LPS. Antioxidants, such as superoxide dismutase (SOD), N-acetylcysteine (NAC) and pyrrolidine dithiocarbamate (PDTC), blocked silica-induced PI3-kinase activation, suggesting that reactive oxygen species may be important regulatory molecules in NF-B activation by mediating PI3-kinase activation. Our data suggest that p85 and p110 subunits of PI3-kinase play a role in NF-B activation through interaction with tyrosine-phosphorylated IB- and contributing to tyrosine phosphorylation of p65 NF-B.  相似文献   

9.
10.
11.
Inhibitor of NF-κB (IκB) is an important member of Rel/NF-κB signaling pathway, which is an important mediator of immune responses in innate immune system. In this study, the IκB cDNA of hard clam Meretrix meretrix (designated as Mm-IκB) was cloned and characterized. The full-length cDNA of Mm-IκB was of 2098 bp, containing a 5' untranslated region (UTR) of 123 bp, a 3' UTR of 810 bp with a poly (A) tail, and an open reading frame (ORF) of 1164 bp encoding a polypeptide of 387 amino acids. The high similarity of Mm-IκB with other IκBs from invertebrates indicated that Mm-IκB should be a member of IκB family. Similar to most IκBs, Mm-IκB possessed all conserved features critical for the fundamental structure and function of IκBs, such as five ankyrin repeats and a conserved degradation motif (DS(44)RYSS(48)). Two PEST domains and a phosphorylation site motif (S(367)EEE(370)) at the C-terminus of Mm-IκB were identified. By quantitative real-time RT-PCR analysis, mRNA level of Mm-IκB was found to be most abundantly expressed in the tissues of mantle, gill and hepatopancreas, weakly expressed in muscle, foot and haemocyte. The Mm-IκB gene expression was significantly up-regulated at 24 h in haemocyte and at 12 h in gill after Vibrio anguillarum challenge, respectively. The results suggested the involvement of Mm-IκB in response against bacterial infection and further highlighted its functional importance in the immune system of M. meretrix.  相似文献   

12.
13.
14.
15.
16.
Osteoclasts are bone-resorbing cells that are critical for the normal formation and maintenance of teeth and skeleton. Osteoclast deficiency can contribute to heterotopic ossification (HO), a pathology that is particularly detrimental to the mechanical functions of joints, valves and blood vessels. On the other hand, osteoclast over-activity is a major cause of osteoporosis. A reliable method for controlled generation of osteoclasts would be useful as a potential autologous cell therapy for HO, as well as high-throughput drug screening for anti-osteoporotic drugs. In this report, we describe the development of a cell engineering approach to control monocytic precursor cell differentiation to osteoclasts. Oligomerization of receptor activator of nuclear factor κB (RANK) is known to be essential for osteoclast differentiation from monocyte/macrophage precursors. We engineered a murine monocytic cell line, RAW264.7 to express a fusion protein comprising the intracellular RANK signaling domain and FK506-derived dimerization domains that bind to a small molecule chemical inducer of dimerization (CID). Virally infected cells expressing this fusion protein were treated with CID and dose-dependent induction of tartrate-resistant acid phosphatase activity, as well as multinucleated osteoclast formation were observed. Furthermore, NF-κB signaling was upregulated in a CID-dependent fashion, demonstrating effective RANK intracellular signaling. Functionally CID-induced osteoclasts had robust mineral resorptive activity in both two-dimensional and three-dimensional in vitro resorption assays. In addition, the CID-induced osteoclasts have the same life span as native RANKL-induced osteoclasts. Most importantly and crucially, the engineered cells differentiated into osteoclasts that were resistant to the potent osteoclast inhibitor, osteoprotegerin. Taken together, these studies are the first to describe a method for inducible control of monocytic precursor differentiation to osteoclasts that may be useful for future development of an engineered autologous cell therapy as well as high-throughput drug testing systems to treat diseases of osteoclast over-activity that are independent of osteoprotegerin.  相似文献   

17.
18.
Single stranded RNA (ssRNA) virus infection activates the retinoic acid inducible gene I (RIG-I)- mitochondrial antiviral signaling (MAVS) complex, a complex that coordinates the host innate immune response via the NF-κB and IRF3 pathways. Recent work has shown that the IκB kinase (IKK)γ scaffolding protein is the final common adapter protein required by RIG-I·MAVS to activate divergent rate-limiting kinases downstream controlling the NF-κB and IRF3 pathways. Previously we discovered a ubiquitous IKKγ splice-variant, IKKγΔ, that exhibits distinct signaling properties.

Methodology/Principal Findings

We examined the regulation and function of IKKγ splice forms in response to ssRNA virus infection, a condition that preferentially induces full length IKKγ-WT mRNA expression. In IKKγΔ-expressing cells, we found increased viral translation and cytopathic effect compared to those expressing full length IKKγ-WT. IKKγΔ fails to support viral-induced IRF3 activation in response to ssRNA infections; consequently type I IFN production and the induction of anti-viral interferon stimulated genes (ISGs) are significantly attenuated. By contrast, ectopic RIG-I·MAVS or TNFα-induced canonical NF-κB activation is preserved in IKKγΔ expressing cells. Increasing relative levels of IKKγ-WT to IKKγΔ (while keeping total IKKγ constant) results in increased type I IFN expression. Conversely, overexpressing IKKγΔ (in a background of constant IKKγ-WT expression) shows IKKγΔ functions as a dominant-negative IRF3 signaling inhibitor. IKKγΔ binds both IKK-α and β, but not TANK and IKKε, indicating that exon 5 encodes an essential TANK binding domain. Finally, IKKγΔ displaces IKKγWT from MAVS explaining its domainant negative effect.

Conclusions/Significance

Relative endogenous IKKγΔ expression affects cellular selection of inflammatory/anti-viral pathway responses to ssRNA viral infection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号